JP3671446B2 - Regenerative braking device for vehicle - Google Patents

Regenerative braking device for vehicle Download PDF

Info

Publication number
JP3671446B2
JP3671446B2 JP32040194A JP32040194A JP3671446B2 JP 3671446 B2 JP3671446 B2 JP 3671446B2 JP 32040194 A JP32040194 A JP 32040194A JP 32040194 A JP32040194 A JP 32040194A JP 3671446 B2 JP3671446 B2 JP 3671446B2
Authority
JP
Japan
Prior art keywords
regenerative braking
vehicle
generator motor
current
braking device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32040194A
Other languages
Japanese (ja)
Other versions
JPH08182113A (en
Inventor
宏 田代
隆二 村川
豊児 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP32040194A priority Critical patent/JP3671446B2/en
Publication of JPH08182113A publication Critical patent/JPH08182113A/en
Application granted granted Critical
Publication of JP3671446B2 publication Critical patent/JP3671446B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、車両用回生制動装置に関する。
【0002】
【従来の技術】
例えば、特公平6−12932号公報は、車両用回生制動装置においてバッテリ容量を定格容量の例えば50〜70%程度とすることにより充電電流をバッテリに回収することを提案している。
【0003】
【発明が解決しようとする課題】
しかしながら回生制動によりバッテリを充電する従来の車両用回生制動装置では、回生制動終了後、通常のバッテリ電圧による通常の発電制御を再開するが、この場合、後述するバッテリ容量不足問題を生じる場合があった。
すなわち、大きな充電電流により充電されたバッテリは通常のバッテリ電圧ー容量特性より高いバッテリ電圧(以下、過電圧と称する)を発生し、この過電圧は時間経過とともに解消され、更に、放電電流の大きさに応じて過電圧解消時間が短縮される。ここで、回生制動終了直後からバッテリが大電流放電を行って急速にその容量が低下する場合、上記過電圧の減少が容量低下より遅れ、その結果、バッテリ端子電圧に対応する見掛け容量より実容量が異常に低下してしまう場合が生じることが判明した。
【0004】
上記したように従来では回生制動終了後、通常のバッテリ電圧と所定の目標電圧とを比較し、フィードバック制御しているので、このような実容量の異常低下を原理的に回避することができなかった。
本発明は上記問題点に鑑みなされたものであり、回生制動によるバッテリ充電終了後のバッテリ容量の異常低下を回避可能な車両用回生制動装置を提供することをその目的としている。
【0005】
【問題を解決するための手段】
本発明の第1の構成は、車両用内燃機関にトルク授受可能に連結される発電電動機と、前記発電電動機と電力を授受するとともに車載電気負荷に給電する蓄電手段と、車両減速時に前記発電電動機を回生制動させて回生電流で前記蓄電手段を充電する制御を行う制御手段とを備える車両用回生制動装置において、
前記回生制動中に前記発電電動機から前記蓄電手段に流入する充電電流を積算するとともに前記蓄電手段の放電電流を前記回生制動終了後直後から積算する充放電電流積算手段と、前記放電電流の積算量と前記充電電流の積算量とを比較する比較手段とを備え、前記制御手段は、前記回生制動終了時点から前記両積算量が略等しくなる時点までの期間中、前記発電電動機の発電動作を停止することを特徴とする車両用回生制動装置である。
【0006】
本発明の第2の構成は、上記第1の構成において更に、前記制御手段が、前記回生制動時の前記発電電動機の発電電圧を非回生制動時の前記発電電動機の発電電圧より増大するものであることを特徴としている。
本発明の第3の構成は、上記第1又は第2の構成において更に、前記制御手段が、前記期間中に、前記発電電動機にトルクアシストのための電動動作を行わせるものであることを特徴としている。
【0007】
本発明の第4の構成は、上記第3の構成において更に、前記制御手段が、前記期間中に、前記発電電動機に車両加速のための電動動作を行わせるものであることを特徴としている。
本発明の第5の構成は、上記第3の構成において更に、前記制御手段が、前記期間中に、前記蓄電手段の所定の放電電流値から前記車載電気負荷への給電電流値を差し引いた差電流値により前記発電電動機にトルクアシストのための電動動作を行わせるものであることを特徴としている。
【0008】
本発明の第6の構成は、上記第1の構成において更に、前記制御手段が、前記回生制動時に前記充電電流積算量が所定の限界値以上となった場合に前記蓄電手段への充電電流の給電を停止するものであることを特徴としている。
本発明の第7の構成は、上記第1の構成において更に、前記制御手段が、回生制動時に前記充電電流積算量が所定の限界値以上となった場合に前記車載電気負荷に給電するものであることを特徴としている。
【0009】
【作用及び発明の効果】
本発明の第1の構成では、回生制動終了後直後から積算した蓄電手段の放電電流積算量が、前記回生制動中に積算した蓄電手段へ給電される充電電流積算量と略等しくなる時点までの期間中、発電電動機の発電動作を停止する。このようにすれば、回生により回収した電流量(容量)だけ正確に放電(消費)することができるので、回生制動終了直後から大電流放電を行っても上記した過電圧の一時的な発生にかかわらず、蓄電手段容量の異常低下を阻止することができる。 本発明の第2の構成では、上記第1の構成において更に、回生制動時の発電電圧を非回生制動時の発電電圧より増大するので、充分な回生制動力を発生することができる。なお、好ましくは、回生制動において(発電電流ー車載電気負荷消費電流)が所定の電流値(例えばバッテリの容量値の2倍)を超えないように発電が制御される。このようにすれば、蓄電手段がバッテリである場合にその寿命を延長することができる。なお、この場合、更に大きな回生制動力を得たい場合には余剰の発電電流で例えばデフロスタなどに放出してもよい。このようにすれば回生制動時に充電電流が急減した際における発電電流の急変を防止することができ、回生制動力の急変を防止することができる。
【0010】
本発明の第3の構成では、上記第1又は第2の構成において更に、回生された充電電流積算量の一部又は全部を回生制動終了時点から放電電流積算量と充電電流積算量とが略等しくなる時点までの期間中にトルクアシストのための電動動作に消費する。このようにすれば、燃費低減するとともに蓄電手段の過剰な容量を速やかに消費して次の回生制動に備えることができる。したがって本構成は、例えば下り坂、平坦路、下り坂が繰り返されるような走行モードにおいて特に効果的である。
【0011】
本発明の第4の構成では、上記第3の構成において更に、回生された充電電流積算量の一部又は全部を回生制動終了時点から放電電流積算量と充電電流積算量とが略等しくなる時点までの期間中に車両加速に消費する。このようにすれば、燃費低減するとともに蓄電手段の過剰な容量を速やかに消費して次の回生制動に備えることができる。したがって本構成は、例えば頻繁な加速、減速を繰り返す走行モードにおいて特に効果的である。
【0012】
本発明の第5の構成は、上記第3の構成において更に、蓄電手段の所定の放電電流値から車載電気負荷への給電電流値を差し引いた差電流値により、発電電動機にトルクアシストのための電動動作を回生制動終了時点から放電電流積算量と充電電流積算量とが略等しくなる時点までの期間中に行わせる。
このようにすれば、放電電流が過大となって蓄電手段を損傷したり、放電効率が低下したりする不具合を回避することができる。
【0013】
本発明の第6の構成では、上記第1の構成において更に、回生制動時に充電電流積算量が所定の限界値以上となった場合に蓄電手段の充電を停止するので、蓄電手段が過充電されることが無い。
本発明の第7の構成では、上記第1の構成において更に、回生制動時に充電電流積算量が所定の限界値以上となった場合に車載電気負荷に給電するので、回生制動力の急減を回避しつつ蓄電手段の過充電も防止することができる。
【0014】
【実施例】
本発明の実施例を図面を参照して説明する。
(実施例1)
図1に、実施例1の車両用回生制動装置のブロック図を示す。
この装置は、内燃機関10と動力伝達系(クラッチ、トルクコンバータ、ミッションなど)11との間に介設されて内燃機関10を始動させる発電電動機(本実施例では三相同期機)1と、発電電動機1の電機子電流を制御する三相のインバータ2と、インバータ2と電力授受するバッテリ3と、バッテリ3の充放電電流と電圧を検出する電流センサ4及び電圧センサ5と、マイコンを内蔵するエンジンコントロールユニット(ECU)6と、始動を指令するイグニッションSW7と、内燃機関10の回転数を検出する回転数センサ8と、スロットル開度を検出するスロットル開度センサ9とを備えている。
【0015】
また、インバータ2とバッテリ3とを接続する電力線はDCーDCコンバータ12を通じて車載電気負荷13に接続されている。
次に、エンジンコントロールユニット(ECU)6の動作を示す図2のフローチャートを参照してこの車両用回生制動装置の動作を説明する。
電源電圧の印加によりスタ−トした後、バッテリの充放電電流積算量Cを保持するレジスタを0にリセットし(302)、そのままイグニッションスイッチがオン(エンジン始動のため)されるまで待機する(303)。
【0016】
次に、内燃機関回転数Ne、スロットル開度Dを読み込み(305)、スロットル開度Dが0で、内燃機関の回転数が1200rpm以上であるかどうかを調べ(306)、そうであれば減速エネルギ回収モ−ドと判断して発電電動機1の発電電圧VをVhまで高めて回生制動を掛け、発電電流によりバッテリ3に充電する(307)。次に、この時の充電電流Iを読み込み(308)、充電電流Iと演算サイクル時間tから積算電流量Cを求める(309)。一方、ステップ106で減速エネルギ回収モ−ドでないと判定すれば、ステップ310に進んで放電すべき積算電流量Cが存在するかどうかを判定する。
【0017】
ステップ310では、積算電流値Cが正であってバッテリ3に減速エネルギが回収蓄電されているかどうかを調べ、そうであればスロットル開度が10deg以上かどうかを調べ(311)、スロットル開度が10deg以上なら加速状態と判定して、発電電動機1を電動動作させ(312)、内燃機関10をトルクアシストする。この時の放電電流Iを読み込み(314)、積算電流量Cから減算する(315)。一方、ステップ311で否定判断された場合は、加速状態では無いので、発電電動機1が発電動作であれば発電動作を停止して(313)、ステップ314に進む。
【0018】
一方、ステップ310にて回収した積算電流量Cが0になれば、以下に説明する通常の発電制御に移行する。
すなわち、まず定められた発電電圧Vi(Vi<Vh)で発電電動機1を発電して(316)、この時の充放電電流Iを読み込み(317)、バッテリ3が充電状態か放電状態かを判別する(318)。放電状態であれば発電電圧を△Viだけ上昇させ(319)、一方、充電状態であるかまたは充電電流が0であれば、充電電流Iが所定値Icよりも大きいかどうかを調べ(320)、充電電流Iが所定値Icよりも大きいと充電過多状態と判断して、発電電圧ViをΔViだけ下げて(321)、ステップ303にリターンする。また、ステップ320にて充電電流が過多でなければステップ303に直接、リターンする。なお、図2には図示しないがステップ317にて算出された発電電圧Viが所定の最大値及び所定の最小値を超える場合には、この最大値及び所定の最小値が出力される。
【0019】
更に付け加えると、ステップ320において充電電流が所定値0以下になれば、その時点で発電電圧Vはその時点のViに固定される。この状態が維持されるとバッテリ電圧が充電とともに上昇していき、その結果、充電電流Iは自動的に減少し、所定のバッテリ電圧値において0となる。
上記制御時における車速、バッテリ電圧、電流、容量のタイムチャートを図3に示す。
【0020】
アイドル状態や一定速走行時の場合である期間A、Cではバッテリ電圧VがVi(49V前後)に設定され、バッテリ3にはわずかに充電され、発電電動機1の発電電流のほとんどが車載電気負荷13に給電されている。車両が減速状態(期間B)になると、バッテリ電圧VはVh(59V)に増加され、発電電動機1により発電された電流の多く(図5中、×の領域)がバッテリ3に充電される。この×の充電量は積算されている。加速状態となると(期間D)、上記期間Bにおいて回収された領域×の充電量(アンペアアワー)を使って車載電気負荷13への給電と加速アシストが実行される。またそれに先んじて、期間Dにおける車載電気負荷13への給電も領域×の充電量(アンペアアワー)を使って車載電気負荷13への給電と加速アシストが実行される。
【0021】
なお、上記実施例では、回収電流積算値Cにより回生制動直後の時点から車載電気負荷13への給電及び加速アシストを行ったが、回生制動直後の時点から車載電気負荷13への給電及び上記加速アシストのどちらか一方だけを行うようにすることも可能であり、更に加速アシストの代わりにトルクアシストとしてもよい。すなわち、ステップ311ではスロットル開度10deg以上を加速走行と規定しているが、場合によっては重負荷定速走行であるかもしれない。ステップ311は、要するに、内燃機関の負荷トルクの一部を発電電動機1で負担することにより回収電流積算値Cを消費するということを意味している。
【0022】
(実施例2)
他の実施例を図4のフローチャートを参照して説明する。
まず、図2のステップ312にて電動動作を開始後、バッテリ3の充放電電流Iを読み込み(400)、充放電電流がそれぞれ所定の最小値Ia、最大値Ibと比較し、Iaより小さければ電動電流をアップし、範囲内ならそのままとし、Ibより大きければ電動電流をダウンする。このようにすれば、放電電流が大きくなり過ぎてバッテリ3に悪影響を及ぼすことが無い。
【0023】
(実施例3)
他の実施例を図5のフローチャートを参照して説明する。
まず、図2のステップ306にて回生制動が必要と判断されれば、現在の積算アンペアワーCが所定の最大値Cmを超えたかどうかを判別し(500)、超えていなければそのまま、超えていれば発電を停止してステップ308へ進む。
【0024】
このようにすれば、バッテリ3が過充電されるのを防止することができる。
なお、発電電流又は電動電流の制御は発電電動機1の発電電圧を制御すればよく、発電電圧の制御は例えば界磁電流の制御により実施される。
(実施例4)
他の実施例を図6のフローチャートを参照して説明する。
【0025】
まず、図2のステップ309の後の回生制動中において、現在の積算アンペアワーCが所定の最大値Cmを超えたかどうかを判別し(600)、超えていなければそのまま、超えていれば例えばデフロスタなどのオンしても支障が無い車載電気負荷をオンする(602)。このようにすれば、回生制動を急遮断を回避して制動変化衝撃を緩和しつつバッテリ3の過充電を防止することができる。
【0026】
その他、ステップ309で検出したCが上記Cmに接近するにつれて発電電流を低下させていくことも好ましい。
【図面の簡単な説明】
【図1】本発明の車両用回生制動装置の一実施例を示すブロック図である。
【図2】図1の装置の動作を示すフローチャートである。
【図3】図1の装置の動作を示すタイミングチャートである。
【図4】実施例2の制御動作を示すフローチャートである。
【図5】実施例3の制御動作を示すフローチャートである。
【図6】実施例4の制御動作を示すフローチャートである。
【符号の説明】
10は内燃機関、1は発電電動機、2はインバータ(制御手段の一部)、3はバッテリ(蓄電手段)、4は電流センサ(充放電電流積算手段の一部)、5は電圧センサ、6はECU(制御手段の残部、充放電電流積算手段の残部、比較手段)。
[0001]
[Industrial application fields]
The present invention relates to a regenerative braking device for a vehicle.
[0002]
[Prior art]
For example, Japanese Patent Publication No. 6-12932 proposes that the charging current is recovered in the battery by setting the battery capacity to, for example, about 50 to 70% of the rated capacity in the regenerative braking device for vehicles.
[0003]
[Problems to be solved by the invention]
However, in a conventional vehicle regenerative braking device that charges a battery by regenerative braking, normal power generation control with a normal battery voltage is resumed after the end of regenerative braking. However, in this case, a problem of insufficient battery capacity described later may occur. It was.
That is, a battery charged with a large charge current generates a battery voltage (hereinafter referred to as an overvoltage) higher than the normal battery voltage-capacity characteristic, and this overvoltage is eliminated with the passage of time. Accordingly, the overvoltage elimination time is shortened. Here, when the battery discharges a large current immediately after the end of regenerative braking and its capacity decreases rapidly, the decrease in the overvoltage is delayed from the decrease in capacity, and as a result, the actual capacity is less than the apparent capacity corresponding to the battery terminal voltage. It has been found that there may be cases where it drops abnormally.
[0004]
As described above, conventionally, after the regenerative braking is completed, the normal battery voltage is compared with a predetermined target voltage and feedback control is performed, and thus such an abnormal decrease in actual capacity cannot be avoided in principle. It was.
The present invention has been made in view of the above problems, and an object thereof is to provide a regenerative braking device for a vehicle that can avoid an abnormal decrease in battery capacity after the end of battery charging due to regenerative braking.
[0005]
[Means for solving problems]
A first configuration of the present invention includes a generator motor coupled to a vehicle internal combustion engine so as to be able to transmit and receive torque, power storage means for transmitting and receiving electric power to the generator motor and supplying electric power to a vehicle-mounted electric load, and the generator motor when decelerating the vehicle A regenerative braking device for a vehicle, comprising: a control means for performing regenerative braking and charging the power storage means with a regenerative current;
Charge / discharge current integrating means for integrating the charging current flowing into the power storage means from the generator motor during the regenerative braking and integrating the discharge current of the power storage means immediately after the end of the regenerative braking, and the integrated amount of the discharge current And a comparison means for comparing the accumulated amount of the charging current, and the control means stops the power generation operation of the generator motor during a period from the end of the regenerative braking to the time when the accumulated amounts are substantially equal. This is a regenerative braking device for a vehicle.
[0006]
According to a second configuration of the present invention, in the first configuration, the control unit further increases a power generation voltage of the generator motor during the regenerative braking than a power generation voltage of the generator motor during the non-regenerative braking. It is characterized by being.
A third configuration of the present invention, further in the first or second configuration, said control means, during the period, in which to perform the electrostatic dynamic operation for torque assist to the generator motor It is a feature.
[0007]
According to a fourth configuration of the present invention, in the third configuration, the control means causes the generator motor to perform an electric operation for accelerating the vehicle during the period.
According to a fifth configuration of the present invention, in the third configuration, the control unit further includes a difference obtained by subtracting a power supply current value to the in-vehicle electric load from a predetermined discharge current value of the power storage unit during the period. it is characterized in that the current value is intended to perform the electrostatic dynamic operation for torque assist to the generator motor.
[0008]
According to a sixth configuration of the present invention, in addition to the first configuration, the control unit further determines the charging current to the power storage unit when the integrated charging current amount exceeds a predetermined limit value during the regenerative braking. The power supply is stopped.
According to a seventh configuration of the present invention, in the first configuration, the control means supplies power to the on-vehicle electric load when the charge current integrated amount becomes a predetermined limit value or more during regenerative braking. It is characterized by being.
[0009]
[Operation and effect of the invention]
In the first configuration of the present invention, the accumulated discharge current amount of the power storage means immediately after the end of regenerative braking is approximately equal to the charge current integrated amount fed to the power storage means accumulated during the regenerative braking. During the period, the power generation operation of the generator motor is stopped. In this way, it is possible to accurately discharge (consume) the current amount (capacity) recovered by regeneration, so even if a large current discharge is performed immediately after the end of regenerative braking, the above-mentioned temporary overvoltage is generated. Therefore, it is possible to prevent an abnormal decrease in the capacity of the power storage means. In the second configuration of the present invention, since the power generation voltage at the time of regenerative braking is further increased than the power generation voltage at the time of non-regenerative braking in the first configuration, a sufficient regenerative braking force can be generated. Preferably, in regenerative braking, power generation is controlled such that (power generation current-vehicle electric load consumption current) does not exceed a predetermined current value (for example, twice the capacity value of the battery). In this way, when the power storage means is a battery, its life can be extended. In this case, if it is desired to obtain a larger regenerative braking force, a surplus generated current may be discharged to, for example, a defroster. In this way, it is possible to prevent a sudden change in the generated current when the charging current suddenly decreases during regenerative braking, and it is possible to prevent a sudden change in the regenerative braking force.
[0010]
In the third configuration of the present invention, in addition to the first or second configuration, a part or all of the regenerative charge current integrated amount is substantially equal to the discharge current integrated amount and the charge current integrated amount from the end of regenerative braking. It consumed electric dynamic operation for torque assist during the period until the time equal. In this way, the fuel consumption can be reduced and the excess capacity of the power storage means can be quickly consumed to prepare for the next regenerative braking. Therefore, this configuration is particularly effective in a traveling mode in which, for example, downhill, flat road, and downhill are repeated.
[0011]
In the fourth configuration of the present invention, in addition to the third configuration described above, when a part or all of the regenerative charge current integration amount is substantially equal to the discharge current integration amount and the charge current integration amount from the end of regenerative braking. Consume for vehicle acceleration during the period up to. In this way, the fuel consumption can be reduced and the excess capacity of the power storage means can be quickly consumed to prepare for the next regenerative braking. Therefore, this configuration is particularly effective in a travel mode in which frequent acceleration and deceleration are repeated, for example.
[0012]
According to a fifth configuration of the present invention, in addition to the third configuration, the generator motor is provided for torque assist by using a difference current value obtained by subtracting a power supply current value to the on-vehicle electric load from a predetermined discharge current value of the power storage means . to perform the electrostatic dynamic operation during the period from regenerative braking end to the point where the discharge current accumulated amount and the charging current accumulated amount becomes substantially equal.
In this way, it is possible to avoid problems that the discharge current becomes excessive and the power storage means is damaged or the discharge efficiency is lowered.
[0013]
In the sixth configuration of the present invention, in addition to the first configuration described above, since the charging of the power storage device is stopped when the accumulated charging current amount exceeds a predetermined limit value during regenerative braking, the power storage device is overcharged. There is nothing to do.
In the seventh configuration of the present invention, in addition to the first configuration described above, when the accumulated charging current amount exceeds a predetermined limit value during regenerative braking, power is supplied to the in-vehicle electric load, so that a sudden decrease in the regenerative braking force is avoided. However, overcharging of the power storage means can be prevented.
[0014]
【Example】
Embodiments of the present invention will be described with reference to the drawings.
(Example 1)
FIG. 1 is a block diagram of a regenerative braking device for a vehicle according to the first embodiment.
This apparatus includes a generator motor (a three-phase synchronous machine in this embodiment) 1 that is interposed between an internal combustion engine 10 and a power transmission system (clutch, torque converter, mission, etc.) 11 and starts the internal combustion engine 10; A three-phase inverter 2 that controls the armature current of the generator motor 1, a battery 3 that exchanges power with the inverter 2, a current sensor 4 and a voltage sensor 5 that detect charge / discharge current and voltage of the battery 3, and a microcomputer are incorporated. An engine control unit (ECU) 6, an ignition SW 7 for instructing starting, a rotational speed sensor 8 for detecting the rotational speed of the internal combustion engine 10, and a throttle opening sensor 9 for detecting the throttle opening.
[0015]
A power line connecting the inverter 2 and the battery 3 is connected to the on-vehicle electric load 13 through the DC-DC converter 12.
Next, the operation of the regenerative braking device for a vehicle will be described with reference to the flowchart of FIG. 2 showing the operation of the engine control unit (ECU) 6.
After starting with the application of the power supply voltage, the register holding the charge / discharge current integrated amount C of the battery is reset to 0 (302) and waits until the ignition switch is turned on (for engine start) (303). ).
[0016]
Next, the internal combustion engine speed Ne and the throttle opening D are read (305), and it is checked whether the throttle opening D is 0 and the internal combustion engine speed is 1200 rpm or more (306). Judging from the energy recovery mode, the generated voltage V of the generator motor 1 is increased to Vh, regenerative braking is applied, and the battery 3 is charged by the generated current (307). Next, the charging current I at this time is read (308), and the integrated current amount C is obtained from the charging current I and the calculation cycle time t (309). On the other hand, if it is determined at step 106 that the mode is not the deceleration energy recovery mode, the routine proceeds to step 310, where it is determined whether there is an integrated current amount C to be discharged.
[0017]
In step 310, it is checked whether the accumulated current value C is positive and deceleration energy is collected and stored in the battery 3, and if so, it is checked whether the throttle opening is 10 degrees or more (311). If it is 10 degrees or more, it is determined as an acceleration state, the generator motor 1 is electrically operated (312), and the internal combustion engine 10 is torque-assisted. The discharge current I at this time is read (314) and subtracted from the integrated current amount C (315). On the other hand, if a negative determination is made in step 311, the engine is not in an accelerated state. Therefore, if the generator motor 1 is generating power, the power generating operation is stopped (313), and the process proceeds to step 314.
[0018]
On the other hand, when the accumulated current amount C collected in step 310 becomes 0, the routine proceeds to normal power generation control described below.
That is, first, the generator motor 1 is generated with a predetermined power generation voltage Vi (Vi <Vh) (316), and the charge / discharge current I at this time is read (317) to determine whether the battery 3 is charged or discharged. (318). If it is in the discharging state, the generated voltage is increased by ΔVi (319). On the other hand, if it is in the charging state or the charging current is 0, it is checked whether the charging current I is larger than the predetermined value Ic (320). If the charging current I is larger than the predetermined value Ic, it is determined that the battery is overcharged, the generated voltage Vi is lowered by ΔVi (321), and the process returns to step 303. If the charging current is not excessive in step 320, the process directly returns to step 303. Although not shown in FIG. 2, when the generated voltage Vi calculated in step 317 exceeds a predetermined maximum value and a predetermined minimum value, the maximum value and the predetermined minimum value are output.
[0019]
In addition, if the charging current becomes less than or equal to the predetermined value 0 in step 320, the generated voltage V is fixed to Vi at that time. When this state is maintained, the battery voltage rises with charging. As a result, the charging current I automatically decreases and becomes 0 at a predetermined battery voltage value.
FIG. 3 shows a time chart of the vehicle speed, battery voltage, current, and capacity during the above control.
[0020]
The battery voltage V is set to Vi (around 49V) in the periods A and C, which are in the idling state and constant speed running, the battery 3 is slightly charged, and most of the generated current of the generator motor 1 is in-vehicle electric load. 13 is fed. When the vehicle is in a decelerating state (period B), the battery voltage V is increased to Vh (59 V), and the battery 3 is charged with much of the current generated by the generator motor 1 (the region marked with x in FIG. 5). This amount of charge of X is integrated. In the acceleration state (period D), power supply to the in-vehicle electric load 13 and acceleration assist are executed using the charge amount (ampere hour) of the region collected in the period B. Prior to that, power supply to the on-vehicle electric load 13 in the period D is also performed using the charge amount (ampere hour) of the region x and the on-vehicle electric load 13 and acceleration assist are executed.
[0021]
In the above-described embodiment, the power supply and acceleration assist to the in-vehicle electric load 13 are performed from the time immediately after the regenerative braking by the recovered current integrated value C. However, the power supply to the in-vehicle electric load 13 and the acceleration from the time immediately after the regenerative braking are performed. It is possible to perform only one of the assists, and torque assist may be used instead of acceleration assist. That is, in step 311, throttle opening of 10 deg or more is defined as acceleration traveling, but depending on circumstances, it may be heavy load constant speed traveling. In short, step 311 means that the recovery current integrated value C is consumed by sharing a part of the load torque of the internal combustion engine with the generator motor 1.
[0022]
(Example 2)
Another embodiment will be described with reference to the flowchart of FIG.
First, after the electric operation is started in step 312 in FIG. 2, the charge / discharge current I of the battery 3 is read (400), and the charge / discharge current is compared with the predetermined minimum value Ia and maximum value Ib, respectively. The electric current is increased. If the electric current is within the range, the electric current is left as it is. In this way, the discharge current becomes too large and the battery 3 is not adversely affected.
[0023]
(Example 3)
Another embodiment will be described with reference to the flowchart of FIG.
First, if it is determined in step 306 in FIG. 2 that regenerative braking is necessary, it is determined whether or not the current accumulated amperage C has exceeded a predetermined maximum value Cm (500). If this is the case, the power generation is stopped and the routine proceeds to step 308.
[0024]
In this way, it is possible to prevent the battery 3 from being overcharged.
The generated current or the electric current may be controlled by controlling the generated voltage of the generator motor 1, and the generated voltage is controlled by controlling the field current, for example.
(Example 4)
Another embodiment will be described with reference to the flowchart of FIG.
[0025]
First, during regenerative braking after step 309 in FIG. 2, it is determined whether or not the current accumulated amperage C has exceeded a predetermined maximum value Cm (600). The on-vehicle electric load that does not hinder the turning on is turned on (602). If it does in this way, overcharge of the battery 3 can be prevented, avoiding sudden interruption | blocking of regenerative braking, and relieving a braking change impact.
[0026]
In addition, it is also preferable to reduce the generated current as C detected in step 309 approaches Cm.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment of a regenerative braking device for a vehicle according to the present invention.
FIG. 2 is a flowchart showing the operation of the apparatus shown in FIG.
FIG. 3 is a timing chart showing the operation of the apparatus of FIG. 1;
FIG. 4 is a flowchart illustrating a control operation according to the second embodiment.
FIG. 5 is a flowchart illustrating a control operation according to the third embodiment.
FIG. 6 is a flowchart illustrating a control operation according to the fourth embodiment.
[Explanation of symbols]
10 is an internal combustion engine, 1 is a generator motor, 2 is an inverter (part of control means), 3 is a battery (power storage means), 4 is a current sensor (part of charge / discharge current integration means), 5 is a voltage sensor, 6 Is the ECU (remaining part of the control means, remaining part of the charge / discharge current integrating means, comparison means).

Claims (7)

車両用内燃機関にトルク授受可能に連結される発電電動機と、前記発電電動機と電力を授受するとともに車載電気負荷に給電する蓄電手段と、車両減速時に前記発電電動機を回生制動させて回生電流で前記蓄電手段を充電する制御を行う制御手段とを備える車両用回生制動装置において、
前記回生制動中に前記発電電動機から前記蓄電手段に流入する充電電流を積算するとともに前記蓄電手段の放電電流を前記回生制動終了後直後から積算する充放電電流積算手段と、前記放電電流の積算量と前記充電電流の積算量とを比較する比較手段とを備え、前記制御手段は、前記回生制動終了時点から前記両積算量が略等しくなる時点までの期間中、前記発電電動機の発電動作を停止することを特徴とする車両用回生制動装置。
A generator motor connected to a vehicle internal combustion engine so as to be able to transmit and receive torque; power storage means for transmitting and receiving electric power to the generator motor and supplying electric power to a vehicle-mounted electric load; and regeneratively braking the generator motor when the vehicle decelerates to generate the regenerative current In a regenerative braking device for a vehicle provided with a control means for performing control for charging the power storage means,
Charge / discharge current integrating means for integrating the charging current flowing into the power storage means from the generator motor during the regenerative braking and integrating the discharge current of the power storage means immediately after the end of the regenerative braking, and the integrated amount of the discharge current And a comparison means for comparing the accumulated amount of the charging current, and the control means stops the power generation operation of the generator motor during a period from the end of the regenerative braking to the time when the accumulated amounts are substantially equal. A regenerative braking device for a vehicle.
前記制御手段は、前記回生制動時の前記発電電動機の発電電圧を非回生制動時の前記発電電動機の発電電圧より増大するものである請求項1記載の車両用回生制動装置。  2. The regenerative braking device for a vehicle according to claim 1, wherein the control unit is configured to increase a power generation voltage of the generator motor at the time of the regenerative braking higher than a power generation voltage of the generator motor at the time of non-regenerative braking. 前記制御手段は、前記期間中に前記発電電動機にトルクアシストのための電動動作を行わせるものである請求項1又は2記載の車両用回生制動装置。The control means for a vehicle regenerative braking device according to claim 1 or 2, wherein in which to perform the electrostatic dynamic operation for torque assist to the generator motor during said period. 前記制御手段は、前記期間中に前記発電電動機に車両加速のための電動動作を行わせるものである請求項3記載の車両用回生制動装置。  The regenerative braking device for a vehicle according to claim 3, wherein the control means causes the generator motor to perform an electric operation for accelerating the vehicle during the period. 前記制御手段は、前記期間中に、前記蓄電手段の所定の放電電流値から前記車載電気負荷への給電電流値を差し引いた差電流値により前記発電電動機にトルクアシストのための電動動作を行わせるものである請求項3記載の車両用回生制動装置。Wherein, during said period, perform the electrostatic dynamic operation for torque assist to the generator motor from the difference current value obtained by subtracting the supply current value from a predetermined discharge current value of the electric storage means to the vehicle electrical loads The regenerative braking device for a vehicle according to claim 3, wherein the regenerative braking device is used. 前記制御手段は、前記回生制動時に前記充電電流積算量が所定の限界値以上となった場合に前記蓄電手段への充電電流の給電を停止するものである請求項1記載の車両用回生制動装置。  2. The regenerative braking device for a vehicle according to claim 1, wherein the control unit is configured to stop supplying the charging current to the power storage unit when the accumulated amount of charging current becomes a predetermined limit value or more during the regenerative braking. . 前記制御手段は、前記回生制動時に前記充電電流積算量が所定の限界値以上となった場合に前記車載電気負荷に給電するものである請求項1記載の車両用回生制動装置。  2. The regenerative braking device for a vehicle according to claim 1, wherein the control means supplies power to the in-vehicle electric load when the charge current integrated amount becomes a predetermined limit value or more during the regenerative braking.
JP32040194A 1994-12-22 1994-12-22 Regenerative braking device for vehicle Expired - Fee Related JP3671446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32040194A JP3671446B2 (en) 1994-12-22 1994-12-22 Regenerative braking device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32040194A JP3671446B2 (en) 1994-12-22 1994-12-22 Regenerative braking device for vehicle

Publications (2)

Publication Number Publication Date
JPH08182113A JPH08182113A (en) 1996-07-12
JP3671446B2 true JP3671446B2 (en) 2005-07-13

Family

ID=18121061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32040194A Expired - Fee Related JP3671446B2 (en) 1994-12-22 1994-12-22 Regenerative braking device for vehicle

Country Status (1)

Country Link
JP (1) JP3671446B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3425730B2 (en) * 1998-03-31 2003-07-14 本田技研工業株式会社 Control device for hybrid vehicle
JP3582479B2 (en) * 2000-11-21 2004-10-27 日産自動車株式会社 Vehicle battery charge control device

Also Published As

Publication number Publication date
JPH08182113A (en) 1996-07-12

Similar Documents

Publication Publication Date Title
JP6465907B2 (en) Vehicle power supply system
US6225784B1 (en) Battery control apparatus for battery carried by hybrid vehicle
US6659213B2 (en) Control device for hybrid vehicle
US6435294B1 (en) Control device for hybrid vehicle
CN108656968B (en) Power supply device for vehicle
US7091626B2 (en) Method for regulating the generator voltage in a motor vehicle
EP2216876A1 (en) Power supply apparatus for vehicles
JP3180304B2 (en) Power circuit of hybrid car
US20040053083A1 (en) Vehicular electric power generation control apparatus
US20060137918A1 (en) Power supply circuit for a motor vehicle electric system
JPH10295045A (en) Control apparatus for power generation of hybrid electric vehicle
JPH08289407A (en) Power generation control device for hybrid vehicle
JP2001078306A (en) Controller of hybrid vehicle
JP2012228051A (en) Power supply system for vehicle
CN112238830A (en) DC/AC inverter system powered by integrated grid
JP4858277B2 (en) Vehicle power generation control device
JP3094701B2 (en) Control device for engine drive generator for electric vehicle
JP6131533B2 (en) Vehicle power supply control method and apparatus
JP7373113B2 (en) Vehicle power control device
JP5224268B2 (en) Vehicle power generation control device
US11198368B2 (en) Vehicular charging control system
CN113497282A (en) Battery system for vehicle
JPH06296302A (en) Controller for engine-driven generator for electirc vehicle
JP2001157306A (en) Control device of hybrid vehicle
JP3671446B2 (en) Regenerative braking device for vehicle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees