JP3671544B2 - Laser welding method - Google Patents

Laser welding method Download PDF

Info

Publication number
JP3671544B2
JP3671544B2 JP24783196A JP24783196A JP3671544B2 JP 3671544 B2 JP3671544 B2 JP 3671544B2 JP 24783196 A JP24783196 A JP 24783196A JP 24783196 A JP24783196 A JP 24783196A JP 3671544 B2 JP3671544 B2 JP 3671544B2
Authority
JP
Japan
Prior art keywords
weld
ratio
iron
laser welding
assist gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24783196A
Other languages
Japanese (ja)
Other versions
JPH1085974A (en
Inventor
義典 近江
保典 河本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP24783196A priority Critical patent/JP3671544B2/en
Publication of JPH1085974A publication Critical patent/JPH1085974A/en
Application granted granted Critical
Publication of JP3671544B2 publication Critical patent/JP3671544B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、レーザ溶接方法に関するものであり、更に詳しく述べるならば、鉄・炭素鋼、又はステンレス鋼の中で従来溶接が困難であって、溶接割れが発生しやすい材料として知られていた鋼材料に、溶接割れを発生することなくレーザ溶接する方法に関するものである。
【0002】
【従来の技術】
従来、金属材料に対するレーザ溶接方法は、当該溶接金属材料を大気から保護(金属酸化物の生成防止および表面酸化の防止)し、かつ、キーホール近傍に生成するプラズマを除去して、深溶け込みを実現するために、不活性ガス(Ar,He,N2 など)をアシストガスとして、レーザ照射部に吹きつけながら、レーザ溶接する方法が知られている。一方、鉄・炭素鋼およびステンレス鋼の中で従来溶接が困難であると知られていた材料についても、溶接コストの低下のために、レーザ溶接を利用しようとするニーズが急増している。このような金属材料に前記のような従来のレーザ溶接法を適用すると、レーザ照射により形成される溶け込み部(溶融池)に大きな収縮応力が発生し、また、金属溶融量が増大するため、当該溶接部に溶接欠陥(割れ)が発生し、品質良好な溶接物品が得られないという問題点がある。
【0003】
また、母材材料よりも低い融点を有する金属により被覆されている複合金属材料、例えば亜鉛めっき鋼材などに、レーザ溶接を施すときに、前記低融点金属の爆発現象を防止するために、アシストガス中に5〜35容積%の酸素を含有させて、溶融部中の前記低融点金属を酸化し、その爆発を防止することが知られている。
しかしながら、爆発現象を発生するような低融点金属被覆層を含まず、しかも、鉄・炭素鋼、およびステンレス鋼の中で従来溶接が困難として知られていたものを、溶接割れを発生することなくスムースにレーザ溶接する方法は、知られていなかった。
【0004】
【発明が解決しようとする課題】
本発明は、鉄・炭素鋼およびステンレス鋼の中で従来溶接が困難として知られていた、金属材料を溶接割れを生ずることなく溶接することが可能なレーザ溶接方法を提供しようとするものである。
【0005】
【課題を解決するための手段】
本発明のレーザ溶接方法は、50重量%以上の鉄、および0.2重量%以上の炭素、または0.045重量%以上の硫黄、または0.04重量%以上のりんを含有する鉄・炭素鋼材料、およびクロム当量とニッケル当量の比Cr eq /Ni eq が1.48以下のステンレス鋼から選ばれた複数の板材を重ね合わせ、これにアシストガスを吹きつけながら、レーザビームを照射して、前記複数の板材を溶接するに際し、前記アシストガスの酸素ガス含有量を5〜50容量%に調整して、前記溶接部におけるW/L比(但しWは溶融部のビード幅を表し、Lは前記複数の板材の接合部の幅を表す)を、1.0〜1.5の範囲にコントロールすることを特徴とするものである。
本発明のレーザ溶接方法において、前記W/L比を、ほぼ1.0に近づけるようにコントロールすることが好ましい。
【0006】
【発明の実施の形態】
本発明のレーザ溶接法において、溶接に供される材料は、鉄・炭素鋼およびステンレス鋼の中で従来溶接が困難とされている材料である。これらの材料の中でも、鉄・炭素鋼では、50重量%以上の鉄を含有し0.2重量%以上の炭素または、0.045重量%以上の硫黄(S)または0.04重量%以上のりん(P)を含有している材料、およびステンレス鋼では、クロム当量(Creq=Cr+Mo+1.5Si+0.5Nb(重量%))と、ニッケル当量(Nieq=Ni+30C+0.5Mn(重量%))との比:Creq/Nieqが1.48以下の材料に対し、本発明方法が、有効に適用される。
【0007】
アシストガスとして不活性ガス(Ar,He,Neなど)を用いる従来のレーザ溶接方法を、鉄−炭素鋼材料、又はステンレス鋼材料に適用すると、重ね合わされた材料1および2の溶接部分に形成される、溶け込み部(溶融池)3は、図1Aに示されているような表面形状および図1Bに示されているように断面形状、すなわちワインカップ形状を示す。これは、レーザ照射面の温度分布が不均一であると、それに対応して、溶融池表面の表面張力の分布が不均一になり、このため溶融池内に、図1Aおよび図1Bに矢印により示されているような方向の対流を生ずる。すなわち、溶融池表面において、溶融金属は、溶融池の中央部から外周部に向って流れ、中央部に戻る対流、および熱輸送系が形成される。このときの、温度分布と表面張力との関係は図1Cに示されている。図1Cに示されているように、溶融金属の温度が高い程、その表面張力は低下するから、温度の最も高い中央部から外周に向って熱輸送が行われ、かつ対流を生ずる。このため、溶融池のレーザ照射表面のビード幅Wは、重ね合わされた材料1および2の溶接面の幅Lより著るしく大きくなる。すなわちW/L比は1より著るしく大である。
【0008】
図2は、従来方法による溶接部の断面形状を示したものであって、重ね合わされた金属材料1、および2の接合部に形成された溶接部の接合部の幅Lにくらべて、溶接部上面のビード部の幅Wは著るしく大きくなっている。このように、W/L比が著るしく大きな状態で溶融池3が冷却凝固すると、WとLとの差に基づく収縮応力が発生し、この収縮応力によって、金属材料1および2の接合面と、溶接部外周面との交点の近くから溶接割れ4が発生する。従って、鉄・炭素鋼およびステンレス鋼の中で、従来溶接が困難であると知られていた金属材料に、不活性ガスのみをアシストガスとして使用する従来方法を適用すると、品質良好な溶接結果を得ることはできなかった。
【0009】
一般的に、溶接割れは、凝固部(組織)に、引張り(収縮)応力が作用したとき、この凝固部が脆弱であって、この応力に耐えることができないときに発生す。従って、溶接割れを防止するには、(1)発生する収縮応力を小さくすること、および/又は(2)凝固部の強度を向上させること、が必要である。
【0010】
本発明者らは溶接部に発生する収縮応力を低減することにより、溶接欠陥(割れ)の発生を防止できることに着目し、この収縮応力を低減する手段について検討した。
図3に、溶接部において、溶接割れを発生し易い点A(重ね合わされた2枚の金属材料1,2の接合部と、溶融池外周面との交差点近傍)に生ずる収縮応力と、ビード幅/接合部幅W/Lとの関係を、FEMを用いて計算した結果を示す。図3において、従来の溶接部のW/Lは、約2.6であって、このときにA点に発生する収縮応力は、W/L比が1の場合のA点における収縮応力の約6.4倍である。すなわち、溶接部に発生する収縮応力を低下させ、溶接割れの発生を防止するためには、溶接部(溶融池)の形状を、適切化し、W/Lを1.0〜1.5の範囲に制御することが有効であり、このとき、W/Lをほぼ1.0に近づけるように制御することが好ましい。
【0011】
本発明においては、鉄−炭素鋼およびステンレス鋼の中で、従来溶接が困難であると知られていた材料のレーザ溶接において、アシストガスに5〜50容積%の酸素を含有させ、残余を、Ar,He、又はN2 などの不活性ガスとし、このような特殊組成のガスをアシストガスとしてレーザ照射面に吹き当てることにより、図3に示した理想形状の溶接部を形成し、それによって、溶接部の冷却凝固の際に発生する収縮応力を最小にすることに成功したものである。
【0012】
本発明方法においては、図4Aに示されているように、ビードにおける熱輸送方向(対流方向)は、ビード外周面から中央に向う方向であるから、ビード幅が拡大することがなく、図4Bに示されているように、溶接部断面において、熱輸送方向(対流方向)は中央下部から、ビード外周部に向う方向をとるから、この断面形状が図1Bに示されているように、著るしく下方に狹くなることがない。このため、ビード幅Wおよび接合部幅Lの比W/Lの値は1.0〜1.5の範囲内にコントロールされ、好ましくは、ほぼ1に近づくことになる。図4Aおよび図4Bに示されているような熱輸送方向(対流方向)をとるということは、溶融池において、温度が高い部分(溶融池の中央部すなわちレーザの照射中心部)の表面張力が、温度の低い部分(外周部)の表面張力よりも高いということであり、このため、対流は、ビード表面部においては外周部から、中央部に向う方向に発生し、この流れは、中央部において下降し、さらに外向きに上昇するのである。
【0013】
本発明方法において、溶融池に図4A、およびBに示されているような方向の熱輸送および対流が発生する機構は、下記のように説明される。一般に、液体の表面張力は、構成元素(本発明方法においてはFe元素)の分子間結合力に比例するものと思われる。Feの分子間結合力は、温度上昇とともに低下するから、従って、その表面張力は、温度上昇とともに低下する。ところが、本発明において、アシストガスに酸素を含有させると、酸素がFeと置換結合し、そのため、Feの分子間結合力が低下し、しかも、非金属元素である酸素は高温になるほど解離しやすい。このため、特定温度域、例えば融点から沸点近傍の範囲においては酸素とFeとの結合の度合により、溶融池における溶融金属の表面張力は温度の上昇とともに増大するものと思われる。つまり温度が高くなる程表面張力が低下するという比例則が本発明方法においては、逆転しているのである。このため、図4A,BおよびCに示されているように、溶融池における熱輸送方向および対流状態が理想状態となりW/L比を、1.0〜1.5にコントロールし、好ましくはほゞ1に近づくようにコントロールすることが可能になり、その結果、溶接欠陥の発生を防止できるのである。
【0014】
図5には、本発明方法により得られる溶接部の断面形状を示す。図5において、溶接部のビード幅と、接合部幅とは互に近似し、比W/Lは、1.0〜1.5にコントロールされ、好ましくはほぼ1に近づくようにコントロールされる。また、図に示されているような断面形状を有する溶接部は、溶接欠陥(割れ)の発生しにくいものである。
【0015】
上述のような溶接部を形成するために有効なアシストガス中の酸素濃度について検討した。
継手上側材料(材料組成=Cr:19%、Ni:9%、C:0.06%、残部:Fe)と、下側材料(材料組成=Cr:13%、C:0.65%、残部:Fe)とを重ね合わせ、この試料を一定速度で移動させながら、パルスYAGレーザを繰り返えし照射した。溶接条件=パルス幅:2m秒、エネルギー:3.5J/P。上記溶接において、アシストガス中の酸素濃度を、0〜100%の間で変化させ、得られた溶接部のW/L比を測定した。その結果を図6に示す。
【0016】
図6に示されているように、アシストガスの酸素濃度が5容量%未満であると、W/L比値が著るしく増大し、従って、溶接欠陥を生じ易くなる。また、それが50容量%を超えて高くなると、溶接部に穴あきが発生するようになる。従って、アシストガス中の酸素濃度は5〜50容量%内にコントロールすべきであり、10〜30容量%にすることが好ましい。
また、得られた溶接部の組成をミクロ分析した結果、アシストガス中の酸素濃度が50容量%以下の場合、得られる溶接部組成中に、酸素の残留は認められず、従って、添加した酸素は、溶融時に、すべてスラグの状態で溶接部表面に遊離し、凝固するものと認められる。よって、本発明方法において、アシストガスに含まれる酸素は、得られる溶接部の耐食性に、実用上影響を与えることはない。
【0017】
【発明の効果】
本発明方法において、鉄−炭素鋼およびステンレス鋼の中で従来溶接が困難と認められていた材料を溶接欠陥(割れ)を生ずることなく、強固に溶接することができる。また、その耐食性を大きく低下させることもない。
【図面の簡単な説明】
【図1】図1Aは従来方法による溶融池表面の形状を示す平面図。
図1Bは従来方法による溶融池の断面形状を示す断面図。
図1Cは従来方法における温度と表面張力の関係を示すグラフ。
【図2】図2は従来方法により得られる溶接部の一例の断面形状を示す断面図。
【図3】図3は、従来の溶接部の形状および溶接部の理想形状におけるビード幅/接合部幅(W/L)比と、溶接割れ発生点Aにおける収縮応力比との関係を示すグラフ。
【図4】図4Aは本発明方法により得られる溶融池の表面形状を示す平面図。
図4Bは、本発明方法により得られる溶融池の断面形状を示す断面図。
【図5】図5は、本発明方法により得られる溶接部の一例の断面形状を示す断面図。
【図6】図6は、本発明方法におけるアシストガス中の酸素濃度と、得られる溶接部のW/L比との関係を示すグラフ。
【符号の説明】
1,2…金属材料
3…溶融池
4…溶接割れ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a laser welding method, and more specifically, steel that has been known as a material that is difficult to weld in iron, carbon steel, or stainless steel and that is likely to cause weld cracking. The present invention relates to a method for laser welding a material without generating weld cracks.
[0002]
[Prior art]
Conventionally, a laser welding method for a metal material protects the weld metal material from the atmosphere (prevention of metal oxide formation and surface oxidation) and removes plasma generated in the vicinity of the keyhole to deeply dissolve. In order to achieve this, a laser welding method is known in which an inert gas (Ar, He, N 2 or the like) is used as an assist gas while spraying the laser irradiation portion. On the other hand, among materials that have been known to be difficult to weld among iron, carbon steel, and stainless steel, the need to use laser welding is rapidly increasing due to a decrease in welding cost. When the conventional laser welding method as described above is applied to such a metal material, a large shrinkage stress is generated in the penetration portion (molten pool) formed by laser irradiation, and the amount of molten metal increases. There is a problem in that weld defects (cracks) occur in the welded portion, and a welded article with good quality cannot be obtained.
[0003]
In order to prevent an explosion phenomenon of the low melting point metal when laser welding is performed on a composite metal material coated with a metal having a melting point lower than that of the base material, such as a galvanized steel material, an assist gas is used. It is known that 5 to 35% by volume of oxygen is contained therein to oxidize the low-melting-point metal in the molten part and prevent its explosion.
However, it does not include a low melting point metal coating layer that generates an explosion phenomenon, and iron, carbon steel, and stainless steel, which have been known to be difficult to weld, do not cause weld cracking. A method of smoothly performing laser welding has not been known.
[0004]
[Problems to be solved by the invention]
The present invention is intended to provide a laser welding method capable of welding a metal material without causing a weld crack, which has been conventionally known to be difficult to weld among iron, carbon steel and stainless steel. .
[0005]
[Means for Solving the Problems]
The laser welding method of the present invention comprises iron / carbon containing 50 wt% or more of iron and 0.2 wt% or more of carbon, or 0.045 wt% or more of sulfur, or 0.04 wt% or more of phosphorus. A steel material and a plurality of plate materials selected from stainless steels having a ratio Cr eq / Ni eq of 1.48 or less of chromium equivalent to nickel equivalent are superposed and irradiated with a laser beam while blowing an assist gas on them. When welding the plurality of plate members, the oxygen gas content of the assist gas is adjusted to 5 to 50% by volume, and the W / L ratio in the welded part (W represents the bead width of the molten part, L Represents the width of the joint portion of the plurality of plate members ), and is controlled in the range of 1.0 to 1.5 .
In the laser welding method of the present invention, the W / L ratio, it is preferable to control so as to approach approximately 1.0.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In the laser welding method of the present invention, the material used for welding is a material that has conventionally been difficult to weld among iron, carbon steel and stainless steel. Among these materials, iron / carbon steel contains 50% by weight or more of iron and 0.2% by weight or more of carbon, or 0.045% by weight or more of sulfur (S) or 0.04% by weight or more. In materials containing phosphorus (P) and stainless steel, chromium equivalents (Cr eq = Cr + Mo + 1.5Si + 0.5Nb (wt%)) and nickel equivalents (Ni eq = Ni + 30C + 0.5Mn (wt%)) The method of the present invention is effectively applied to a material having a ratio: Cr eq / Ni eq of 1.48 or less.
[0007]
When a conventional laser welding method using an inert gas (Ar, He, Ne, etc.) as an assist gas is applied to an iron-carbon steel material or a stainless steel material, it is formed in the welded portions of the superposed materials 1 and 2. The melted portion (molten pool) 3 has a surface shape as shown in FIG. 1A and a cross-sectional shape, that is, a wine cup shape as shown in FIG. 1B. This is because, if the temperature distribution on the laser irradiation surface is non-uniform, the surface tension distribution on the surface of the molten pool becomes non-uniform, and therefore, the molten pool is indicated by arrows in FIGS. 1A and 1B. This produces convection in the direction as is done. That is, on the molten pool surface, the molten metal flows from the central portion of the molten pool toward the outer peripheral portion, and a convection returning to the central portion and a heat transport system are formed. The relationship between the temperature distribution and the surface tension at this time is shown in FIG. 1C. As shown in FIG. 1C, the higher the temperature of the molten metal, the lower the surface tension. Therefore, heat is transferred from the central portion having the highest temperature toward the outer periphery, and convection occurs. For this reason, the bead width W of the laser irradiation surface of the molten pool is significantly larger than the width L of the welded surfaces of the superimposed materials 1 and 2. That is, the W / L ratio is significantly larger than 1.
[0008]
FIG. 2 shows a cross-sectional shape of a welded portion according to a conventional method, in which the welded portion is compared with the width L of the welded portion formed in the joined portions of the metal materials 1 and 2 superimposed. The width W of the bead portion on the upper surface is remarkably large. Thus, when the molten pool 3 is cooled and solidified in a state where the W / L ratio is remarkably large, a shrinkage stress based on the difference between W and L is generated, and the joint surface of the metal materials 1 and 2 is generated by this shrinkage stress. And the weld crack 4 generate | occur | produces from the intersection of a welding part outer peripheral surface. Therefore, if a conventional method using only inert gas as an assist gas is applied to metal materials that have been known to be difficult to weld among iron, carbon steel and stainless steel, welding results with good quality will be obtained. Couldn't get.
[0009]
Generally, when a tensile (shrinkage) stress is applied to a solidified portion (structure), the weld crack is generated when the solidified portion is brittle and cannot withstand this stress. Therefore, in order to prevent weld cracking, it is necessary to (1) reduce the generated shrinkage stress and / or (2) improve the strength of the solidified portion.
[0010]
The inventors focused on the fact that welding defects (cracking) can be prevented by reducing the shrinkage stress generated in the welded portion, and studied means for reducing the shrinkage stress.
FIG. 3 shows the shrinkage stress and the bead width that occur at a point A where the weld crack is likely to occur in the welded portion (near the intersection of the joined portion of the two metal materials 1 and 2 and the outer peripheral surface of the weld pool). The result of having calculated the relationship with / junction width W / L using FEM is shown. In FIG. 3, the W / L of the conventional weld is about 2.6, and the shrinkage stress generated at point A at this time is about the shrinkage stress at point A when the W / L ratio is 1. 6.4 times. That is, in order to reduce the shrinkage stress generated in the welded portion and prevent the occurrence of weld cracking, the shape of the welded portion (molten pool) is optimized and the W / L is in the range of 1.0 to 1.5. In this case, it is preferable to control the W / L to be close to 1.0.
[0011]
In the present invention, in laser welding of materials that have been known to be difficult to weld among iron-carbon steel and stainless steel, the assist gas contains 5 to 50% by volume of oxygen, and the remainder is By forming an inert gas such as Ar, He, or N 2 and blowing a gas having such a special composition on the laser irradiation surface as an assist gas, the ideal-shaped weld shown in FIG. 3 is formed. It succeeded in minimizing the shrinkage stress generated during the cooling and solidification of the weld.
[0012]
In the method of the present invention, as shown in FIG. 4A, the heat transport direction (convection direction) in the bead is a direction from the outer peripheral surface of the bead toward the center, and therefore the bead width does not increase, and FIG. As shown in FIG. 1B, the heat transport direction (convection direction) in the weld cross section is a direction from the lower center to the outer periphery of the bead. It won't crawl down. For this reason, the value of the ratio W / L of the bead width W and the joint width L is controlled within the range of 1.0 to 1.5, and preferably approaches approximately 1. Taking the heat transport direction (convection direction) as shown in FIG. 4A and FIG. 4B means that the surface tension of the high temperature portion (the central portion of the molten pool, that is, the laser irradiation central portion) in the molten pool is reduced. This means that the surface tension of the low temperature part (peripheral part) is higher than the surface tension. Therefore, the convection is generated in the bead surface part from the outer peripheral part toward the central part, and this flow is It descends and rises further outward.
[0013]
In the method of the present invention, the mechanism by which heat transport and convection in the direction as shown in FIGS. 4A and B occur in the molten pool is described as follows. In general, it is considered that the surface tension of the liquid is proportional to the intermolecular bonding force of the constituent element (Fe element in the method of the present invention). Since the intermolecular bonding force of Fe decreases with increasing temperature, the surface tension thereof decreases with increasing temperature. However, in the present invention, when oxygen is contained in the assist gas, the oxygen is substituted and bonded to Fe, so that the intermolecular bonding force of Fe decreases, and oxygen, which is a nonmetallic element, tends to dissociate as the temperature increases. . For this reason, in a specific temperature range, for example, in the range from the melting point to the boiling point, the surface tension of the molten metal in the molten pool is considered to increase as the temperature rises due to the degree of bonding between oxygen and Fe. That is, the proportionality law that the surface tension decreases as the temperature increases is reversed in the method of the present invention. For this reason, as shown in FIGS. 4A, 4B and 4C, the heat transport direction and the convection state in the molten pool become an ideal state, and the W / L ratio is controlled to 1.0 to 1.5, preferably about Isuzu it is possible to control such brute close to 1, with the result that can prevent the occurrence of welding defects.
[0014]
FIG. 5 shows the cross-sectional shape of the welded portion obtained by the method of the present invention. 5, the bead width of the weld, each other approximates the joint width, the ratio W / L is controlled to 1.0 to 1.5, Ru preferably is controlled so as to approach the approximately 1. In addition, a weld having a cross-sectional shape as shown in the figure is less likely to cause welding defects (cracks).
[0015]
The oxygen concentration in the assist gas effective for forming the weld as described above was examined.
Upper joint material (material composition = Cr: 19%, Ni: 9%, C: 0.06%, balance: Fe) and lower material (material composition = Cr: 13%, C: 0.65%, balance) : Fe) and the pulse YAG laser was repeatedly irradiated while moving the sample at a constant speed. Welding conditions = pulse width: 2 ms, energy: 3.5 J / P. In the above welding, the oxygen concentration in the assist gas was changed between 0 and 100%, and the W / L ratio of the obtained weld was measured. The result is shown in FIG.
[0016]
As shown in FIG. 6, when the oxygen concentration of the assist gas is less than 5% by volume, the W / L ratio value is remarkably increased, so that a weld defect is likely to occur. Moreover, when it becomes higher than 50 volume%, a hole will come to occur in a welding part. Therefore, the oxygen concentration in the assist gas should be controlled within 5 to 50% by volume, and preferably 10 to 30% by volume.
In addition, as a result of microanalyzing the composition of the obtained welded portion, when the oxygen concentration in the assist gas is 50% by volume or less, no residual oxygen was found in the obtained welded portion composition, and therefore the added oxygen It is recognized that when melted, it is liberated on the surface of the welded part in the state of slag and solidifies. Therefore, in the method of the present invention, oxygen contained in the assist gas does not practically affect the corrosion resistance of the obtained welded part.
[0017]
【The invention's effect】
In the method of the present invention, materials that have been recognized as difficult to weld among iron-carbon steel and stainless steel can be firmly welded without causing welding defects (cracks). Moreover, the corrosion resistance is not greatly reduced.
[Brief description of the drawings]
FIG. 1A is a plan view showing the shape of a molten pool surface according to a conventional method.
FIG. 1B is a cross-sectional view showing a cross-sectional shape of a molten pool by a conventional method.
FIG. 1C is a graph showing the relationship between temperature and surface tension in a conventional method.
FIG. 2 is a cross-sectional view showing an example of a cross-sectional shape of a welded portion obtained by a conventional method.
FIG. 3 is a graph showing the relationship between the bead width / joint width (W / L) ratio in the conventional welded portion shape and the ideal shape of the welded portion, and the shrinkage stress ratio at the weld crack occurrence point A. .
FIG. 4A is a plan view showing the surface shape of a molten pool obtained by the method of the present invention.
FIG. 4B is a cross-sectional view showing a cross-sectional shape of a molten pool obtained by the method of the present invention.
FIG. 5 is a sectional view showing a sectional shape of an example of a welded portion obtained by the method of the present invention.
FIG. 6 is a graph showing the relationship between the oxygen concentration in the assist gas and the W / L ratio of the welded part obtained in the method of the present invention.
[Explanation of symbols]
1, 2 ... Metal material 3 ... Molten pool 4 ... Weld crack

Claims (2)

50重量%以上の鉄、および0.2重量%以上の炭素、または0.045重量%以上の硫黄、または0.04重量%以上のりんを含有する鉄・炭素鋼材料、およびクロム当量とニッケル当量の比Cr eq /Ni eq が1.48以下のステンレス鋼から選ばれた複数の板材を重ね合わせ、これにアシストガスを吹きつけながら、レーザビームを照射して、前記複数の板材を溶接するに際し、前記アシストガスの酸素ガス含有量を5〜50容量%に調整して、前記溶接部におけるW/L比(但しWは溶融部のビード幅を表し、Lは前記複数の板材の接合部の幅を表す)を、1.0〜1.5の範囲にコントロールすることを特徴とする、レーザ溶接方法。 Iron / carbon steel material containing 50% or more iron and 0.2% or more carbon, or 0.045% or more sulfur, or 0.04% or more phosphorus, and chromium equivalent and nickel A plurality of plate materials selected from stainless steel having an equivalent ratio Cr eq / Ni eq of 1.48 or less are superposed, and the plurality of plate materials are welded by irradiating a laser beam while blowing assist gas on the plate materials. In this case, the oxygen gas content of the assist gas is adjusted to 5 to 50% by volume, and the W / L ratio in the welded portion (W represents the bead width of the melted portion, and L is the joint portion of the plurality of plate members). Is represented in a range of 1.0 to 1.5 . 前記W/L比を、ほぼ1.0に近づけるようにコントロールする、請求項1に記載のレーザ溶接方法。The laser welding method according to claim 1, wherein the W / L ratio is controlled to approach approximately 1.0.
JP24783196A 1996-09-19 1996-09-19 Laser welding method Expired - Fee Related JP3671544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24783196A JP3671544B2 (en) 1996-09-19 1996-09-19 Laser welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24783196A JP3671544B2 (en) 1996-09-19 1996-09-19 Laser welding method

Publications (2)

Publication Number Publication Date
JPH1085974A JPH1085974A (en) 1998-04-07
JP3671544B2 true JP3671544B2 (en) 2005-07-13

Family

ID=17169330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24783196A Expired - Fee Related JP3671544B2 (en) 1996-09-19 1996-09-19 Laser welding method

Country Status (1)

Country Link
JP (1) JP3671544B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007253158A (en) * 2006-03-20 2007-10-04 Tokyu Car Corp Laser welding method and laser welding equipment
JP4987453B2 (en) * 2006-12-21 2012-07-25 新日本製鐵株式会社 Lap laser welding joint of steel plates and lap laser welding method
JP5232840B2 (en) * 2010-09-03 2013-07-10 日立ビークルエナジー株式会社 Secondary battery and manufacturing method thereof
JP6091971B2 (en) * 2013-04-16 2017-03-08 日立オートモティブシステムズ株式会社 Lap weld joint, fuel injection valve, and laser welding method
CN109530891A (en) * 2018-12-28 2019-03-29 渤海造船厂集团有限公司 Consumable electrode gas shield welding nickel-based welding wire ArHeN2Protective gas

Also Published As

Publication number Publication date
JPH1085974A (en) 1998-04-07

Similar Documents

Publication Publication Date Title
Ardika et al. A review porosity in aluminum welding
JP2918829B2 (en) Fuel tank manufacturing method, laser welded body, and fuel tank
US5308409A (en) Method of strengthening aluminum castings in a specified local part
CA2182751C (en) Laser-welded steel pipe and method therefor
JP3671544B2 (en) Laser welding method
JP5980779B2 (en) Method of arc welding metal parts coated with aluminum using an inert gas containing nitrogen
JP2001259888A (en) Flux cored wire for welding galvanized steel sheet having excellent pit resistance and blowhole resistance
US20050011870A1 (en) Process for welding metal bodies
US20220063019A1 (en) Improvements in the welding of pipes
US6730876B2 (en) Highly ductile reduced imperfection weld for ductile iron and method for producing same
Maruyama Arc welding technology for dissimilar joints
JPH0577042A (en) Method for reforming surface of cast iron parts
JPH10296472A (en) Method for laser welding for aluminum plated sheet
Bushey Welding of cast irons
JP2003311404A (en) Seal-welding method for core supporting hole in turbine blade and turbine blade
JPS5992185A (en) Diffusion joining method
JP2943245B2 (en) Method and apparatus for surface reforming of metallic parts
JP3246729B2 (en) Laser welded body
JPH0454557B2 (en)
JP3191362B2 (en) Local reinforcement method of aluminum casting parts
Rion Stainless Steel Information Manual for the Savannah River Plant: Fabrication
JP3549393B2 (en) Gas shielded arc welding wire
Gurevitch et al. Metallurgical and technological features of titanium alloy welding when using fluxes
JPS5893583A (en) Joining method for aluminum and iron
JPH0584569A (en) Underlaying welding method for medium and high carbon steel

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees