JP3670142B2 - Pre-processing method for recombination lifetime measurement of silicon substrate - Google Patents

Pre-processing method for recombination lifetime measurement of silicon substrate Download PDF

Info

Publication number
JP3670142B2
JP3670142B2 JP28347098A JP28347098A JP3670142B2 JP 3670142 B2 JP3670142 B2 JP 3670142B2 JP 28347098 A JP28347098 A JP 28347098A JP 28347098 A JP28347098 A JP 28347098A JP 3670142 B2 JP3670142 B2 JP 3670142B2
Authority
JP
Japan
Prior art keywords
heat treatment
treatment furnace
wafer
recombination lifetime
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28347098A
Other languages
Japanese (ja)
Other versions
JP2000100884A (en
Inventor
久司 井上
史朗 芳野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP28347098A priority Critical patent/JP3670142B2/en
Publication of JP2000100884A publication Critical patent/JP2000100884A/en
Application granted granted Critical
Publication of JP3670142B2 publication Critical patent/JP3670142B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、シリコン基板の再結合ライフタイムを測定する前に行う前処理の方法に関する。
【0002】
【従来の技術】
シリコンウエハ(以下ウエハという)中に結晶欠陥が存在したり、ウエハが金属不純物で汚染されると再結合ライフタイムが減少し製品の特性に悪影響を及ぼすため、ウエハの再結合ライフタイムを測定する必要性が高まっている。再結合ライフタイムとはシリコンに電子などのキャリアを注入したときに過剰キャリアの濃度が再結合により例えば1/eに減少するまでの時間である。このような再結合ライフタイムを測定する手法として、μ−PCD法によりウエハ全体(バルク)について測定する手法がある。この方法は、ウエハにマイクロ波を照射し、続いてウエハにより反射されたマイクロ波のパワ−をサンプリングして記録装置に取り込み、パワ−の減衰曲線から再結合ライフタイムを測定する手法である。この場合、そのまま測定すると表面における再結合が律速になってバルクの情報が見えなくなるため、表面に酸化膜を形成して表面の再結合を抑制することが必要になる。0.5mm厚以上のウエハについて数msまでの再結合ライフタイムを測定するためには、低界面準位密度(Dit<1010/cm2 ・eV)の酸化膜を形成するよう950℃〜1050℃の加熱雰囲気下で熱酸化を行う。
【0003】
このような熱酸化膜を多数のウエハに一度に形成するためには、例えば縦型の熱処理炉を利用することができ、この場合多数枚のウエハを保持具に棚状に保持して熱処理炉の例えば下方側から搬入し、熱処理を行う。
【0004】
【発明が解決しようとしている課題】
上述の再結合ライフタイムの測定は、ウエハに対する前処理条件つまり酸化膜の形成条件により測定値がばらつき、ウエハが持つ本来のライフタイムを把握しにくいという課題がある。特に縦型熱処理炉を用いた場合、測定値が熱処理炉からのウエハの搬出温度に左右され、また保持具におけるウエハの保持位置によって、つまり保持具の上部、中央部、下部のいずれの位置に保持されているかによって測定値がばらつくという課題がある。
【0005】
ところで一般に熱処理を行った後は、熱処理炉内を不活性ガス雰囲気としており、本発明者はこのような方法でウエハを搬出するにあたって測定値にばらつきの少ないレシピを検討したところ、後述のように熱処理を行った後、熱処理炉の温度が800℃以上であれば、ウエハの保持位置に左右されずにウエハが持つ本来のライフタイムを測定できることを見いだした。一方ウエハサイズが8インチまでの大きさであれば、800℃でウエハを熱処理炉から搬出してもスリップが起こらないが、ウエハサイズが12インチもの大きさになると、搬出時にウエハが高温雰囲気から急激に冷やされたときに面積が大きいため大きな熱応力を受けてスリップが発生する場合がある。なおスリップとは、熱歪みにより生じる微細な結晶欠陥である。
【0006】
そこで熱処理炉を700℃以下に降温した後、ウエハを搬出すればスリップの発生防止に効果がある。しかしながら、この場合にはその原因は明らかではないが、保持具の上部に保持されていたウエハの再結合ライフタイムが不合格になり、保持具の下部に保持されていたウエハの再結合ライフタイムの例えば1/5にもなってしまう。ここで不合格になったウエハは、窒素ガス雰囲気で同様の熱処理を再度行うとライフタイムが正常な値に復帰するため、金属汚染や本来の結晶欠陥ではなく、見掛け上、短いライフタイムになっていることはあきらかである。
【0007】
本発明は、このような事情に基づいてなされたものであり、その目的とするところは、ウエハに対して再結合ライフタイムの測定を行うにあたって、信頼性の高い測定値が得られるように前処理を行うことにある。
【0008】
【課題を解決するための手段】
本発明は、シリコン基板の再結合ライフタイムを測定する前に行う前処理方法において、
複数のシリコン基板を保持具に棚状に保持して縦型の熱処理炉内に搬入する工程と、
前記熱処理炉内を酸素雰囲気下で950℃〜1050℃に加熱してシリコン基板に酸化膜を形成する工程と、
その後前記熱処理炉内を不活性ガス雰囲気下で降温する工程と、
前記熱処理炉内が600℃〜700℃の範囲の中の所定の温度になったときに前記保持具を熱処理炉から搬出する工程と、
少なくとも前記保持具を熱処理炉から搬出するときには熱処理炉内に酸素ガスを供給する工程と、を含むことを特徴とする。
酸素ガスを供給するタイミングは、例えば熱処理炉の降温が終了した後、熱処理炉を開放する前であってもよい。この場合熱処理炉の開放は、熱処理炉内が不活性ガスから酸素ガスに置換された後が好ましい。なお酸素ガスを供給するタイミングは、熱処理炉の開放直後であってもよい。
【0009】
このような方法によれば、シリコン基板の再結合ライフタイムを正確に測定することができ、特に12インチサイズ以上の大きさのウエハの場合、700℃以下の温度で熱処理炉から搬出することがスリップの発生を抑える上で好ましいことから、有効な前処理方法である。
【0012】
【発明の実施の形態】
図1は本発明の前処理方法の実施の形態に用いられる縦型熱処理装置を示す概観斜視図であり、図2は縦型熱処理装置を示す断面図である。この装置は縦型熱処理炉1と、保持具であるウエハボ−ト2と、このウエハボ−ト2を昇降させるボ−トエレベ−タ3とを備えている。
【0013】
縦型熱処理炉1は、例えば石英よりなる二重構造の反応管41、この反応管41を囲むように設けられた抵抗発熱体などからなるヒ−タ42などからなり、反応管41の底部にはガス供給管43及び排気管44が接続されていて、反応管41の外管41aからガス穴40を介して内管41bの中にガスが流れるようになっている。45は均熱用容器である。
【0014】
ウエハ−ボ−ト2は、例えば天板21及び底板22の間に複数の支柱23を設け、この支柱23に上下方向に形成された溝にウエハWの周縁を挿入して保持し、こうして複数のウエハWを棚状に保持するように構成されている。なおウエハボ−ト2としては、支柱23にリング状のトレイを上下方向に配列し、各トレイにウエハを保持するタイプのものを用いてもよい。ウエハボ−ト2は、縦型熱処理炉1の下端の開口部5を開閉する蓋体51の上に設けられた保温筒52の上に載置されている。蓋体51はボ−トエレベ−タ3に設けられており、ボ−トエレベ−タ3が昇降することにより、熱処理炉1に対してウエハボ−ト2の搬入出が行われる。
【0015】
次に上記の縦型熱処理装置を用いて行う本発明の実施の形態である、シリコン基板の再結合ライフタイム測定の前処理方法について図3を参照しながら述べる。先ずシリコン基板である12インチサイズ(直径300mm)のウエハWを搬送ア−ム20(図1参照)によりウエハボ−ト2に受け渡し、棚状に保持させる。一方熱処理炉1内は例えば650℃の加熱雰囲気となっており、不活性ガス例えば窒素ガスが供給されている。そして時刻t1にボ−トエレベ−タ3を上昇させてウエハボ−ト2を熱処理炉1内に搬入し、蓋体51により前記開口部5を閉じる。時刻t2にて熱処理炉1内を例えば平均昇温速度10℃/分で例えば950℃まで昇温し、その後時刻t3にて(詳しくはウエハWの温度が950℃に安定した後)熱処理炉1内に乾燥した酸素ガスを供給して、例えば常圧下で例えば数十分間酸化処理を行い、ウエハWに例えば数十nmの厚さの酸化膜を形成する。
【0016】
次いで時刻t4にて酸素ガスの供給を止め、窒素ガスを供給しながら例えば平均降温速度5℃/分で例えば650℃まで降温する。時刻t5にて熱処理炉1内の温度は650℃に維持され、しばらくしてウエハWの温度が安定する。そして例えばウエハの温度が安定した後の時刻t6にて酸素ガスを熱処理炉1内に供給し、酸素ガスにより窒素ガスを置換する。この置換は例えば数分で終了し、その後酸素ガスを熱処理炉1内に供給しながらボ−トエレベ−タ3を降下させて熱処理炉1の下端の開口部5を開き、ウエハボ−ト2を熱処理炉1の外に搬出する。なおこのようにして酸化膜が形成されたウエハWは、その後既述のμ−PCD法によりウエハ全体(バルク)について再結合ライフタイムを測定する。
【0017】
上述の実施の形態によれば、ウエハボ−ト2の上部、中央部及び下部のいずれの保持位置のウエハWであっても再結合ライフタイムの測定値が正常であった。正常であったとは、ここでは酸化膜形成後、降温プロセスから搬出プロセスに至るまで窒素ガス雰囲気としかつ800℃になったときに搬出するレシピで取り出したウエハについての再結合ライフタイムと比較し、その再結合ライフタイムと同等あるいはそれ以上の結果を得ているという意味である。「発明が解決しようとする課題」の項で述べたように650℃もの低い温度に降温させてウエハWを搬出すると、ウエハボ−ト2の上部に保持されたウエハWつまりウエハW群の中で後から熱処理炉1から外に出たウエハWの再結合ライフタイムの測定値が見掛け上小さくなるが、本発明の手法では後述の実験結果から分かるように少なくともウエハボ−ト2を熱処理炉1から搬出する工程において酸素ガスを熱処理炉1内に流すことにより、そのような問題つまり再結合ライフタイムの測定に対するいわばノイズの発生を防止できる。この点のメカニズムは明確ではないが、このようなプロセスを行うことにより、650℃もの低い温度でウエハを取り出すことができるので、結果として12インチサイズのウエハに対して適用すれば、スリップの発生を抑制しながら再結合ライフタイムの測定を正確に行うことができ、実用上の効果が大きい。
【0018】
ここで酸化処理が終了した後酸素ガスをどのタイミングで供給すれば効果が得られるのかを調べるために次のような試験を行った。
【0019】
実施例1;上述の実施の形態の方法のようにして熱処理炉から取り出した。
【0020】
実施例2;ウエハボートを降ろし始めたときつまり蓋体を開いて熱処理炉を開放し始めたとき(図3の時刻t7)に酸素ガスの供給を開始した。
【0021】
実施例3;熱処理炉が降温中であり、熱処理炉内が750℃になったときから(図3の時刻t5よりも前の時点から)それ以降酸素ガスを供給した。
【0022】
比較例1;酸化処理後(図3中の時刻t4以後)は窒素ガスを供給し、ウエハを搬出するときも酸素ガスを供給せずに窒素ガス雰囲気のままとした。
【0023】
比較例2;酸化処理後も酸素ガスを熱処理炉内に供給し、ウエハボートを熱処理炉から搬出し終わるまでの間酸素ガスを供給し続けた。即ち図3中の時刻t4から以降酸素ガスを流し続けた。
【0024】
比較例3;酸化処理後、降温過程の間(図3中の時刻t4〜t5)酸素ガスを供給し、熱処理炉内が650℃になったときに酸素ガスの供給を止め、窒素ガスの供給に切り替えて窒素ガス雰囲気とし、ウエハの搬出も窒素ガス雰囲気のまま行った。
【0025】
各プロセスにより取り出されたウエハに対して再結合ライフタイムを測定し、その測定値の中で最も悪い値について評価したところ図4に示す結果が得られた。なおここではP型半導体のライフタイムを測定し、800℃の温度でウエハを搬入、搬出した場合(酸化処理後はウエハを搬出するに至るまで熱処理炉内を窒素ガス雰囲気とする)のウエハの再結合ライフタイムの測定値を100として、この測定値に対する相対値をライフタイム評価指数として示している。
【0026】
この結果から分かるようにウエハボートを熱処理炉から搬出するときに熱処理炉内に酸素ガスを供給することにより、窒素ガス雰囲気で降温ウエハボートの搬出を行いかつ搬出時の温度が800℃である場合のウエハの再結合ライフタイムと同等あるいはそれ以上の測定値が得られ、信頼性の高い評価を行うことができる。ただし650℃にて窒素ガス雰囲気で搬出した場合、ウエハボートの上部側のウエハについての再結合ライフタイムが短く、その対策としてこの方法が有効であるため、ウエハボートを搬出するときに酸素ガスを供給するといっても、酸素ガスの供給のタイミングは、ウエハボートの上部側のウエハが熱処理炉内に位置しているときにそれらウエハに酸素ガスが触れるようなタイミングでなければならない。
【0027】
しかしながら酸素ガスを供給するタイミングは熱処理炉内がウエハの搬出温度例えば650℃まで降温した後、蓋体を開けるよりも数分〜十数分前に酸素ガスを供給して熱処理炉内を窒素ガスから酸素ガス雰囲気に置換し、次いで蓋体を開いてウエハボートを搬出する方が、効果的である。酸素ガスの供給は熱処理炉の降温中に行う必要はなく、熱処理炉の降温中までも酸素ガスの供給を行うと比較例2から分かるように再結合ライフタイムは見掛け上低くなってしまう。ただし熱処理炉の降温中であっても実施例3に示すように熱処理炉内の温度が750℃まで下がっていれば、800℃で搬出する場合と同等の結果が得られるので、熱処理炉の降温途中から酸素ガスを供給し始めた場合でも、本特許の権利範囲から外れるものではない。なお比較例2として、酸化処理後以降、酸素ガスを流し続けた場合の結果を示してあるが、この場合でも、不活性ガス雰囲気でウエハボートを搬出する場合に比べて効果がある。
【0028】
以上において再結合ライフタイムの結果が悪いウエハは、図3の温度プロファイルと同一のプロファイルで再度熱処理しかつその熱処理は窒素ガス雰囲気とした場合、評価指数は100あるいはそれ以上に復帰することから、ウエハの汚染や本来の結晶欠陥ではないことが分かっている。
【0029】
更にウエハボートの搬出温度を500℃、600℃、700℃、800℃とし、その他は図3に示すレシピと同一のレシピで処理を行ったところ、各搬出温度におけるウエハのライフタイム評価指数は図5に示す通りであった。この結果から分かるように、ウエハボートの搬出時に酸素ガスを供給する手法は、ウエハボートの搬出温度が600℃以上であれば有効であることが分かる。即ちこの方法によればウエハボートの搬出温度を低くできるので、スリップを抑えるためになるべく低い温度で搬出したり、大口径のウエハ例えば12インチサイズ以上の大きさのウエハに対して再結合ライフタイムを測定する場合特に有効である。
【0030】
また本発明の他の方法の実施の形態について図6を参照しながら説明すると、この方法は、ウエハボートの搬入、搬出時の熱処理炉内の温度を800℃とした点、酸化処理終了後つまり時刻t4以降は熱処理炉内を窒素ガス雰囲気とし、その雰囲気のままウエハボートを搬出した点以外は図3のレシピと同じである。このような前処理を行ったP型半導体のウエハに対して再結合ライフタイムを測定したところ、最も短い再結合ライフタイムであっても300〜400μsであり、合格範囲であった。更にまたウエハボートの搬入、搬出温度を950℃、750℃、700℃、650℃に設定して処理を行ったウエハについて再結合ライフタイムを測定し、ライフタイム評価指数を求めたところ図7に示す結果が得られた。
【0031】
ただしウエハボートの搬入、搬出温度が800℃のウエハの再結合ライフタイムの値を100としている。この結果から不活性ガス雰囲気でウエハの搬出を行う場合には、800℃以上であれば、信頼性の高い再結合ライフタイムの測定を行うことができる。この方法は高温でウエハを搬出してもスリップの発生が実質ない8インチサイズ以下のウエハに対して適用することが好ましい。ところで以上の説明ではウエハの搬入温度と搬出温度とを同じにしているが、ウエハの搬入温度は再結合ライフタイムの測定結果に影響のないことを把握しており、従ってその温度については適宜設定すればよい。
【0032】
本発明では、不活性ガスとしては窒素ガスに限られずヘリウムガスやアルゴンガスであってもよいし、縦型熱処理炉としては、熱処理炉の上端が搬入出口になっているタイプのものであってもよい。
【0033】
【発明の効果】
本発明によれば、ウエハに対して再結合ライフタイムの測定を行うにあたって、信頼性の高い測定を行うことができる。
【図面の簡単な説明】
【図1】本発明方法に用いられる縦型熱処理装置の一例を示す概観斜視図である。
【図2】本発明方法に用いられる縦型熱処理装置の一例を示す概略断面図である。
【図3】 本発明方法の一実施の形態を示す作用説明図である。
【図4】本発明方法と比較方法とのライフタイム評価指数を対比して示す説明図である。
【図5】 ウエハの搬出温度とライフタイム評価指数との関係を示す説明図である。
【図6】 本発明方法の他の実施の形態を示す作用説明図である。
【図7】ウエハの搬出温度とライフタイム評価指数との関係を示す説明図である。
【符号の説明】
1 縦型熱処理炉
2 ウエハボ−ト
W ウエハ
3 ボ−トエレベ−タ
41 反応管
5 開口部
51 蓋体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pretreatment method performed before measuring the recombination lifetime of a silicon substrate.
[0002]
[Prior art]
Measure wafer recombination lifetime because crystal defects in silicon wafers (hereinafter referred to as wafers) or contamination of the wafer with metal impurities will reduce the recombination lifetime and adversely affect product characteristics. There is a growing need. The recombination lifetime is the time until the concentration of excess carriers is reduced to, for example, 1 / e due to recombination when carriers such as electrons are injected into silicon. As a method of measuring such a recombination lifetime, there is a method of measuring the entire wafer (bulk) by the μ-PCD method. This method is a method of irradiating a wafer with microwaves, sampling the power of the microwave reflected by the wafer, taking it into a recording apparatus, and measuring the recombination lifetime from the attenuation curve of the power. In this case, if the measurement is performed as it is, the recombination on the surface becomes rate limiting and the bulk information becomes invisible. Therefore, it is necessary to suppress the recombination of the surface by forming an oxide film on the surface. In order to measure the recombination lifetime up to several ms for a wafer having a thickness of 0.5 mm or more, 950 ° C. to 1050 so as to form an oxide film having a low interface state density (Dit <10 10 / cm 2 · eV) Thermal oxidation is performed in a heated atmosphere at ℃.
[0003]
In order to form such a thermal oxide film on a large number of wafers at once, for example, a vertical heat treatment furnace can be used. In this case, a large number of wafers are held in a shelf shape on a holder and the heat treatment furnace is used. For example, it is carried in from below, and heat treatment is performed.
[0004]
[Problems to be solved by the invention]
The measurement of the recombination lifetime described above has a problem that the measured value varies depending on the pretreatment conditions for the wafer, that is, the oxide film formation conditions, and it is difficult to grasp the original lifetime of the wafer. In particular, when using a vertical heat treatment furnace, the measured value depends on the wafer carry-out temperature from the heat treatment furnace, and also depends on the wafer holding position in the holder, that is, at the upper, middle, or lower position of the holder. There is a problem that the measured value varies depending on whether it is held.
[0005]
By the way, in general, after the heat treatment is performed, the inside of the heat treatment furnace is set to an inert gas atmosphere, and the present inventor examined a recipe with little variation in measurement values when carrying out the wafer by such a method. After the heat treatment, it was found that if the temperature of the heat treatment furnace is 800 ° C. or higher, the original lifetime of the wafer can be measured regardless of the holding position of the wafer. On the other hand, if the wafer size is up to 8 inches, slip does not occur even if the wafer is carried out from the heat treatment furnace at 800 ° C. However, if the wafer size is as large as 12 inches, the wafer is removed from the high temperature atmosphere at the time of carrying out. Since the area is large when it is cooled rapidly, slip may occur due to a large thermal stress. The slip is a fine crystal defect caused by thermal strain.
[0006]
Therefore, if the temperature of the heat treatment furnace is lowered to 700 ° C. or lower and the wafer is taken out, it is effective in preventing the occurrence of slip. However, in this case, the cause is not clear, but the recombination lifetime of the wafer held at the upper part of the holder is rejected, and the recombination lifetime of the wafer held at the lower part of the holder is For example, it becomes 1/5. The wafers that are rejected here will return to normal values when the same heat treatment is performed again in a nitrogen gas atmosphere, so that they will have a short lifetime rather than metal contamination and original crystal defects. It is clear that
[0007]
The present invention has been made based on such circumstances, and the object of the present invention is to obtain a highly reliable measurement value when measuring a recombination lifetime for a wafer. There is to do processing.
[0008]
[Means for Solving the Problems]
The present invention is a pretreatment method performed before measuring the recombination lifetime of a silicon substrate,
A process of holding a plurality of silicon substrates in a shelf shape in a holder and carrying them into a vertical heat treatment furnace;
Heating the heat treatment furnace in an oxygen atmosphere at 950 ° C. to 1050 ° C. to form an oxide film on a silicon substrate;
A step of lowering the temperature of the heat treatment furnace under an inert gas atmosphere;
A step of unloading the holder from the heat treatment furnace when the inside of the heat treatment furnace reaches a predetermined temperature within a range of 600 ° C to 700 ° C;
And a step of supplying oxygen gas into the heat treatment furnace at least when the holder is carried out of the heat treatment furnace.
The timing for supplying the oxygen gas may be, for example, after the temperature decrease in the heat treatment furnace is completed and before the heat treatment furnace is opened. In this case, the heat treatment furnace is preferably opened after the inside of the heat treatment furnace is replaced with the oxygen gas from the inert gas. The timing for supplying the oxygen gas may be immediately after the heat treatment furnace is opened.
[0009]
According to such a method, the recombination lifetime of the silicon substrate can be accurately measured. In particular, in the case of a wafer having a size of 12 inches or more, it can be carried out from the heat treatment furnace at a temperature of 700 ° C. or less. This is an effective pretreatment method because it is preferable for suppressing the occurrence of slip.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a schematic perspective view showing a vertical heat treatment apparatus used in an embodiment of the pretreatment method of the present invention, and FIG. 2 is a cross-sectional view showing the vertical heat treatment apparatus. This apparatus includes a vertical heat treatment furnace 1, a wafer boat 2 that is a holder, and a boat elevator 3 that raises and lowers the wafer boat 2.
[0013]
The vertical heat treatment furnace 1 includes a reaction tube 41 having a double structure made of, for example, quartz, a heater 42 made of a resistance heating element provided so as to surround the reaction tube 41, and the like. The gas supply pipe 43 and the exhaust pipe 44 are connected, and gas flows from the outer pipe 41 a of the reaction pipe 41 into the inner pipe 41 b through the gas hole 40. 45 is a soaking container.
[0014]
In the wafer boat 2, for example, a plurality of support columns 23 are provided between the top plate 21 and the bottom plate 22, and the periphery of the wafer W is inserted and held in a groove formed in the support column 23 in the vertical direction. The wafer W is held in a shelf shape. The wafer boat 2 may be of a type in which ring-shaped trays are arranged in the vertical direction on the support columns 23 and the wafers are held in the respective trays. The wafer boat 2 is placed on a heat retaining cylinder 52 provided on a lid 51 that opens and closes the opening 5 at the lower end of the vertical heat treatment furnace 1. The lid 51 is provided on the boat elevator 3, and the wafer boat 2 is carried into and out of the heat treatment furnace 1 by raising and lowering the boat elevator 3.
[0015]
Next, a pretreatment method for measuring the recombination lifetime of a silicon substrate, which is an embodiment of the present invention performed using the above vertical heat treatment apparatus, will be described with reference to FIG. First, a 12-inch (300 mm diameter) wafer W, which is a silicon substrate, is transferred to the wafer board 2 by a transfer arm 20 (see FIG. 1) and held in a shelf shape. On the other hand, the heat treatment furnace 1 has a heating atmosphere of, for example, 650 ° C., and is supplied with an inert gas such as nitrogen gas. At time t 1, the boat elevator 3 is raised to carry the wafer boat 2 into the heat treatment furnace 1, and the opening 5 is closed by the lid 51. Heat treatment furnace 1 is heated to, for example, 950 ° C. at an average temperature increase rate of 10 ° C./min at time t2, and then heat treatment furnace 1 at time t3 (specifically, after the temperature of wafer W is stabilized at 950 ° C.). A dry oxygen gas is supplied into the inside and, for example, an oxidation treatment is performed, for example, for several tens of minutes under normal pressure, thereby forming an oxide film having a thickness of, for example, several tens of nm on the wafer W.
[0016]
Next, at time t4, the supply of oxygen gas is stopped, and the temperature is decreased to, for example, 650 ° C. at an average temperature decrease rate of 5 ° C./min while supplying nitrogen gas. At time t5, the temperature in the heat treatment furnace 1 is maintained at 650 ° C., and the temperature of the wafer W is stabilized after a while. For example, oxygen gas is supplied into the heat treatment furnace 1 at time t6 after the temperature of the wafer is stabilized, and the nitrogen gas is replaced with oxygen gas. This replacement is completed in, for example, several minutes, and then the boat elevator 3 is lowered while oxygen gas is supplied into the heat treatment furnace 1 to open the opening 5 at the lower end of the heat treatment furnace 1, and the wafer boat 2 is heat treated. Carry out of the furnace 1. The wafer W on which the oxide film is thus formed is then measured for the recombination lifetime of the entire wafer (bulk) by the μ-PCD method described above.
[0017]
According to the above-described embodiment, the measurement value of the recombination lifetime is normal for the wafer W at any of the holding positions of the upper portion, the central portion, and the lower portion of the wafer boat 2. Here, it was normal, compared with the recombination lifetime for the wafer taken out in the recipe to be carried out when the temperature is changed to 800 ° C. after forming the oxide film and from the temperature lowering process to the carrying-out process. It means that the result is equal to or better than the recombination lifetime. As described in the section “Problems to be Solved by the Invention”, when the wafer W is unloaded after being lowered to a temperature as low as 650 ° C., the wafer W held on the upper portion of the wafer boat 2, that is, in the wafer W group. Although the measured value of the recombination lifetime of the wafer W that has come out of the heat treatment furnace 1 later appears to be small, the method of the present invention removes at least the wafer boat 2 from the heat treatment furnace 1 as can be seen from the experimental results described later. By flowing oxygen gas into the heat treatment furnace 1 in the step of carrying out, it is possible to prevent such a problem, that is, generation of noise for the measurement of the recombination lifetime. Although the mechanism of this point is not clear, by performing such a process, the wafer can be taken out at a temperature as low as 650 ° C. As a result, if it is applied to a 12-inch wafer, the occurrence of slipping will occur. It is possible to accurately measure the recombination lifetime while suppressing the above, and the practical effect is great.
[0018]
Here, the following test was conducted in order to investigate the timing at which the oxygen gas was supplied after the oxidation treatment was completed to obtain the effect.
[0019]
Example 1 The sample was taken out from the heat treatment furnace in the same manner as in the above embodiment.
[0020]
Example 2 Supply of oxygen gas was started when the wafer boat started to be lowered, that is, when the lid was opened and the heat treatment furnace was started (time t7 in FIG. 3).
[0021]
Example 3: Since the temperature of the heat treatment furnace was decreasing and the temperature inside the heat treatment furnace reached 750 ° C. (from time before time t5 in FIG. 3), oxygen gas was supplied thereafter.
[0022]
Comparative Example 1 After the oxidation treatment (after time t4 in FIG. 3), nitrogen gas was supplied, and when the wafer was unloaded, oxygen gas was not supplied and the nitrogen gas atmosphere was maintained.
[0023]
Comparative Example 2 Oxygen gas was supplied into the heat treatment furnace even after the oxidation treatment, and oxygen gas was continuously supplied until the wafer boat was unloaded from the heat treatment furnace. That is, oxygen gas was continuously supplied from time t4 in FIG.
[0024]
Comparative Example 3: After the oxidation treatment, oxygen gas was supplied during the temperature lowering process (time t4 to t5 in FIG. 3), and when the heat treatment furnace reached 650 ° C., supply of oxygen gas was stopped, and supply of nitrogen gas And the wafer was unloaded in the nitrogen gas atmosphere.
[0025]
The recombination lifetime was measured for the wafer taken out by each process, and the worst value among the measured values was evaluated. The result shown in FIG. 4 was obtained. Here, the lifetime of the P-type semiconductor is measured, and when the wafer is loaded and unloaded at a temperature of 800 ° C. (after the oxidation process, the inside of the heat treatment furnace is kept in a nitrogen gas atmosphere until the wafer is unloaded). The measurement value of the recombination lifetime is set to 100, and the relative value to this measurement value is shown as the lifetime evaluation index.
[0026]
As can be seen from this result, when the wafer boat is carried out of the heat treatment furnace, oxygen gas is supplied into the heat treatment furnace so that the temperature-decreasing wafer boat is carried out in a nitrogen gas atmosphere and the temperature at the time of carrying out is 800 ° C. A measurement value equivalent to or higher than the recombination lifetime of the wafer can be obtained, and a highly reliable evaluation can be performed. However, when the wafer is carried out at 650 ° C. in a nitrogen gas atmosphere, the recombination lifetime for the wafer on the upper side of the wafer boat is short, and this method is effective as a countermeasure. Even when the oxygen gas is supplied, the oxygen gas must be supplied at such a timing that the oxygen gas contacts the wafer when the wafer on the upper side of the wafer boat is located in the heat treatment furnace.
[0027]
However, the oxygen gas is supplied at a timing when the temperature inside the heat treatment furnace is lowered to the wafer carry-out temperature, for example, 650 ° C., and then the oxygen gas is supplied several minutes to several tens of minutes before the lid body is opened. It is more effective to replace the atmosphere with an oxygen gas atmosphere and then open the lid and carry out the wafer boat. It is not necessary to supply oxygen gas while the temperature of the heat treatment furnace is lowered. If oxygen gas is supplied even while the temperature of the heat treatment furnace is lowered, the recombination lifetime is apparently lowered as can be seen from Comparative Example 2. However, even when the temperature of the heat treatment furnace is decreasing, if the temperature in the heat treatment furnace is lowered to 750 ° C. as shown in Example 3, the same result as that of carrying out at 800 ° C. can be obtained. Even if oxygen gas starts to be supplied in the middle, it does not depart from the scope of rights of this patent. As Comparative Example 2, the result is shown in the case where the oxygen gas is kept flowing after the oxidation treatment. Even in this case, there is an effect as compared with the case where the wafer boat is carried out in an inert gas atmosphere.
[0028]
Since the wafer having a poor recombination lifetime result is heat-treated again with the same profile as the temperature profile of FIG. 3 and the heat treatment is performed in a nitrogen gas atmosphere, the evaluation index returns to 100 or higher. It is known that this is not a wafer contamination or an intrinsic crystal defect.
[0029]
Further, when the wafer boat carry-out temperature is set to 500 ° C., 600 ° C., 700 ° C., and 800 ° C., and the other recipes are the same as the recipe shown in FIG. 3, the wafer lifetime evaluation index at each carry-out temperature is shown in FIG. As shown in FIG. As can be seen from this result, it is understood that the method of supplying oxygen gas when the wafer boat is carried out is effective when the wafer boat carrying temperature is 600 ° C. or higher. That is, according to this method, the unloading temperature of the wafer boat can be lowered, so that it can be unloaded at a temperature as low as possible in order to suppress the slip, or the recombination lifetime for a large-diameter wafer, for example, a wafer of 12 inch size or larger This is particularly effective when measuring.
[0030]
Further, another embodiment of the method of the present invention will be described with reference to FIG. 6. This method is characterized in that the temperature in the heat treatment furnace during loading / unloading of the wafer boat is set to 800 ° C. After the time t4, the inside of the heat treatment furnace is set to a nitrogen gas atmosphere, and is the same as the recipe of FIG. 3 except that the wafer boat is carried out in that atmosphere. When the recombination lifetime was measured for the P-type semiconductor wafer subjected to such pretreatment, even the shortest recombination lifetime was 300 to 400 μs, which was within the acceptable range. Furthermore, when the wafer boat loading / unloading temperature was set at 950 ° C., 750 ° C., 700 ° C., and 650 ° C., the recombination lifetime was measured, and the lifetime evaluation index was obtained. The results shown are obtained.
[0031]
However, the value of the recombination lifetime of a wafer having a wafer boat loading / unloading temperature of 800 ° C. is 100. From this result, when unloading the wafer in an inert gas atmosphere, a highly reliable recombination lifetime can be measured at 800 ° C. or higher. This method is preferably applied to a wafer having an 8 inch size or less which does not generate slip even when the wafer is carried out at a high temperature. In the above description, the wafer carry-in temperature and the carry-out temperature are the same, but it is understood that the wafer carry-in temperature has no effect on the recombination lifetime measurement result, and therefore the temperature is appropriately set. do it.
[0032]
In the present invention, the inert gas is not limited to nitrogen gas but may be helium gas or argon gas, and the vertical heat treatment furnace is of a type in which the upper end of the heat treatment furnace is a loading / unloading port. Also good.
[0033]
【The invention's effect】
According to the present invention, highly reliable measurement can be performed when measuring the recombination lifetime for a wafer.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view showing an example of a vertical heat treatment apparatus used in a method of the present invention.
FIG. 2 is a schematic sectional view showing an example of a vertical heat treatment apparatus used in the method of the present invention.
FIG. 3 is an operation explanatory view showing an embodiment of the method of the present invention.
FIG. 4 is an explanatory diagram showing a comparison of lifetime evaluation indices between the method of the present invention and the comparison method.
FIG. 5 is an explanatory diagram showing a relationship between a wafer carry-out temperature and a lifetime evaluation index.
FIG. 6 is an operation explanatory view showing another embodiment of the method of the present invention.
FIG. 7 is an explanatory diagram showing a relationship between a wafer carry-out temperature and a lifetime evaluation index.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Vertical heat processing furnace 2 Wafer boat W Wafer 3 Boat elevator 41 Reaction tube 5 Opening 51 Lid

Claims (5)

シリコン基板の再結合ライフタイムを測定する前に行う前処理方法において、
複数のシリコン基板を保持具に棚状に保持して縦型の熱処理炉内に搬入する工程と、
前記熱処理炉内を酸素雰囲気下で950℃〜1050℃に加熱してシリコン基板に酸化膜を形成する工程と、
その後前記熱処理炉内を不活性ガス雰囲気下で降温する工程と、
前記熱処理炉内が600℃〜700℃の範囲の中の所定の温度になったときに前記保持具を熱処理炉から搬出する工程と、
少なくとも前記保持具を熱処理炉から搬出するときには熱処理炉内に酸素ガスを供給する工程と、を含むことを特徴とするシリコン基板の再結合ライフタイム測定の前処理方法。
In the pretreatment method performed before measuring the recombination lifetime of the silicon substrate,
A process of holding a plurality of silicon substrates in a shelf shape in a holder and carrying them into a vertical heat treatment furnace;
Heating the heat treatment furnace in an oxygen atmosphere at 950 ° C. to 1050 ° C. to form an oxide film on a silicon substrate;
A step of lowering the temperature of the heat treatment furnace in an inert gas atmosphere;
A step of unloading the holder from the heat treatment furnace when the inside of the heat treatment furnace reaches a predetermined temperature in a range of 600 ° C to 700 ° C;
And a step of supplying oxygen gas into the heat treatment furnace at least when the holder is unloaded from the heat treatment furnace.
酸素ガスを供給するタイミングは、熱処理炉の降温が終了した後、熱処理炉を開放する前であることを特徴とする請求項1記載のシリコン基板の再結合ライフタイム測定の前処理方法。  2. The pretreatment method for recombination lifetime measurement of a silicon substrate according to claim 1, wherein the timing of supplying the oxygen gas is after the temperature lowering of the heat treatment furnace is finished and before the heat treatment furnace is opened. 熱処理炉の開放は、熱処理炉内の不活性ガスが酸素ガスにより置換された後に行われることを特徴とする請求項1または2記載のシリコン基板の再結合ライフタイム測定の前処理方法。  3. The pretreatment method for recombination lifetime measurement of a silicon substrate according to claim 1, wherein the heat treatment furnace is opened after the inert gas in the heat treatment furnace is replaced with oxygen gas. 酸素ガスを供給するタイミングは、熱処理炉の開放直後である請求項1記載のシリコン基板の再結合ライフタイム測定の前処理方法。  2. The pretreatment method for measuring a recombination lifetime of a silicon substrate according to claim 1, wherein the timing of supplying the oxygen gas is immediately after the heat treatment furnace is opened. シリコン基板は、12インチサイズ以上の大きさのウエハであることを特徴とする請求項1、2、3または4記載のシリコン基板の再結合ライフタイム測定の前処理方法。  5. The pretreatment method for recombination lifetime measurement of a silicon substrate according to claim 1, wherein the silicon substrate is a wafer having a size of 12 inches or more.
JP28347098A 1998-09-18 1998-09-18 Pre-processing method for recombination lifetime measurement of silicon substrate Expired - Lifetime JP3670142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28347098A JP3670142B2 (en) 1998-09-18 1998-09-18 Pre-processing method for recombination lifetime measurement of silicon substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28347098A JP3670142B2 (en) 1998-09-18 1998-09-18 Pre-processing method for recombination lifetime measurement of silicon substrate

Publications (2)

Publication Number Publication Date
JP2000100884A JP2000100884A (en) 2000-04-07
JP3670142B2 true JP3670142B2 (en) 2005-07-13

Family

ID=17665973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28347098A Expired - Lifetime JP3670142B2 (en) 1998-09-18 1998-09-18 Pre-processing method for recombination lifetime measurement of silicon substrate

Country Status (1)

Country Link
JP (1) JP3670142B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4743010B2 (en) * 2005-08-26 2011-08-10 株式会社Sumco Silicon wafer surface defect evaluation method
JP2010140994A (en) * 2008-12-10 2010-06-24 Covalent Materials Corp Evaluation method for silicon wafer
JP5621733B2 (en) * 2011-08-29 2014-11-12 信越半導体株式会社 Method for measuring recombination lifetime of silicon substrate
JP2013058514A (en) * 2011-09-07 2013-03-28 Shin Etsu Handotai Co Ltd Pretreatment method of recombination lifetime measurement of silicon substrate
JP5870865B2 (en) * 2012-07-10 2016-03-01 信越半導体株式会社 Pre-processing method for recombination lifetime measurement of silicon substrate
CN112904173A (en) * 2021-01-28 2021-06-04 西安奕斯伟硅片技术有限公司 Method and equipment for testing minority carrier lifetime of silicon wafer

Also Published As

Publication number Publication date
JP2000100884A (en) 2000-04-07

Similar Documents

Publication Publication Date Title
KR100627919B1 (en) Method for heat-treating silicon wafer and silicon wafer
US5574247A (en) CVD reactor apparatus
JP3578402B2 (en) Wafer processing system and wafer processing method
US7011717B2 (en) Method for heat treatment of silicon wafers and silicon wafer
US6245311B1 (en) Method for heat treatment of silicon wafer and silicon wafer
JP3670142B2 (en) Pre-processing method for recombination lifetime measurement of silicon substrate
KR20020070769A (en) Heat-Treatment Apparatus, Heat-Treatment Method Using the Same and Method of Producing a Semiconductor Device
JPH08148552A (en) Semiconductor thermal treatment jig and its surface treatment method
JP3207402B2 (en) Semiconductor heat treatment apparatus and semiconductor substrate heat treatment method
JP2009252866A (en) Preprocessing method for measurement of lifetime of silicon substrate
JP3222532B2 (en) Substrate processing equipment
JP4553227B2 (en) Heat treatment method
JPH0737812A (en) Reduced pressure cvd vapor growth device
JP3901958B2 (en) Method for creating heat treatment apparatus set temperature, and heat treatment method
JPH1012689A (en) Method for inspecting semiconductor substrate and semiconductor substrate for monitoring used therefor
JP3146055B2 (en) Substrate processing equipment
WO2004023547A1 (en) Probing method, probe, and mechanism for reducing/plasma etching electrode
JP2001044193A (en) Method of forming silicon oxide film and silicon nitride oxide film, and silicon wafer
JP5870865B2 (en) Pre-processing method for recombination lifetime measurement of silicon substrate
JP3308702B2 (en) Heat treatment method
JPH0691076B2 (en) Method for manufacturing semiconductor device
JP2001223220A (en) Heat-treating method of semiconductor wafer and semiconductor wafer
JP2023023911A (en) Pre-treatment method for susceptor for silicon wafer and heat treatment method for silicon wafer
JPH0469422B2 (en)
JP4685321B2 (en) Method of reducing the object to be processed

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050413

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080422

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term