JP3670832B2 - Heat supply system - Google Patents

Heat supply system Download PDF

Info

Publication number
JP3670832B2
JP3670832B2 JP08341798A JP8341798A JP3670832B2 JP 3670832 B2 JP3670832 B2 JP 3670832B2 JP 08341798 A JP08341798 A JP 08341798A JP 8341798 A JP8341798 A JP 8341798A JP 3670832 B2 JP3670832 B2 JP 3670832B2
Authority
JP
Japan
Prior art keywords
fuel cell
air
heat
heat exchanger
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08341798A
Other languages
Japanese (ja)
Other versions
JPH11281072A (en
Inventor
彰雄 河上
嵩 須齋
義男 畔上
信好 西澤
陽 濱田
収 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP08341798A priority Critical patent/JP3670832B2/en
Publication of JPH11281072A publication Critical patent/JPH11281072A/en
Application granted granted Critical
Publication of JP3670832B2 publication Critical patent/JP3670832B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Central Heating Systems (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池から得られる電気エネルギーにより運転される空調装置及び燃料電池から排出される高温空気により水を昇温して蓄える給湯装置を備えた熱供給システムに関する。
【0002】
【従来の技術】
燃料電池は水素を空気中の酸素と反応させることにより水素が有する化学エネルギーを電気エネルギーへ変換する発電素子であり、この燃料電池を用いた燃料電池装置は燃料電池で発電された電気エネルギーを外部回路へ供給する。しかし燃料電池装置は、水素の化学エネルギーを全て電気エネルギーへ変換することができず、水素の化学エネルギーの一部は燃料電池により熱へ変換される。このため、燃料電池装置では、電気エネルギー発生時の発熱反応により燃料電池の過熱を防止する必要があり、燃料電池へ供給した空気及び冷却水により反応熱を吸収して燃料電池を冷却している。従って、燃料電池へ供給された空気は高温の排気となって燃料電池から排出される。
【0003】
上記のような燃料電池装置では電力変換効率が40〜60%程度に制限されるが、燃料電池から排出される熱エネルギーを回収することができれば、総合的なエネルギー利用効率を高めて暖房や給湯等の熱供給のために消費されるエネルギーに対するコスト負担を低減できる。
【0004】
【発明が解決しようとする課題】
しかしながら、出力が大きい燃料電池装置では発電時に多量の熱が排出されることから、この熱を回収して暖房や給湯等の熱供給へ利用することが容易であるが、低出力の燃料電池装置、例えば定格が数kW程度の燃料電池装置では、時間当たりに排出される熱量が少ないことから、この熱を回収して暖房や熱供給等の熱供給へ効率よく利用することが困難であった。
【0005】
本発明の目的は、上記の事実を考慮し、燃料電池装置から排出される熱を利用して空調装置による暖房時の効率を高めると共に暖房運転を行っていない時には給湯装置により水を昇温して燃料電池装置から排出される熱を効率よく回収できる熱供給システムを提供することにある。
【0006】
【課題を解決するための手段】
請求項1記載の発明は、少なくとも室外熱交換器及び室内熱交換器を有し、室外の熱を室内へ汲み上げるヒートポンプサイクルを行う空調装置と、燃料ガスを空気中の酸素と反応させて発生させた電気エネルギーを前記空調装置へ供給すると共に、反応熱により昇温された反応後の高温空気を排出する燃料電池装置と、昇温された水を蓄える給湯装置と、前記空調装置が暖房運転を行っている時には前記燃料電池装置から排出された高温空気を前記室外熱交換器へ導き、前記空調装置が暖房を行っていない時には前記燃料電池装置から排出された高温空気を前記給湯装置へ導く排気切換手段と、を有する熱供給システムにおいて、前記給湯装置は、前記高温空気と前記水との間で熱交換することにより、前記水を昇温する第1の加熱手段と、前記燃料電池装置と電力経路を介して接続され、前記水の温度を監視する給湯装置制御部と、前記第1の加熱手段とは別体で設けられ、前記水が目標温度に達していない時に前記水を加熱する第2の加熱手段と、を有するものである。
【0007】
上記構成の熱供給システムによれば、空調装置による暖房運転時には排気切換手段が燃料電池装置から排出された高温空気を空調装置の室外熱交換器へ導くことにより、燃料電池から排出された高温空気から空調装置の室外熱交換器により熱回収でき、この高温空気からの回収熱により熱交換の効率を高めることができるので、熱交換器の容量を増大することなく実質的な暖房能力を高めることができる。この結果、外気温の低下に伴って暖房能力が低下することを防止でき、かつ一定の暖房状態を維持するために必要となる電力コストを低減できる。
【0008】
また空調装置が暖房運転を行っていない時には排気切換手段が燃料電池装置から排出された高温空気を給湯装置へ導くことにより、燃料電池から排出された高温空気から給湯装置により熱回収でき、この高温空気からの回収熱により水を昇温して温水として外部へ供給できるので、水を昇温するために必要となるエネルギーコストを抑制又は不要にできる。
【0009】
ここで、空調装置が暖房運転していない時とは、例えば、運転停止時,冷房運
転時,除湿運転時,送風運転時等である。給湯装置へは、燃料電池装置からの高温空気だけでは熱量が不足する場合及び空調装置の停止している場合には燃料電池装置により電力エネルギーを供給するようにしてもよい。
【0010】
請求項2記載の熱供給システムは、請求項1記載の熱供給システムにおいて、前記排気切換手段は、前記燃料電池装置を前記室外熱交換器及び前記給湯装置へそれぞれ連通させる排気ダクトと、前記排気ダクトへ配置されて前記燃料電池装置から導入された高温空気の供給先を前記室外熱交換器又は前記給湯装置へ切り換えるダンパーと、を有するものである。
【0011】
上記構成の熱供給システムによれば、燃料電池装置から排気ダクトへ導入された高温空気の供給先をダンパーにより熱交換器又は給湯装置へ切り換えることにより、空調装置の運転状態に応じて燃料電池装置から排出された高温空気を熱交換器及び給湯装置の何れか一方、又は双方へ供給することが可能になる。
【0012】
【発明の実施の形態】
以下、本発明の実施形態について図面を参照して説明する。
【0013】
(実施形態の構成)
図1から図3には本発明の実施形態に係る熱供給システムが示されている。この熱供給システムは、図1に示されるように燃料電池装置10,空調装置12及び給湯装置14を組合せ、ユーザに対して冷暖房及び温水等を提供可能にしたものである。燃料電池装置10は、一例として固体高分子形の燃料電池(以下、燃料電池という)16及び反応用の空気を供給するロアー18を備えている。燃料電池16は複数の電池セル(図示省略)を内蔵しており、これらの電池セルの空気極へはブロアー18により空気が供給され、水素極へは燃料ガス及び水が供給される。燃料電池16は、燃料ガス中の水素を空気中の酸素と反応させて直流の電気エネルギーを発生する。燃料電池16が発生した直流の電気エネルギーはDC/DCコンバータ20により所定の電圧に変換された後に、DC/ACインバータ22によりAC200V又はAC100Vへ変換されて空調装置12及び給湯装置14の動力源として供給される。尚、この電気エネルギーは二次電池系統へ供給するようにしてもよい。ブロアー18により燃料電池16の空気極へ供給された空気は、一部の酸素が水素極から移動してきた水素と反応して水を生成すると共に、空気極上において水が生成される際の反応熱を奪って高温(40°C以上)の空気として排気口から排出される。
【0014】
空調装置12は、図1に示されるように家屋Hの外部へ配置される室外機24,家屋H内へ配置される室内機26及び操作制御部28を備えている。室外機24内には熱交換器30,ファン32が配置され、室内機26内にも熱交換器,ファン(図示省略)が配置されている。また室外機24と室内機26とは熱交換媒体(冷媒)が循環する配管34,36により接続されており、配管34には四方弁38及び冷媒圧縮機40を備えた媒体切換回路42が、配管36には絞り弁44がそれぞれ配置されている。操作制御部28には運転/停止スイッチ,冷房/暖房の運転切換スイッチ等の操作スイッチが配置されており、これらの操作スイッチに対するユーザの操作に応じて空調装置12の運転状態を制御すると共に、この運転状態に対応する信号をシステム制御装置46へ出力する。
【0015】
給湯装置14は、図1に示されるように熱交換器48,50及び温水タンク52を備えている。熱交換器48と熱交換器50とは熱交換媒体が循環する配管54,55により接続され、一方の配管54には循環ポンプ56が配置されている。温水タンク52には吸熱管58,水補給管60及び温水供給管62がそれぞれ接続されている。ここで、吸熱管58は、温水タンク52から延出して熱交換器50内へ支持され、管内を流れる水が熱交換器50との間で熱交換を行う。また温水タンク52には水温センサ64が配置されると共に、その底部にヒータ66が一体的に設けられている。水温センサ64は温水タンク52内へ貯められた水の水温を検出し、検出水温と対応する信号を操作制御部68へ出力する。またヒータ66は、操作制御部68を介して所定の駆動電圧が印加されるとジュール熱を発生し、このジュール熱により温水タンク52内へ貯められている水を昇温する。
【0016】
給湯装置14の操作制御部68は、温水タンク52内の水が予め設定された目標水温となるなように循環ポンプ56の駆動/停止及びヒータ66からの発熱量を制御する。この循環ポンプ56の駆動時には熱交換器48と熱交換器50との間で配管54を通して熱交換媒体が循環する。この時、熱交換器48は外部から供給された高温空気から熱交換媒体へ熱が供給されるように熱交換し、熱交換器50は、熱交換器48により昇温された熱交換媒体から吸熱管58内を流れる水へ熱を供給し、吸熱管58内を流れる水を昇温する。操作制御部68は、高温空気との間で熱交換する熱交換器50から供給される熱だけでは温水タンク52内の水が目標水温まで昇温されない場合及び熱交換器48へ必要な高温空気が供給されない場合には、ヒータ66へ駆動電圧を印加してヒータ66により温水タンク52内の水を目標水温まで昇温させる。このようにして温水タンク52内へ蓄えられた水(温水)は、温水供給管62に配置されたバルブ69が開かれると外部へ流れ出てフロ,台所等へ温水として供給される。また、温水タンク52内の水(温水)が所定量以下になると、水補給管60からは温水タンク52内へ水が補給される。ここで、吸熱管58内へはポンプ(図示省略)により温水タンク52内へ貯められた水を循環させるようにしても、あるいは水補給管60から供給される加圧された水を供給し、吸熱管58から排出された温水を温水タンク52内へ落とすようにしてもよい。また熱交換器48内へ熱交換媒体を流す代わりに、温水タンク52内の水を流し、熱交換器48により水を昇温して温水タンク52内へ戻すようにしてもよい。この場合には熱交換器50を不要として給湯装置14のコストを低減できる。
【0017】
本実施形態の熱供給システムでは、図1に示されるように燃料電池16の排気口へ排気ダクト70が接続されている。この排気ダクト70は経路途中で排気ダクト72と排気ダクト74とに分岐しており、排気ダクト72は排気空調装置12の室外機24へ接続され、排気ダクト74は給湯装置14の熱交換器48へ接続されている。排気ダクト70,72は燃料電池16の排気口を室外機24におけるファン32の吸気口へ連通させ、排気ダクト70,74は燃料電池16の排気口を熱交換器48における空気の吸気口へ連通させている。
【0018】
排気ダクト70から排気ダクト72,74への分岐部にはダンパーユニット76が、排気ダクト72の経路途中にはダンパーユニット78がそれぞれ設けられている。ダンパーユニット76は、図3に示されるように板状のダンパー80及び、このダンパー80の支軸80Aへ連結したアクチュエータ82から構成されている。ダンパー80は、排気ダクト72,74の接続部を形成したダクト壁へ配置された支軸80Aを中心として揺動可能に支持され、アクチュエータ82はシステム制御装置46からの制御信号に応じてダンパー80を排気ダクト72及び排気ダクト74の何れか一方の入口開口を閉鎖する位置へ揺動させる。
【0019】
排気ダクト72には、図3に示されるように経路途中に吸気開口84が設けられている。ダンパーユニット78は、ダンパーユニット76と同様にダンパー86及び、このダンパー86の支軸86Aへ連結したアクチュエータ88から構成されている。ダンパー86は、吸気開口の周縁部を形成したダクト壁へ配置された支軸86Aを中心として揺動可能に支持され、アクチュエータ88はシステム制御装置46からの制御信号に応じてダンパー86を吸気開口84を閉鎖又は開放させる位置へ揺動させる。
【0020】
(実施形態の作用)
上記のように構成された本実施形態の熱供給システムの動作及び作用について説明する。
【0021】
先ず、空調装置12を暖房運転する場合における熱供給システムの動作を説明する。システム制御装置46は、空調装置12の操作制御部28から暖房運転の開始を通知する信号が入力すると、図3(A)に示されるようにアクチュエータ82によりダンパー80を排気ダクト74の入口開口を閉鎖し、排気ダクト72の入口開口を開放する位置へ揺動させると共に、アクチュエータ88によりダンパー86を排気ダクト74の吸気開口84を閉鎖する位置へ揺動させる。これにより、燃料電池16から排出される高温空気は室外機24におけるファン32の吸気口へ導かれ、ファン32により吸引されて熱交換器30へ供給される。また、暖房運転開始へ同期させて操作制御部28は、図1(A)に示されるように媒体切換回路42の四方弁38の位置を制御し、これにより、圧縮機40の駆動時に室内機26,配管36,絞り弁44,室外機24及び配管34を循環する冷媒を暖房運転へ対応する循環方向(ヒートポンプサイクル)(図1では時計方向)へ流通させる。この後、操作制御部28は、圧縮機40,室外機24のファン32及び室内機26のファンをそれぞれ所定のタイミングで駆動開始させる。これにより、室外機24で冷媒が蒸発して熱交換器30がファン32により吸引された空気から冷媒へ熱を汲み上げるように熱交換を行う。この冷媒は配管34を通して圧縮機40で圧縮された後、室内機26の熱交換器へ移動して凝縮し、室内機26の熱交換器が冷媒から室内機26のファンにより吸入された空気へこの凝縮熱が熱供給されるように熱交換を行う。これにより、昇温した空気が温風として室内機26のファンにより吹き出されて家屋H内を暖房する。
【0022】
一方、給湯装置14は、空調装置14の暖房運転時には熱交換器48へ高温空気が供給されないので循環ポンプ56を停止し、ヒータ66により温水タンク52内の水を昇温して温水供給管62を通して外部へ供給する。
【0023】
次に、空調装置12を運転停止する場合及び暖房運転以外の運転状態(例えば冷房運転)で運転する場合における動作を説明する。システム制御装置46は、空調装置12の操作制御部28から暖房運転の終了を通知する信号が入力すると、図3(B)に示されるようにアクチュエータ82によりダンパー80を排気ダクト72の入口開口を閉鎖し、排気ダクト74の入口開口を開放する位置へ揺動させると共に、アクチュエータ88によりダンパー86を排気ダクト74の吸気開口84を開放する位置へ揺動させる。ダンパー80によりダクト72の入口開口を閉鎖し、排気ダクト74の入口開口を開放することにより、燃料電池16から排出される高温空気は給湯装置14における熱交換器48へ供給される。またダンパー86を排気ダクト74の吸気開口84を開放する位置へ揺動させることにより、室外機24のファン32は吸気開口84を通して排気ダクト72内へ供給される外気を吸引し、熱交換器30へ供給する。ここで、システム制御装置46は、操作制御部28から暖房運転の開始を通知する信号が入力するまで、ダンパー80,86を図3(B)に示される位置へ保持する。従って、空調装置12が暖房運転以外の運転状態、例えば冷房,送風等で運転される場合には、燃料電池16から給湯装置14の熱交換器28へ高温空気が供給される。
【0024】
給湯装置14における操作制御部68は、空調装置12が暖房運転以外の運転状態で運転される場合に循環ポンプ56を駆動して熱交換器48,50により温水タンク52内へ貯められた水を昇温し、熱交換器48,50からの供給熱だけでは設定温度まで水を昇温できない場合には、ヒータ66を駆動して温水タンク52内の水を設定温度まで昇温する。また操作制御部68は、空調装置12の運転が停止される場合にも循環ポンプ56を駆動する。この場合には空調装置12により電気エネルギーが消費されないが、給湯装置14のヒータ66により電気エネルギーが消費されることから、この電力消費に応じた高温空気が燃料電池16から排出されるので、熱交換器48により高温空気からの熱回収が可能になる。
【0025】
一方、空調装置12の操作制御部28は、送風運転をする場合には室内機26のファンを駆動させることにより、家屋H内の空気を吸引して送風口から空気を吹き出す。また冷房運転をする場合には、図1(B)に示されるように冷房運転開始へ同期させて媒体切換回路42の四方弁38の位置を制御し、これにより、圧縮機40の駆動時に室外機24,配管34,室内機26,絞り弁44及び配管36を循環する冷媒を冷房運転へ対応する循環方向(図1では反時計方向)へ流通させる。この後、操作制御部28は、圧縮機40,室外機24のファン32及び室内機26のファンをそれぞれ所定のタイミングで駆動開始させる。これにより、室内機26の熱交換器で冷媒が蒸発して室内の空気からこの冷媒へ吸熱されるように熱交換を行う。この吸熱反応により冷却された空気は、冷風として室内機26のファンにより吹き出されて家屋H内を冷房する。また熱吸収した冷媒は圧縮機40を介して室外機24の熱交換器30へ移動して凝縮し、熱交換器30が冷媒の凝集熱を外気へ排出されるように熱交換を行う。
【0026】
以上説明した本実施形態の熱供給システムによれば、空調装置12による暖房時には燃料電池16から排出された高温空気を室外機24の熱交換器30へ供給することにより、燃料電池16から排出された高温空気から空調装置12の熱交換器30により熱回収でき、この回収熱により熱交換器30による熱交換の効率を高めることができるので、熱交換器30の容量を増大することなく実質的な暖房能力を高めることができる。この結果、外気温の低下に伴って空調装置12による暖房能力が低下することを防止でき、かつ一定の暖房状態を維持するために必要となる電力コストを低減できる。
【0027】
また空調装置12が停止している時及び暖房以外の運転状態で運転されている時には燃料電池16から排出された高温空気を給湯装置14の熱交換器48へ供給することにより、燃料電池16から排出された高温空気から給湯装置14の熱交換器48により熱回収でき、この回収熱により水を昇温して温水として外部へ供給できるので、水を設定温度まで昇温するために必要となる電力,天然ガス等を減少させエネルギーコストを抑制できる。
【0028】
尚、以上説明した本実施形態の熱供給システムでは、空調装置12の運転状態に応じて燃料電池16から排出される高温空気が空調装置12の室外機24及び給湯装置14の熱交換器48の何れかへ全量供給されるとして説明を行ったが、空調装置12の暖房運転時においても外気温が高い場合や低強度での暖房時には、必ずしも燃料電池16から排出される高温空気を全て室外機24へ供給せずに、燃料電池16から排出される高温空気の一部が熱交換器48へ供給されるような位置へダンパー80が保持してもよい。また、空調装置12へ設定された暖房強度に対して燃料電池16から排出される高温空気の温度が高すぎる場合には、高温空気へ外気が混合されるようにダンパー86を吸気開口84を僅かに開放する位置へ保持し、外気により温度調整した高温空気を室外機24へ供給するようにしてもよい。また、空調装置12の暖房時における熱回収の効率を更に高めるために、室外器24において熱交換され排出される空気を給湯装置14の熱交換器48へ供給するダクトを設けてもよい。
【0029】
【発明の効果】
以上説明したように、本発明の熱供給システムによれば、燃料電池装置から排出される熱を利用して空調装置による暖房時の効率を高めると共に、燃料電池装置から排出される熱を利用して給湯装置により水を昇温することにより、燃料電池装置から排出される熱を効率よく回収できる
【図面の簡単な説明】
【図1】本発明の実施形態に係る熱供給システムにおける空調装置が暖房運転されている状態を示す示すブロック図である。
【図2】本発明の実施形態に係る熱供給システムにおける空調装置が冷房運転されている状態を示す示すブロック図である。
【図3】本発明の実施形態に係る燃料電池装置を空調装置及び給湯装置へ接続した排気ダクト及び、この排気ダクトへ設けられたダンパーユニットの構成を示す断面図である。
【符号の説明】
10 燃料電池装置
12 空調装置
14 給湯装置
16 燃料電池(固体高分子形燃料電池)
18 ブロアー
24 室外機
26 室内機
30 熱交換器(室外熱交換器)
32 ファン
46 システム制御装置
48 熱交換器
50 熱交換器
52 温水タンク
70 排気ダクト(排気切換手段)
72 排気ダクト(排気切換手段)
74 排気ダクト(排気切換手段)
76 ダンパーユニット(排気切換手段)
78 ダンパーユニット(排気切換手段)
80 ダンパー
86 ダンパー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air conditioner that is operated by electric energy obtained from a fuel cell, and a heat supply system that includes a hot water supply device that heats and stores water using high-temperature air discharged from the fuel cell.
[0002]
[Prior art]
A fuel cell is a power generation element that converts the chemical energy of hydrogen into electrical energy by reacting hydrogen with oxygen in the air. A fuel cell device using this fuel cell converts the electrical energy generated by the fuel cell to the outside Supply to the circuit. However, the fuel cell device cannot convert all of the chemical energy of hydrogen into electric energy, and part of the chemical energy of hydrogen is converted into heat by the fuel cell. For this reason, in the fuel cell device, it is necessary to prevent overheating of the fuel cell due to an exothermic reaction when electric energy is generated, and the fuel cell is cooled by absorbing reaction heat with air and cooling water supplied to the fuel cell. . Therefore, the air supplied to the fuel cell is discharged from the fuel cell as high-temperature exhaust.
[0003]
In the fuel cell apparatus as described above, the power conversion efficiency is limited to about 40 to 60%. However, if the thermal energy discharged from the fuel cell can be recovered, the overall energy utilization efficiency can be improved to increase the heating and hot water supply. It is possible to reduce the cost burden on the energy consumed for the heat supply.
[0004]
[Problems to be solved by the invention]
However, since a large amount of heat is discharged during power generation in a fuel cell device with a large output, it is easy to recover this heat and use it for heat supply such as heating and hot water supply. For example, in a fuel cell device with a rating of about several kW, since the amount of heat discharged per hour is small, it is difficult to recover this heat and efficiently use it for heat supply such as heating and heat supply. .
[0005]
In view of the above facts, the object of the present invention is to increase the efficiency during heating by the air conditioner by using the heat discharged from the fuel cell device, and when the heating operation is not performed, the temperature of the water is raised by the hot water supply device. Another object of the present invention is to provide a heat supply system that can efficiently recover the heat discharged from the fuel cell device.
[0006]
[Means for Solving the Problems]
The invention according to claim 1 includes an air conditioner that has at least an outdoor heat exchanger and an indoor heat exchanger, performs a heat pump cycle for pumping outdoor heat indoors, and generates fuel gas by reacting with oxygen in the air. electrical energy is supplied to the air-conditioning apparatus, a fuel cell system for discharging the hot air after the reaction, which is heated by the reaction heat, a hot water supply device for storing the heating water, the air conditioning system of the heating operation Exhaust gas that guides hot air discharged from the fuel cell device to the outdoor heat exchanger when performing, and guides hot air discharged from the fuel cell device to the hot water supply device when the air conditioner is not heating and switching means, in the heat supply system having the hot water supply apparatus, by heat exchange between the water and the hot air, and a first heating means for heating the water, When the water does not reach the target temperature, it is connected to the fuel cell device via a power path, and is provided separately from the hot water supply device controller for monitoring the temperature of the water and the first heating means. And a second heating means for heating the water .
[0007]
According to the heat supply system having the above-described configuration, the high temperature air discharged from the fuel cell is generated by the exhaust gas switching unit guiding the high temperature air discharged from the fuel cell device to the outdoor heat exchanger of the air conditioner during the heating operation by the air conditioner. Heat can be recovered by the outdoor heat exchanger of the air conditioner, and the efficiency of heat exchange can be increased by the recovered heat from this high-temperature air, so that the substantial heating capacity can be increased without increasing the capacity of the heat exchanger. Can do. As a result, it is possible to prevent the heating capacity from being lowered with a decrease in the outside air temperature, and it is possible to reduce the power cost necessary for maintaining a constant heating state.
[0008]
Further, when the air conditioner is not performing heating operation, the exhaust gas switching means guides the high temperature air discharged from the fuel cell device to the hot water supply device, so that the hot water supply device can recover heat from the high temperature air discharged from the fuel cell. Since the temperature of the water can be raised by the heat recovered from the air and supplied to the outside as warm water, the energy cost required to raise the temperature of the water can be suppressed or eliminated.
[0009]
Here, the time when the air conditioner is not in the heating operation is, for example, when the operation is stopped, during the cooling operation, during the dehumidifying operation, during the air blowing operation, or the like. To the hot water supply device may supply the electric energy by the fuel cell system when only the hot air from the fuel cell apparatus is stopped if and air conditioning system heat is insufficient.
[0010]
The heat supply system according to claim 2 is the heat supply system according to claim 1, wherein the exhaust gas switching unit communicates the fuel cell device with the outdoor heat exchanger and the hot water supply device, respectively, and the exhaust gas. A damper that is disposed in a duct and switches a supply destination of high-temperature air introduced from the fuel cell device to the outdoor heat exchanger or the hot water supply device.
[0011]
According to the heat supply system having the above configuration, the fuel cell device is switched according to the operating state of the air conditioner by switching the supply destination of the high-temperature air introduced from the fuel cell device to the exhaust duct to the heat exchanger or the hot water supply device by the damper. It becomes possible to supply the high-temperature air discharged from the heat exchanger, the hot water supply device, or both.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0013]
(Configuration of the embodiment)
1 to 3 show a heat supply system according to an embodiment of the present invention. As shown in FIG. 1, this heat supply system combines a fuel cell device 10, an air conditioner 12, and a hot water supply device 14 so as to provide air conditioning and hot water to a user. As an example, the fuel cell device 10 includes a polymer electrolyte fuel cell (hereinafter referred to as a fuel cell) 16 and a lower 18 that supplies reaction air. The fuel cell 16 includes a plurality of battery cells (not shown). Air is supplied to the air electrode of these battery cells by the blower 18, and fuel gas and water are supplied to the hydrogen electrode. The fuel cell 16 reacts hydrogen in the fuel gas with oxygen in the air to generate DC electric energy. The direct current electric energy generated by the fuel cell 16 is converted into a predetermined voltage by the DC / DC converter 20 and then converted into AC 200 V or AC 100 V by the DC / AC inverter 22 to serve as a power source for the air conditioner 12 and the hot water supply device 14. Supplied. This electric energy may be supplied to the secondary battery system. The air supplied to the air electrode of the fuel cell 16 by the blower 18 generates water by reacting with a part of oxygen that has moved from the hydrogen electrode, and heat of reaction when water is generated on the air electrode. Is exhausted from the exhaust port as high-temperature (40 ° C or higher) air.
[0014]
As shown in FIG. 1, the air conditioner 12 includes an outdoor unit 24 arranged outside the house H, an indoor unit 26 arranged inside the house H, and an operation control unit 28. A heat exchanger 30 and a fan 32 are arranged in the outdoor unit 24, and a heat exchanger and a fan (not shown) are also arranged in the indoor unit 26. The outdoor unit 24 and the indoor unit 26 are connected to each other by pipes 34 and 36 through which a heat exchange medium (refrigerant) circulates. The pipe 34 includes a medium switching circuit 42 including a four-way valve 38 and a refrigerant compressor 40. A throttle valve 44 is disposed in each pipe 36. The operation control unit 28 is provided with operation switches such as an operation / stop switch and an operation switching switch for cooling / heating. The operation control unit 28 controls the operation state of the air conditioner 12 in accordance with a user operation on these operation switches. A signal corresponding to this operating state is output to the system controller 46.
[0015]
The hot water supply apparatus 14 includes heat exchangers 48 and 50 and a hot water tank 52 as shown in FIG. The heat exchanger 48 and the heat exchanger 50 are connected by pipes 54 and 55 through which a heat exchange medium circulates, and a circulation pump 56 is disposed in one pipe 54. An endothermic pipe 58, a water supply pipe 60, and a hot water supply pipe 62 are connected to the hot water tank 52, respectively. Here, the heat absorption pipe 58 extends from the hot water tank 52 and is supported in the heat exchanger 50, and water flowing through the pipe exchanges heat with the heat exchanger 50. A water temperature sensor 64 is disposed in the hot water tank 52, and a heater 66 is integrally provided at the bottom thereof. The water temperature sensor 64 detects the water temperature of the water stored in the hot water tank 52 and outputs a signal corresponding to the detected water temperature to the operation control unit 68. The heater 66 generates Joule heat when a predetermined drive voltage is applied via the operation control unit 68, and raises the temperature of the water stored in the hot water tank 52 by the Joule heat.
[0016]
The operation control unit 68 of the hot water supply device 14 controls the drive / stop of the circulation pump 56 and the amount of heat generated from the heater 66 so that the water in the hot water tank 52 reaches a preset target water temperature. When the circulation pump 56 is driven, the heat exchange medium circulates between the heat exchanger 48 and the heat exchanger 50 through the pipe 54. At this time, the heat exchanger 48 performs heat exchange so that heat is supplied from the high-temperature air supplied from the outside to the heat exchange medium, and the heat exchanger 50 uses the heat exchange medium heated by the heat exchanger 48. Heat is supplied to the water flowing in the endothermic tube 58, and the temperature of the water flowing in the endothermic tube 58 is raised. The operation control unit 68 is used when the water in the hot water tank 52 is not heated up to the target water temperature only by the heat supplied from the heat exchanger 50 that exchanges heat with the high temperature air and when the high temperature air necessary for the heat exchanger 48 is reached. There if not supplied, thereby raising the temperature of the water in the hot water tank 52 to a target temperature by the heater 66 by applying a driving voltage to the heater 66. The water (warm water) stored in the warm water tank 52 in this way flows out to the outside when the valve 69 arranged in the warm water supply pipe 62 is opened, and is supplied as warm water to the floor, kitchen, and the like. Further, when the amount of water (warm water) in the hot water tank 52 becomes a predetermined amount or less, water is replenished from the water refill pipe 60 into the warm water tank 52. Here, the water stored in the hot water tank 52 is circulated into the heat absorption pipe 58 by a pump (not shown), or pressurized water supplied from the water supply pipe 60 is supplied, The hot water discharged from the heat absorption pipe 58 may be dropped into the hot water tank 52. Instead of flowing the heat exchange medium into the heat exchanger 48, the water in the hot water tank 52 may be flowed so that the temperature of the water is raised by the heat exchanger 48 and returned to the hot water tank 52. In this case, the heat exchanger 50 is not required, and the cost of the hot water supply device 14 can be reduced.
[0017]
In the heat supply system of the present embodiment, an exhaust duct 70 is connected to the exhaust port of the fuel cell 16 as shown in FIG. The exhaust duct 70 is branched into an exhaust duct 72 and an exhaust duct 74 in the middle of the route, and the exhaust duct 72 is connected to the outdoor unit 24 of the exhaust air conditioner 12, and the exhaust duct 74 is connected to the heat exchanger 48 of the hot water supply device 14. Connected to. The exhaust ducts 70 and 72 communicate the exhaust port of the fuel cell 16 to the intake port of the fan 32 in the outdoor unit 24, and the exhaust ducts 70 and 74 communicate the exhaust port of the fuel cell 16 to the air intake port of the heat exchanger 48. I am letting.
[0018]
A damper unit 76 is provided at a branch portion from the exhaust duct 70 to the exhaust ducts 72 and 74, and a damper unit 78 is provided in the middle of the path of the exhaust duct 72. As shown in FIG. 3, the damper unit 76 includes a plate-like damper 80 and an actuator 82 connected to a support shaft 80 </ b> A of the damper 80. The damper 80 is supported so as to be swingable about a support shaft 80A disposed on the duct wall forming the connection portion of the exhaust ducts 72 and 74, and the actuator 82 is responsive to a control signal from the system control device 46. Is swung to a position where the inlet opening of one of the exhaust duct 72 and the exhaust duct 74 is closed.
[0019]
As shown in FIG. 3, the exhaust duct 72 is provided with an intake opening 84 in the middle of the path. Similarly to the damper unit 76, the damper unit 78 includes a damper 86 and an actuator 88 connected to a support shaft 86 </ b> A of the damper 86. The damper 86 is supported so as to be swingable about a support shaft 86A disposed on the duct wall that forms the peripheral edge of the intake opening, and the actuator 88 opens the damper 86 in accordance with a control signal from the system controller 46. Swing 84 to a position to close or open.
[0020]
(Operation of the embodiment)
The operation and action of the heat supply system of the present embodiment configured as described above will be described.
[0021]
First, the operation of the heat supply system when the air conditioner 12 is operated for heating will be described. When a signal for notifying the start of the heating operation is input from the operation control unit 28 of the air conditioner 12, the system control device 46 causes the actuator 82 to connect the damper 80 to the inlet opening of the exhaust duct 74 as shown in FIG. The damper 86 is swung to a position where the inlet opening of the exhaust duct 72 is opened, and the damper 86 is swung to a position where the intake opening 84 of the exhaust duct 74 is closed by the actuator 88. As a result, the high-temperature air discharged from the fuel cell 16 is guided to the intake port of the fan 32 in the outdoor unit 24, sucked by the fan 32, and supplied to the heat exchanger 30. Further, in synchronization with the start of the heating operation, the operation control unit 28 controls the position of the four-way valve 38 of the medium switching circuit 42 as shown in FIG. 1 (A), whereby the indoor unit is driven when the compressor 40 is driven. 26, the pipe 36, the throttle valve 44, the outdoor unit 24, and the pipe 34 are circulated in a circulation direction (heat pump cycle) (clockwise in FIG. 1) corresponding to the heating operation. Thereafter, the operation control unit 28 starts driving the compressor 40, the fan 32 of the outdoor unit 24, and the fan of the indoor unit 26 at predetermined timings. Thus, heat exchange is performed so that the refrigerant evaporates in the outdoor unit 24 and the heat exchanger 30 pumps heat from the air sucked by the fan 32 to the refrigerant. The refrigerant is compressed by the compressor 40 through the pipe 34, then moves to the heat exchanger of the indoor unit 26 and condenses, and the heat exchanger of the indoor unit 26 changes from the refrigerant to the air sucked by the fan of the indoor unit 26. Heat exchange is performed so that the heat of condensation is supplied. As a result, the heated air is blown out by the fan of the indoor unit 26 as hot air, thereby heating the house H.
[0022]
On the other hand, the hot water supply device 14 stops the circulation pump 56 because the high temperature air is not supplied to the heat exchanger 48 during the heating operation of the air conditioner 14, and the water in the hot water tank 52 is heated by the heater 66 to warm the hot water supply pipe 62. To supply outside.
[0023]
Next, the operation when the air conditioner 12 is stopped and when it is operated in an operation state other than the heating operation (for example, cooling operation) will be described. When a signal for notifying the end of the heating operation is input from the operation control unit 28 of the air conditioner 12, the system control device 46 causes the damper 82 to open the inlet opening of the exhaust duct 72 by the actuator 82 as shown in FIG. It closes and swings to the position where the inlet opening of the exhaust duct 74 is opened, and the damper 86 is swung to the position where the intake opening 84 of the exhaust duct 74 is opened by the actuator 88. By closing the inlet opening of the duct 72 by the damper 80 and opening the inlet opening of the exhaust duct 74, the high-temperature air discharged from the fuel cell 16 is supplied to the heat exchanger 48 in the hot water supply device 14. Further, by swinging the damper 86 to a position where the intake opening 84 of the exhaust duct 74 is opened, the fan 32 of the outdoor unit 24 sucks the outside air supplied into the exhaust duct 72 through the intake opening 84, and the heat exchanger 30. To supply. Here, the system control device 46 holds the dampers 80 and 86 at the positions shown in FIG. 3B until a signal notifying the start of the heating operation is input from the operation control unit 28. Therefore, when the air conditioner 12 is operated in an operating state other than the heating operation, for example, cooling, blowing, etc., high-temperature air is supplied from the fuel cell 16 to the heat exchanger 28 of the hot water supply device 14.
[0024]
The operation control unit 68 in the hot water supply device 14 drives the circulation pump 56 when the air conditioner 12 is operated in an operation state other than the heating operation, and stores the water stored in the hot water tank 52 by the heat exchangers 48 and 50. When the temperature is raised and water cannot be raised to the set temperature only by the heat supplied from the heat exchangers 48 and 50, the heater 66 is driven to raise the temperature of the water in the hot water tank 52 to the set temperature. The operation control unit 68 also drives the circulation pump 56 when the operation of the air conditioner 12 is stopped. In this case, the electric energy is not consumed by the air conditioner 12, but since the electric energy is consumed by the heater 66 of the hot water supply device 14, high-temperature air corresponding to this power consumption is discharged from the fuel cell 16, so The exchanger 48 allows heat recovery from hot air.
[0025]
On the other hand, the operation control unit 28 of the air conditioner 12 drives the fan of the indoor unit 26 to perform air blowing operation, thereby sucking air in the house H and blowing out air from the air blowing port. When performing the cooling operation, the position of the four-way valve 38 of the medium switching circuit 42 is controlled in synchronization with the start of the cooling operation as shown in FIG. The refrigerant circulating through the machine 24, the pipe 34, the indoor unit 26, the throttle valve 44 and the pipe 36 is circulated in the circulation direction (counterclockwise in FIG. 1) corresponding to the cooling operation. Thereafter, the operation control unit 28 starts driving the compressor 40, the fan 32 of the outdoor unit 24, and the fan of the indoor unit 26 at predetermined timings. Thereby, heat exchange is performed so that the refrigerant evaporates in the heat exchanger of the indoor unit 26 and the heat is absorbed from the indoor air to the refrigerant. The air cooled by the endothermic reaction is blown out by the fan of the indoor unit 26 as cold air to cool the house H. Further, the heat-absorbed refrigerant moves to the heat exchanger 30 of the outdoor unit 24 through the compressor 40 and condenses, and the heat exchanger 30 performs heat exchange so that the condensed heat of the refrigerant is discharged to the outside air.
[0026]
According to the heat supply system of the present embodiment described above, high-temperature air discharged from the fuel cell 16 is supplied from the fuel cell 16 to the heat exchanger 30 of the outdoor unit 24 during heating by the air conditioner 12, thereby being discharged from the fuel cell 16. Since the heat can be recovered from the high-temperature air by the heat exchanger 30 of the air conditioner 12 and the efficiency of heat exchange by the heat exchanger 30 can be increased by the recovered heat, the heat exchanger 30 can be substantially increased without increasing the capacity. Heating capacity can be increased. As a result, it is possible to prevent the heating capacity of the air conditioner 12 from being lowered with a decrease in the outside air temperature, and it is possible to reduce the power cost required to maintain a constant heating state.
[0027]
Further, when the air conditioner 12 is stopped and when the air conditioner 12 is operated in an operation state other than heating, the high temperature air discharged from the fuel cell 16 is supplied to the heat exchanger 48 of the hot water supply device 14. Heat can be recovered from the discharged high-temperature air by the heat exchanger 48 of the hot water supply device 14, and water can be heated up by this recovered heat and supplied to the outside as hot water. Energy costs can be reduced by reducing electricity and natural gas.
[0028]
In the heat supply system of the present embodiment described above, the high-temperature air discharged from the fuel cell 16 according to the operating state of the air conditioner 12 is supplied to the outdoor unit 24 of the air conditioner 12 and the heat exchanger 48 of the hot water supply device 14. Although the description has been made assuming that the entire amount is supplied to any one of the outdoor units, when the outside air temperature is high or when the air conditioner 12 is heated at a low strength, all the high-temperature air discharged from the fuel cell 16 is not always used in the outdoor unit. The damper 80 may be held at a position where a part of the high-temperature air discharged from the fuel cell 16 is supplied to the heat exchanger 48 without being supplied to the fuel cell 16. Further, when the temperature of the high-temperature air discharged from the fuel cell 16 is too high for the heating intensity set in the air conditioner 12, the damper 86 is slightly opened through the intake opening 84 so that the outside air is mixed with the high-temperature air. It is possible to supply the outdoor unit 24 with high-temperature air that is held at a position where it is open and is adjusted by the outside air. Further, in order to further increase the efficiency of heat recovery during heating of the air conditioner 12, a duct for supplying the air exchanged and discharged in the outdoor unit 24 to the heat exchanger 48 of the hot water supply device 14 may be provided.
[0029]
【The invention's effect】
As described above, according to the heat supply system of the present invention, the heat discharged from the fuel cell device is used to increase the efficiency during heating by the air conditioner, and the heat discharged from the fuel cell device is used. By heating the water with a hot water supply device, the heat discharged from the fuel cell device can be recovered efficiently [Brief description of the drawings]
FIG. 1 is a block diagram showing a state where an air conditioner in a heat supply system according to an embodiment of the present invention is in a heating operation.
FIG. 2 is a block diagram showing a state in which the air conditioner in the heat supply system according to the embodiment of the present invention is in a cooling operation.
FIG. 3 is a cross-sectional view showing a configuration of an exhaust duct in which a fuel cell device according to an embodiment of the present invention is connected to an air conditioner and a hot water supply device, and a damper unit provided in the exhaust duct.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Fuel cell apparatus 12 Air conditioning apparatus 14 Hot-water supply apparatus 16 Fuel cell (solid polymer fuel cell)
18 Blower 24 Outdoor unit 26 Indoor unit 30 Heat exchanger (Outdoor heat exchanger)
32 Fan 46 System control device 48 Heat exchanger 50 Heat exchanger 52 Hot water tank 70 Exhaust duct (exhaust switching means)
72 Exhaust duct (exhaust switching means)
74 Exhaust duct (exhaust switching means)
76 Damper unit (exhaust gas switching means)
78 Damper unit (exhaust gas switching means)
80 damper 86 damper

Claims (2)

少なくとも室外熱交換器及び室内熱交換器を有し、室外の熱を室内へ汲み上げるヒートポンプサイクルを行う空調装置と、燃料ガスを空気中の酸素と反応させて発生させた電気エネルギーを前記空調装置へ供給すると共に、反応熱により昇温された反応後の高温空気を排出する燃料電池装置と、昇温された水を蓄える給湯装置と、前記空調装置が暖房運転を行っている時には前記燃料電池装置から排出された高温空気を前記室外熱交換器へ導き、前記空調装置が暖房を行っていない時には前記燃料電池装置から排出された高温空気を前記給湯装置へ導く排気切換手段と、を有する熱供給システムにおいて、
前記給湯装置は、
前記高温空気と前記水との間で熱交換することにより、前記水を昇温する第1の加熱手段と、
前記燃料電池装置と電力経路を介して接続され、前記水の温度を監視する給湯装置制御部と、
前記第1の加熱手段とは別体で設けられ、前記水が目標温度に達していない時に前記水を加熱する第2の加熱手段と、
を有することを特徴とする熱供給システム。
An air conditioner having at least an outdoor heat exchanger and an indoor heat exchanger, performing a heat pump cycle that pumps outdoor heat into the room, and electric energy generated by reacting fuel gas with oxygen in the air to the air conditioner supplies, and fuel cell system for discharging the hot air after elevated reaction of the reaction heat, a hot water supply device for storing the heating water, the fuel cell system when the air conditioner is performing heating operation the discharged hot air led into the outdoor heat exchanger from the heat supply having an exhaust switching means for directing the hot air discharged from the fuel cell device to the water heater when the air conditioning system is not performing heating In the system,
The water heater is
A first heating means for raising the temperature of the water by exchanging heat between the hot air and the water;
A hot water supply controller connected to the fuel cell device via a power path and monitoring the temperature of the water;
A second heating unit that is provided separately from the first heating unit and that heats the water when the water does not reach a target temperature;
A heat supply system comprising:
前記排気切換手段は、
前記燃料電池装置を前記室外熱交換器及び前記給湯装置へそれぞれ連通させる排気ダクトと、
前記排気ダクトへ配置されて前記燃料電池装置から導入された高温空気の供給先を前記室外熱交換器又は前記給湯装置へ切り換えるダンパーと、
を有することを特徴とする請求項1記載の熱供給システム。
The exhaust gas switching means is
An exhaust duct for communicating the fuel cell device with the outdoor heat exchanger and the hot water supply device, respectively;
A damper that is arranged in the exhaust duct and switches a supply destination of high-temperature air introduced from the fuel cell device to the outdoor heat exchanger or the hot water supply device;
The heat supply system according to claim 1, comprising:
JP08341798A 1998-03-30 1998-03-30 Heat supply system Expired - Fee Related JP3670832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08341798A JP3670832B2 (en) 1998-03-30 1998-03-30 Heat supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08341798A JP3670832B2 (en) 1998-03-30 1998-03-30 Heat supply system

Publications (2)

Publication Number Publication Date
JPH11281072A JPH11281072A (en) 1999-10-15
JP3670832B2 true JP3670832B2 (en) 2005-07-13

Family

ID=13801872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08341798A Expired - Fee Related JP3670832B2 (en) 1998-03-30 1998-03-30 Heat supply system

Country Status (1)

Country Link
JP (1) JP3670832B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3665853B2 (en) * 1999-08-31 2005-06-29 株式会社日立製作所 Fuel cell driven air conditioner
JP4660933B2 (en) * 2001-01-31 2011-03-30 ダイキン工業株式会社 Fuel cell driven heat pump device
KR20030006067A (en) * 2001-07-11 2003-01-23 현대자동차주식회사 Heating device of fuel cell vehicle
JP4791661B2 (en) * 2001-08-29 2011-10-12 株式会社東芝 Polymer electrolyte fuel cell system
KR100750057B1 (en) 2006-09-04 2007-08-16 에스케이에너지 주식회사 Fuel sell system of apartment house and control method thereof
KR101912674B1 (en) 2011-01-21 2018-10-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Hydrogen generating element, hydrogen generation device, power generation device, and driving device
JP6817681B2 (en) * 2016-12-26 2021-01-20 大阪瓦斯株式会社 Hot water storage system
CN107091508B (en) * 2017-03-24 2020-01-14 西安交通大学 Distributed air conditioning apparatus and method
CN106907811B (en) * 2017-03-24 2020-01-14 西安交通大学 Distributed air conditioning device and method
CN107014110B (en) * 2017-03-24 2020-01-14 西安交通大学 Distributed water vapor cold-heat-electricity combined supply device and method
CN107084553B (en) * 2017-03-24 2020-01-14 西安交通大学 Distributed combined cooling heating and power water vapor generation device and method
CN107024028A (en) * 2017-03-24 2017-08-08 西安交通大学 A kind of distributed heat pump installation and method

Also Published As

Publication number Publication date
JPH11281072A (en) 1999-10-15

Similar Documents

Publication Publication Date Title
KR101144050B1 (en) Air-conditioning system of electric vehicle and method for controlling the same
KR100638223B1 (en) Electric generation air condition system
KR100802571B1 (en) Air-conditioner using waste-heat from fuel cell
JP3670832B2 (en) Heat supply system
JP6249387B1 (en) Floor air conditioning system
JP2012013293A (en) Heat supply system
JP5980025B2 (en) Fuel cell cogeneration system
JP2013530370A (en) Compact heat combined power generation system and control method thereof
KR20010105235A (en) Multi Energy System
JP5441391B2 (en) Charging device, building equipped with charging device, and hot water generating device
KR100462834B1 (en) Electricity and Air Conditioning Supply Method and the Device that use Co-Generation GHP
JPH085190A (en) Fuel battery-driven air conditioner
JP2000030726A (en) Solid polymer fuel cell system
JP2007051579A (en) Cogeneration system
CN102102905A (en) Heat pump water heater
JP2011131858A (en) Air-conditioning system having fuel cell, air-conditioning method using fuel cell, and fuel cell vehicle having air-conditioning system
JP2003050056A (en) Solar equipment
JP2004100990A (en) Cogeneration system
JP6066570B2 (en) Dryer
JP5943633B2 (en) Mist sauna equipment
JP2002280006A (en) Exhaust heat recovery system for solid polymer fuel cell power generating facility
JP7450442B2 (en) Fuel cell exhaust heat utilization system and fuel cell system
CN218511342U (en) Drying heat pump
JP2016040007A (en) Mist sauna apparatus
KR20010099404A (en) Chilled or hypocaust plate making use of thermo-element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050415

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees