JP3671769B2 - Control method of slag forming during refining - Google Patents

Control method of slag forming during refining Download PDF

Info

Publication number
JP3671769B2
JP3671769B2 JP27969899A JP27969899A JP3671769B2 JP 3671769 B2 JP3671769 B2 JP 3671769B2 JP 27969899 A JP27969899 A JP 27969899A JP 27969899 A JP27969899 A JP 27969899A JP 3671769 B2 JP3671769 B2 JP 3671769B2
Authority
JP
Japan
Prior art keywords
gas
slag
molten iron
refining
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27969899A
Other languages
Japanese (ja)
Other versions
JP2001107125A (en
Inventor
善彦 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP27969899A priority Critical patent/JP3671769B2/en
Publication of JP2001107125A publication Critical patent/JP2001107125A/en
Application granted granted Critical
Publication of JP3671769B2 publication Critical patent/JP3671769B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は溶鉄の脱燐、脱硫、脱珪または脱炭精錬中に発生するスラグフォーミング(以下、単にフォーミングともいう)の抑制方法に関する。
【0002】
【従来の技術】
高炉から出銑された溶銑(以下、溶鉄ともいう)をトピードカーまたは溶鉄鍋に収容し、そのままあるいは別の溶鉄処理用反応容器に移し替えて、脱燐や脱硫、脱珪などの予備処理を行う方法が従来から行われている。この予備処理では、各種精錬剤の添加とガス吹き込み攪拌または攪拌羽根による機械攪拌が行われている。
【0003】
これらの予備処理を行った後、溶鉄は転炉に装入され上吹き、底吹き、または上底吹きされた酸素ガスにより脱炭精錬が行われる。
【0004】
予備処理および転炉のいずれの場合も、添加したフラックスやスラグが泡状となるいわゆるフォーミング(泡立ち)現象を処理中あるいは出湯時に起こし易く、それが甚だしい場合には容器からフラックスやスラグが横溢して処理速度の低下等を引き起こす場合がある。
【0005】
例えば、ある容器にて酸素を吹きながら精錬中にスラグがフォーミングすると酸素流量を低下させたり、精錬後にフォーミングが鎮静するまで出湯を待つなどの操作が入り、全体の生産効率が低下するという問題があった。また、スラグ中にはFeO、Fe2 3 あるいは粒鉄などの鉄含有物が含まれており、スラグが横溢することにより鉄ロスを引き起こし鉄歩留まりが低下するという問題があった。
【0006】
例えば、文献(鉄と鋼、69(1983)、S135)には、COまたはCO2 ガスを溶鉄中に吹き込むとフォーミングを助長することが知られ、Arガスであるとフォーミングが緩和されることが報告されている。
【0007】
【発明が解決しようとする課題】
これらのガスに代わるフォーミング抑制効果を有する攪拌ガスの選定が望まれていた。
【0008】
本発明の目的は、フォーミング抑制効果を有する攪拌ガスを選定することにより、スラグフォーミングを抑制できる精錬方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明者は、るつぼ内で人為的にスラグフォーミングを起こし、X線透過法によりスラグ中に気泡の挙動を調査し、下記の知見を得た。
【0010】
(a)スラグフォーミングとは、スラグ中の微細気泡が分散・滞留して状態であり、この微細気泡を合体大型化すると、スラグからの離脱速度が大きくなり、スラグフォーミングを抑制できることがわかった。
【0011】
しかし、外部からスラグ中にAr、N2 、CO、CO2 またはO2 などのガスを吹き込んでも、この微細気泡を合体大型化する効果が無いことが判明した。
【0012】
一方、H2 ガスをスラグ中に吹き込むと、スラグ中の微細気泡が合体大型化し、スラグからの離脱速度が大きくなり、スラグフォーミングを抑制できることがわかった。
【0013】
(b)次に、小型試験転炉で水素ガスを炉底羽口から溶鉄に吹き込む実験を行い、上記の基礎実験結果と同様にフォーミング抑制効果があることを確認した。
【0014】
しかし、この小型試験転炉で水素を底吹きした場合、配管接続部からリークした水素による小爆発が発生するおそれがある。
【0015】
従って、実操業では、このような小爆発であっても安全の観点から完全に回避する必要があり、配管内では水素ガスに分解せずに精錬炉内に入って水素ガスに分解する炭化水素をフォーミング抑制ガスとして利用することを着想した。
【0016】
(c)試験転炉にて溶鉄脱珪あるいは溶鉄脱燐、あるいは脱炭などの酸素上吹き吹錬実験を行い、転炉の底吹き羽口から炭化水素を流したところ、従来Ar、N2 、CO、CO2 またはO2 ガス底吹きで発生するフォーミングによる炉口からスラグのの横溢が見られなかった。
【0017】
しかし、炭化水素ガスが分解して生成する水素ガス量が多過ぎると、スピッティングが発生し易くなるため水素ガス量に上限が存在することが判明した。
【0018】
なお、転炉上底吹き精錬で使用する底吹きガスは、例えば2重管を使用して内管に酸素、外管に炭化水素(酸素の冷却剤として使用:酸素量に対して3〜10%の流量比)を入れた操業を実施している。
【0019】
しかし、炭化水素が分解して生成したH2 ガスは下記反応でH2 Oガスに変化するためH2 ガスの添加効果を発揮することができない。
【0020】
2(外管:炭化水素分解ガス)+1/2O2 (内管:底吹きガス)=H2
また、上記炭化水素量の10倍以上のO2 ガスを底吹きガスとして使用すると、フォーミング抑制効果がなく、底吹きガスとしてO2 ガスを使用することは適当ではない。
【0021】
(d)ガス種をCH4 、C2 6 、C3 8 、C4 10と種々変更し、さらにこれらの炭化水素ガスを混合して用いたが、いずれも分解後に発生する水素ガス量が適正範囲であればスピッティングを抑制しながらスラグフォーミングを抑制できることを確認した。
【0022】
本発明は、以上の知見に基づいてなされたもので、その要旨は、下記の通りである。
【0023】
(1)溶鉄中に攪拌ガスを添加する精錬方法において、攪拌ガスとして精錬容器の底部に設けた羽口からの水素ガスを使用し、水素ガス流量を溶鉄トン当り0.04Nm/(min・t)以上0.2Nm /(min・t)以下とすることを特徴とする精錬時のスラグフォーミングの抑制方法。
【0024】
(2)溶鉄中に攪拌ガスを添加する精錬方法において、攪拌ガスとして精錬容器の底部に設けた羽口からの炭化水素を使用し、該炭化水素が分解して発生する水素ガス流量を溶鉄トン当り0.04Nm/(min・t)以上0.2Nm /(min・t)以下とすることを特徴とする精錬時のスラグフォーミングの抑制方法。
【0026】
【発明の実施の形態】
溶鉄中に攪拌ガスを添加する精錬プロセスは、溶鉄脱珪、脱硫、脱燐および脱炭プロセスがある。
【0027】
上記プロセスで攪拌ガスとして添加する炭化水素は、溶鉄中で分解して水素ガス(以下、H2 ガスともいう)を発生する。
【0028】
この分解後に発生する水素ガス量が適正範囲であればスピッティングを抑制しながらスラグフォーミングを抑制できる。
【0029】
分解後の水素ガス流量は、CH4 ならC+2H2 となるためCH4 流量の2倍、C3 8 なら3C+4H2 となるためC3 8 流量の4倍として算出する。
【0030】
溶鉄トン(以下、単にtともいう)当りの水素流量が0.04Nm3 /(min・t)未満では、スラグフォーミングによりスラグの横溢が発生する。
【0031】
4.0Nm3 /(min・t)超では底吹きガス流量が大きく成り過ぎスピッティングが急激に増加する。
【0032】
したがって、スラグフォーミングを抑制するには、水素流量を0.04Nm3 /(min ・t)以上とすればよいが、スピッティングを抑制しながら、スラグフォーミングを抑制するには、分解後の水素ガス流量は溶鉄トンあたり0.04〜4.0Nm3 /(min・t)の範囲とすればよい。
望ましい範囲は、0.1〜3.0Nm3 /(min・t)である。
【0033】
以下に、転炉底吹き羽口を一実施態様例として炭化水素を吹き込む方法について説明する。
【0034】
使用する底吹き羽口は単管でもよいが、羽口の冷却を防止するために二重管を用いることが望ましい。
【0035】
二重管は内管および外管の2つの管から構成され、内管に炭化水素を、外管に不活性ガスを導入する。
【0036】
外管に不活性ガスを導入する理由は、炭化水素の内管内での分解を防止できるからである。すなわち不活性ガスは、外管に不活性ガスを流すことで内管を保護する断熱材としての機能が期待でき、内管内での炭化水素の分解を防止できる。
【0037】
この結果、底吹き羽口は、炭化水素分解時の吸熱(冷却)による冷却を免れ、羽口付近への溶鉄付着トラブルを回避できる。
【0038】
単管または二重管の内管に導入する炭化水素はCH4 、C2 6 、C3 8 、C4 10等を単独または混合して用いる。
【0039】
二重管の外管に導入する不活性ガスはAr、N2 等を単独または混合して用いる。
【0040】
上記に、本発明の一実施態様例として転炉での底吹き例を示したが、転炉以外の精錬容器(溶鉄予備処理や二次精錬等)での底部あるいは側面に設けた羽口だけでなく耐火物で被覆された昇降型ランスも適用可能である。
【0041】
【実施例】
250トン転炉に溶鉄を装入し、脱燐剤を添加して上吹きランスから酸素を吹き付け、底吹き羽口から攪拌ガスを流して溶鉄脱燐試験を行った。
【0042】
酸素上吹き流量は125Nm3 /min の同条件で行い、底吹き羽口(単管または2重管を使用)から攪拌ガスのガスの種類を変えて溶鉄中の[P]濃度が0.02質量%以下まで脱燐処理した。
表1に試験結果を示す。
【0043】
【表1】

Figure 0003671769
【0044】
なお、横溢したスラグ量を炉下で回収して質量を計測し、炉内添加スラグに対する割合を求めてスラグ横溢率(質量%)とした。
【0045】
また、炉内にスラグ上面位置を確認するための探査棒(プローブ)を昇降させてフォーミング高さを測定し、炉内フリーボード高さとの比を%表示で表しフォーミング高さ比(F値)とした。
【0046】
このF値が0%の時ははフォーミングなしの状態を意味し、F値が100%の時はフォーミングしたスラグ面が炉口と同じ高さになっていることを示している。スラグが炉口から横溢した場合は>100で表示した。
【0047】
さらに、転炉内の炉口から下方1mの高さに飛散溶鉄回収箱を設置し、スピッティングにより飛散した鉄粒子量を測定した。No.11での回収鉄粒子量を基準としたS値(回収鉄粒子量kg/No.11回収鉄粒子量kg)でスピッティング量を評価した。
【0048】
評価は、スラグ横溢率が0%でS値が1.2以下の試験結果に◎印、スラグ横溢率が1%以上の試験結果に×印、スラグ横溢率が0%でS値が5以上の試験結果に○印を付けた。
【0049】
表1の本発明例の試験番号11〜15に示すように、鉄銑トン当りの水素流量が0.04〜0.2Nm/(min・t)であると、スラグ横溢率が0%でありF値も82%以下で安定していた。しかもS値は1.2以下でありスピッティングの問題が特に発生しなかった。
【0050】
炭化水素を使用しない従来例の試験番号3〜7の結果は、スラグ横溢率が1〜13%でありフォーミングを抑制できなかった。
【0051】
溶鉄トン当りの水素流量が0.04Nm3 /(min ・t)未満である比較例の試験番号8〜10の結果は、スラグ横溢率が3〜4%でありフォーミングを抑制できなかった。
【0052】
また、溶鉄トン当りの水素流量が4.0Nm3 /(min ・t)を超える比較例の試験番号20〜21の結果は、スラグ横溢率が0%でありF値も34.3%以下と非常に安定しているが、S値が5.2〜8.4と高くスピッティングを抑制することができなかった。
【0053】
従って、フォーミングおよびスピッティングを抑制するには、水素流量を0.04〜0.2Nm/(min・t)とすることが必要であることがわかった。
【0054】
【発明の効果】
本発明により、スラグフォーミングを抑制できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for suppressing slag forming (hereinafter also simply referred to as forming) that occurs during dephosphorization, desulfurization, desiliconization, or decarburization refining of molten iron.
[0002]
[Prior art]
The hot metal discharged from the blast furnace (hereinafter also referred to as molten iron) is stored in a topped car or a molten iron pan, and is transferred as it is or to another molten iron treatment vessel for pretreatment such as dephosphorization, desulfurization, and desiliconization. The method is conventional. In this preliminary treatment, various refining agents are added and gas blowing stirring or mechanical stirring using stirring blades is performed.
[0003]
After performing these preliminary treatments, the molten iron is charged into the converter and decarburized and refined by top blowing, bottom blowing, or oxygen gas blown from the bottom.
[0004]
In both pre-treatment and converters, the so-called foaming phenomenon, in which the added flux or slag becomes foamy, is likely to occur during processing or at the time of tapping, and if it is severe, the flux or slag overflows from the container. May decrease the processing speed.
[0005]
For example, if slag forms during refining while blowing oxygen in a certain vessel, the oxygen flow rate is reduced, and operations such as waiting for hot water until the forming subsides after refining enter, reducing the overall production efficiency. there were. In addition, iron-containing materials such as FeO, Fe 2 O 3 and granular iron are contained in the slag, and the slag overflows, causing iron loss and lowering the iron yield.
[0006]
For example, it is known in the literature (iron and steel, 69 (1983), S135) that CO or CO 2 gas is blown into molten iron to promote forming, and Ar gas can reduce forming. It has been reported.
[0007]
[Problems to be solved by the invention]
It has been desired to select a stirring gas having an effect of suppressing forming in place of these gases.
[0008]
An object of the present invention is to provide a refining method capable of suppressing slag forming by selecting a stirring gas having a forming suppressing effect.
[0009]
[Means for Solving the Problems]
The inventor artificially caused slag forming in the crucible, investigated the behavior of bubbles in the slag by the X-ray transmission method, and obtained the following knowledge.
[0010]
(A) Slag forming is a state in which fine bubbles in the slag are dispersed and stayed. When these fine bubbles are combined and enlarged, the separation speed from the slag increases, and it has been found that slag forming can be suppressed.
[0011]
However, it has been found that even if a gas such as Ar, N 2 , CO, CO 2, or O 2 is blown into the slag from the outside, there is no effect of increasing the size of the fine bubbles.
[0012]
On the other hand, it was found that when H 2 gas was blown into the slag, the fine bubbles in the slag increased in size, the separation speed from the slag increased, and slag forming could be suppressed.
[0013]
(B) Next, an experiment was conducted in which hydrogen gas was blown into the molten iron from the furnace bottom tuyere in a small test converter, and it was confirmed that there was a forming suppression effect in the same manner as the above basic experiment results.
[0014]
However, when hydrogen is blown at the bottom in this small test converter, there is a risk of a small explosion due to hydrogen leaking from the pipe connection.
[0015]
Therefore, in actual operation, it is necessary to avoid such a small explosion completely from the viewpoint of safety, and hydrocarbons that enter the smelting furnace and decompose into hydrogen gas in the piping instead of decomposing into hydrogen gas. Was used as a forming suppression gas.
[0016]
(C) In a test converter, an oxygen top blowing smelting experiment such as molten iron desiliconization, molten iron dephosphorization, or decarburization was conducted, and hydrocarbons were flowed from the bottom blowing tuyere of the converter. Conventional Ar, N 2 No overflow of slag was observed from the furnace port due to forming generated by blowing CO, CO 2 or O 2 gas at the bottom.
[0017]
However, it has been found that there is an upper limit in the amount of hydrogen gas because spitting tends to occur if the amount of hydrogen gas generated by decomposition of the hydrocarbon gas is excessive.
[0018]
The bottom blowing gas used in the converter top bottom blowing refining is, for example, a double pipe using oxygen in the inner pipe and a hydrocarbon in the outer pipe (used as a coolant for oxygen: 3 to 10 with respect to the oxygen amount). % Flow rate ratio).
[0019]
However, since the H 2 gas produced by the decomposition of hydrocarbons is changed to H 2 O gas by the following reaction, the effect of adding H 2 gas cannot be exhibited.
[0020]
H 2 (outer pipe: hydrocarbon cracking gas) + 1 / 2O 2 (inner pipe: bottom blowing gas) = H 2 O
In addition, when O 2 gas 10 times or more the amount of hydrocarbon is used as the bottom blowing gas, there is no effect of suppressing the forming, and it is not appropriate to use O 2 gas as the bottom blowing gas.
[0021]
(D) Gas species are variously changed to CH 4 , C 2 H 6 , C 3 H 8 , C 4 H 10 , and these hydrocarbon gases are mixed and used, all of which are hydrogen gas generated after decomposition It was confirmed that slag forming could be suppressed while suppressing spitting if the amount was in an appropriate range.
[0022]
The present invention has been made based on the above findings, and the gist thereof is as follows.
[0023]
(1) In a refining method in which stirring gas is added to molten iron, hydrogen gas from the tuyere provided at the bottom of the refining vessel is used as stirring gas, and the hydrogen gas flow rate is 0.04 Nm 3 / (min · t) A method for suppressing slag forming during refining, which is 0.2 Nm 3 / (min · t) or less .
[0024]
(2) In a refining method in which stirring gas is added to molten iron , hydrocarbons from tuyere provided at the bottom of the refining vessel are used as stirring gas, and the flow rate of hydrogen gas generated by decomposition of the hydrocarbons A method for suppressing slag forming during refining, characterized by being 0.04 Nm 3 / (min · t) or more and 0.2 Nm 3 / (min · t) or less per unit.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
The refining process in which the stirring gas is added to the molten iron includes molten iron desiliconization, desulfurization, dephosphorization, and decarburization processes.
[0027]
The hydrocarbon added as a stirring gas in the above process is decomposed in molten iron to generate hydrogen gas (hereinafter also referred to as H 2 gas).
[0028]
If the amount of hydrogen gas generated after the decomposition is in an appropriate range, slag forming can be suppressed while suppressing spitting.
[0029]
Hydrogen gas flow rate after the decomposition is twice the CH 4 flow rate for the C + 2H 2 if CH 4, is calculated as 4 times the C 3 H 8 flow rate for the C 3 H 8 if 3C + 4H 2.
[0030]
When the hydrogen flow rate per ton of molten iron (hereinafter also simply referred to as “t”) is less than 0.04 Nm 3 / (min · t), slag overflow occurs due to slag forming.
[0031]
If it exceeds 4.0 Nm 3 / (min · t), the bottom blown gas flow rate becomes too high, and the spitting increases rapidly.
[0032]
Therefore, in order to suppress slag forming, the hydrogen flow rate may be 0.04 Nm 3 / (min · t) or more. To suppress slag forming while suppressing spitting, hydrogen gas after decomposition is used. The flow rate may be in the range of 0.04 to 4.0 Nm 3 / (min · t) per ton of molten iron.
A desirable range is 0.1 to 3.0 Nm 3 / (min · t).
[0033]
Hereinafter, a method for injecting hydrocarbons will be described with the converter bottom blowing tuyeres as an embodiment.
[0034]
The bottom blowing tuyere used may be a single pipe, but it is desirable to use a double pipe to prevent cooling of the tuyere.
[0035]
The double pipe is composed of two pipes, an inner pipe and an outer pipe, and introduces a hydrocarbon into the inner pipe and an inert gas into the outer pipe.
[0036]
The reason why the inert gas is introduced into the outer pipe is that the decomposition of hydrocarbons in the inner pipe can be prevented. That is, the inert gas can be expected to function as a heat insulating material that protects the inner pipe by flowing the inert gas through the outer pipe, and can prevent hydrocarbons from being decomposed in the inner pipe.
[0037]
As a result, the bottom blown tuyere avoids cooling due to endothermic (cooling) during hydrocarbon decomposition, and avoids the problem of molten iron adhesion near the tuyere.
[0038]
As the hydrocarbon introduced into the inner pipe of the single pipe or the double pipe, CH 4 , C 2 H 6 , C 3 H 8 , C 4 H 10 or the like is used alone or in combination.
[0039]
As the inert gas introduced into the outer tube of the double tube, Ar, N 2 or the like is used alone or in combination.
[0040]
Above, an example of bottom blowing in a converter was shown as an embodiment of the present invention, but only tuyere provided on the bottom or side in a refining vessel other than the converter (preliminary molten iron treatment, secondary refining, etc.) In addition, an elevating lance covered with a refractory is also applicable.
[0041]
【Example】
Molten iron was charged into a 250-ton converter, a dephosphorizing agent was added, oxygen was blown from the top blowing lance, and a molten gas was flowed from the bottom blowing tuyere to conduct the molten iron dephosphorization test.
[0042]
The oxygen top blowing flow rate is 125 Nm 3 / min under the same conditions, and the [P] concentration in the molten iron is changed to 0.02 by changing the gas type of the stirring gas from the bottom blowing tuyere (using a single pipe or a double pipe). Dephosphorization treatment was performed to a mass% or less.
Table 1 shows the test results.
[0043]
[Table 1]
Figure 0003671769
[0044]
The amount of overflowing slag was collected under the furnace, the mass was measured, and the ratio to the added slag in the furnace was obtained to obtain the slag overflow ratio (mass%).
[0045]
In addition, the forming height is measured by raising and lowering the probe (probe) for confirming the slag upper surface position in the furnace, and the ratio to the freeboard height in the furnace is expressed in% and the forming height ratio (F value). It was.
[0046]
When the F value is 0%, it means that there is no forming, and when the F value is 100%, the formed slag surface is at the same height as the furnace port. When slag overflowed from the furnace port, it was indicated as> 100.
[0047]
Furthermore, a scattered molten iron collection box was installed at a height of 1 m below the furnace opening in the converter, and the amount of iron particles scattered by spitting was measured. No. The spitting amount was evaluated by the S value based on the recovered iron particle amount at No. 11 (recovered iron particle amount kg / No. 11 recovered iron particle amount kg).
[0048]
The evaluation is based on the test results with a slag overflow rate of 0% and an S value of 1.2 or less. The test results were marked with a circle.
[0049]
As shown in Test Nos. 11 to 15 of the present invention examples in Table 1, when the hydrogen flow rate per ton of iron is 0.04 to 0.2 Nm 3 / (min · t), the slag overflow rate is 0% And the F value was stable at 82% or less. Moreover, the S value was 1.2 or less, and no particular problem of spitting occurred.
[0050]
As a result of the test numbers 3 to 7 of the conventional examples using no hydrocarbon, the slag overflow rate was 1 to 13%, and the forming could not be suppressed.
[0051]
As a result of the test numbers 8 to 10 of the comparative example in which the hydrogen flow rate per ton of molten iron is less than 0.04 Nm 3 / (min · t), the slag overflow rate was 3 to 4%, and the forming could not be suppressed.
[0052]
In addition, as a result of the test numbers 20 to 21 of the comparative examples in which the hydrogen flow rate per ton of molten iron exceeds 4.0 Nm 3 / (min · t), the slag overflow rate is 0% and the F value is 34.3% or less. Although it was very stable, the S value was as high as 5.2 to 8.4, and spitting could not be suppressed.
[0053]
Therefore, it was found that the hydrogen flow rate needs to be 0.04 to 0.2 Nm 3 / (min · t) in order to suppress forming and spitting.
[0054]
【The invention's effect】
According to the present invention, slag forming can be suppressed.

Claims (2)

溶鉄中に攪拌ガスを添加する精錬方法において、攪拌ガスとして精錬容器の底部に設けた羽口からの水素ガスを使用し、水素ガス流量を溶鉄トン当り0.04Nm/(min・t)以上0.2Nm /(min・t)以下とすることを特徴とする精錬時のスラグフォーミングの抑制方法。In the refining method of adding stirring gas into molten iron, hydrogen gas from the tuyere provided at the bottom of the refining vessel is used as stirring gas, and the hydrogen gas flow rate is 0.04 Nm 3 / (min · t) or more per molten iron A method for suppressing slag foaming during refining, characterized by being 0.2 Nm 3 / (min · t) or less . 溶鉄中に攪拌ガスを添加する精錬方法において、攪拌ガスとして精錬容器の底部に設けた羽口からの炭化水素を使用し、該炭化水素が分解して発生する水素ガス流量を溶鉄トン当り0.04Nm/(min・t)以上0.2Nm /(min・t)以下とすることを特徴とする精錬時のスラグフォーミングの抑制方法。In a refining method in which stirring gas is added to molten iron, hydrocarbons from the tuyere provided at the bottom of the refining vessel are used as the stirring gas, and the hydrogen gas flow rate generated by decomposition of the hydrocarbons is set to 0. A method for suppressing slag foaming during refining, characterized by being 04 Nm 3 / (min · t) or more and 0.2 Nm 3 / (min · t) or less .
JP27969899A 1999-09-30 1999-09-30 Control method of slag forming during refining Expired - Fee Related JP3671769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27969899A JP3671769B2 (en) 1999-09-30 1999-09-30 Control method of slag forming during refining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27969899A JP3671769B2 (en) 1999-09-30 1999-09-30 Control method of slag forming during refining

Publications (2)

Publication Number Publication Date
JP2001107125A JP2001107125A (en) 2001-04-17
JP3671769B2 true JP3671769B2 (en) 2005-07-13

Family

ID=17614640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27969899A Expired - Fee Related JP3671769B2 (en) 1999-09-30 1999-09-30 Control method of slag forming during refining

Country Status (1)

Country Link
JP (1) JP3671769B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240010004A (en) * 2021-05-26 2024-01-23 제이에프이 스틸 가부시키가이샤 Dephosphorization method of molten iron

Also Published As

Publication number Publication date
JP2001107125A (en) 2001-04-17

Similar Documents

Publication Publication Date Title
US3953199A (en) Process for refining pig iron
JP4735169B2 (en) Hot metal dephosphorization method
JP5082417B2 (en) Method of melting ultra low sulfur low nitrogen high cleanliness steel
US5902374A (en) Vacuum refining method for molten steel
CN109207672B (en) Slag discharging method in production process of ultra-low phosphorus steel and production method of ultra-low phosphorus steel
JP4715384B2 (en) Method for dephosphorizing hot metal and top blowing lance for dephosphorization
CN113005261A (en) Comprehensive deoxidation and desulfurization process for smelting stainless steel by using small-capacity AOD furnace
JPH10212514A (en) Production of high clean extra-low sulfur steel excellent in hydrogen induced cracking resistance
JP4345769B2 (en) Melting method of ultra low sulfur high clean steel
JP3671769B2 (en) Control method of slag forming during refining
Pehlke et al. Control of sulphur in liquid iron and steel
JP3577997B2 (en) Hot metal desulfurization method
JP3214730B2 (en) Refining method of high purity steel using reflux type vacuum degasser
JP5689024B2 (en) Dephosphorization method of hot metal using dust
JPH0987732A (en) Method for refining molten steel
JPH10298631A (en) Method for melting clean steel
JP7302749B2 (en) Molten iron dephosphorization method
CN113930584B (en) Method for improving production stability of high-silicon aluminum killed steel
JP3577988B2 (en) Manufacturing method of low Al ultra low sulfur steel
JP2009084672A (en) Method of heating molten steel, and method for production of rolled steel material
JP4423927B2 (en) Hot metal dephosphorization method
JP4305127B2 (en) Hot metal dephosphorization method
JP2004238698A (en) Production method of high cleanliness steel
JPH11140530A (en) Production of ultra-low nitrogen stainless steel
JP2940358B2 (en) Melting method for clean steel

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050411

R150 Certificate of patent or registration of utility model

Ref document number: 3671769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees