JP3669269B2 - Differential current relay - Google Patents

Differential current relay Download PDF

Info

Publication number
JP3669269B2
JP3669269B2 JP2000376423A JP2000376423A JP3669269B2 JP 3669269 B2 JP3669269 B2 JP 3669269B2 JP 2000376423 A JP2000376423 A JP 2000376423A JP 2000376423 A JP2000376423 A JP 2000376423A JP 3669269 B2 JP3669269 B2 JP 3669269B2
Authority
JP
Japan
Prior art keywords
zero
differential current
current relay
imaginary part
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000376423A
Other languages
Japanese (ja)
Other versions
JP2002186165A (en
Inventor
雅靖 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP2000376423A priority Critical patent/JP3669269B2/en
Publication of JP2002186165A publication Critical patent/JP2002186165A/en
Application granted granted Critical
Publication of JP3669269B2 publication Critical patent/JP3669269B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Locating Faults (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非接地系ループ配電線に設置される差電流継電装置に関するものである。
【0002】
【従来の技術】
非接地系ループ配電線の地絡故障を検出するために、電気所間を光ファイバーで結び、電流、電圧データを同期サンプリングして伝送する方式が一般に用いられている。
同期サンプリングをするのは、電気所の電流、電圧データの位相情報が必要となるからである。
【0003】
【発明が解決しようとする課題】
前記方式では、サンプリングするとき同期をとるのが面倒であり、また、データを伝送するときに、伝送時間などの補正も必要となる。
したがって、非接地系ループ配電線に設置される場合に、同期をとる必要のない、簡易で安価な伝送回路で済む差電流継電装置が求められている。
【0004】
【課題を解決するための手段】
本発明の差電流継電装置は、配電線を流れる零相電流I0を検出する零相電流検出手段と、配電線の零相電圧V0を検出する零相電圧検出手段と、零相電流I0と、零相電圧V0の複素共役V0*との積の虚数部Im[I0AV0A*]を算出する虚数部算出手段と、同じ配電線に設置された隣の差電流継電装置より、伝送回線を通して虚数部Im[I0BV0B*]を取得し、この取得された虚数部と、前記虚数部算出手段で算出した虚数部との和の符号を判定することにより、地絡故障が前記隣の差電流継電装置との区間内で発生しているか否かを判定する判定手段とを有するものである。
【0005】
前記の構成に基づく動作を、以下に説明する。
以後、電圧V、電流Iは、ベクトルを表すものとする。
図1は、本発明の差電流継電装置が適用される典型的な非接地系ループ配電線の回路図である。
本配電線は電気所Aから、電気所B、電気所Cを通過して、もとの電気所Aに戻るループ形状となっている。電気所Aは、変電所から送電されている。
【0006】
各電気所A,B,Cには、方向別に零相変流器ZCTが接地されている。また、母線に零相変圧器GPTが接地されている。
配電線は電気所A,B間、電気所B,C間、電気所C,A間の3つの区間に分けられており、それぞれを区間1、区間2、区間3という。各区間の大地間容量は、それぞれC1,C2,C3とする。
区間1の一相(a相とする)で、地絡が発生しているとする。地絡抵抗値をRgと書く。Rgの値は、もちろん未知である。配電線路での電圧降下は小さく、配電線の各相電圧Va,Vb,Vcは、ループ内で等しいものとする。
【0007】
変電所からの送電電流を、Ia,Ib,Icとする。区間n(n=1,2,3)の両端から流れ込む各相電流をIan,Ibn,Icn;Ian′,Ibn′,Icn′、零相電流をI0n,I0n′とする。
区間1に着目すれば、
Ia1+Ia1′=jωC1Va+Va/Rg,
Ib1+Ib1′=jωC1Vb,
Ic1+Ic1′=jωC1Vc
が成り立つ。3つの式を加算すれば、
3I01+3I01′=jω3C1V0+Va/Rg (1)
となる。区間2に着目すれば、
Ia2+Ia2′=jωC2Va,
Ib2+Ib2′=jωC2Vb,
Ic2+Ic2′=jωC2Vc
が成り立つ。3つの式を加算すれば、
3I02+3I02′=jω3C2V0 (2)
となる。区間3に着目すれば、
Ia3+Ia3′=jωC3Va,
Ib3+Ib3′=jωC3Vb,
Ic3+Ic3′=jωC3Vc
が成り立つ。3つの式を加算すれば、
3I03+3I03′=jω3C3V0 (3)
となる。
【0008】
変電所から電気所Aに流れる電流に着目して、
Ia=Ia1+Ia3′,
Ib=Ib1+Ib3′,
Ic=Ic1+Ic3′
が成り立つ。3つの式を加算すれば、Ia+Ib+Ic=0なので(変圧器がΔ巻き線のため)、
0=3I01+I03′ (4)
となる。また電気所Bにおいて、
Ia1′+Ia2=0,
Ib1′+Ib2=0,
Ic1′+Ic2=0
が成り立ち、3つの式を加算すれば、
3I01′+3I02=0 (5)
となる。電気所Cにおいて、
Ia2′+Ia3=0,
Ib2′+Ib3=0,
Ic2′+Ic3=0
が成り立ち、3つの式を加算すれば、
3I02′+3I03=0 (6)
となる。
【0009】
前記(1)(2)(3)式を加算すれば、左辺は、
3I01+3I01′+3I02+3I02′+3I03+3I03′
となるが、(4)(5)(6)式を用いれば、この左辺は0となる。したがって、前記(1)(2)(3)式を加算した式は、
0=jω3(C1+C2+C3)V0+Va/Rg (7)
となる。この式を変形すれば、
Va/Rg=−jω3(C1+C2+C3)V0 (8)
となる。この(8)式を(1)式に代入すれば、
3I01+3I01′=−jω3(C2+C3)V0 (9)
が成り立つ。
【0010】
前記(2)(3)式を見ると、地絡故障のない区間2又は区間3の両端の零相電流のベクトル和は、零相電圧V0に90°回転ベクトルjをかけたものとなる。一方、前記(9)式を見ると、地絡故障のある区間1の両端の零相電流のベクトル和は、零相電圧V0に−90°回転ベクトル−jをかけたものとなっている。つまり、区間内の両端零相電流のベクトル和は、区間内の地絡故障の有無により、位相平面上で位相差があることが判る。
【0011】
図2は、零相電圧V0を基準とした位相平面図であり、内部事故のある区間1のベクトル3I01+3I01′は右半平面にあり、外部事故のある区間2,3のベクトル3I02+3I02′,3I03+3I03′は左半平面にある。
したがって、区間内の両端零相電流のベクトル和を求めて位相を判定すれば、区間内部の故障か区間外部の故障かが分かる。
しかし、この判定をするには、区間両端の零相電流データの同期サンプリングが必要であり、データの伝送遅延時間の補正も必要になる。したがって、データ収集装置や伝送装置の構成が複雑、高価になる。
【0012】
そこで、データの収集が非同期のサンプリングでよく、かつ、伝送路も簡易なもので済む差電流継電装置を提案する。
前記(9)式の両辺に零相電圧V0の複素共役零相電圧V0*をかける。

Figure 0003669269
この式の虚数部をとると、
Figure 0003669269
となる。前記(2)式の両辺に零相電圧V0*をかけて虚数部をとると、
Im[3I02V0*]+Im[3I02′V0*]=ω3C2|V0|2 (11)
となる。前記(3)式の両辺に零相電圧V0*をかけて虚数部をとると、
Im[3I03V0*]+Im[3I03′V0*]=ω3C3|V0|2 (12)
となる。
【0013】
前記(10)(11)(12)式の左辺のIm[3I01V0*]等の量はスカラー量である。これらの式の左辺を計算して、その符号を判定し、プラスならば区間外故障、マイナスならば区間内故障と判定できる。
この方法によれば、各端子でサンプリングするときに、端子間の同期は必要でなく、各端子ごとに独立して計算できる。また、データを伝送するときに、伝送時間などの補正も必要としないので、伝送回路も簡単な安価なもので済む。
【0014】
なお、零相電圧V0としてどこの電圧を採取するかであるが、一線地絡時の零相電圧は配電線の全端子でほとんど差がないことを考えれば、零相電圧は、零相変流器ZCTの設置されている電気所の零相電圧を用いればよい。具体的には、電気所の計器用変圧器GPTより零相電圧を採取すればよい。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を、添付図面を参照しながら詳細に説明する。
図3は、図1に示した非接地系ループ配電線の一部の、電気所A,B間の通信線路2及び差電流継電装置1を示す図である。
差電流継電装置1の内部は、電圧変換する変圧器、サンプルホールド回路、A/D変換器、CPU(中央処理装置)、ROM,RAMなどの各種メモリ、モデムなど公知のハートウェアで構成されている。
【0016】
電気所Aには、配電線を流れる零相電流を測定する零相変流器ZCTと、母線零相電圧を測定するための計器用変圧器GPTとが設置されている。ZCT及びGPTの測定信号は、差電流継電装置1に入力される。
電気所Bにも、ZCT及びGPTが設置され、これらの測定信号が差電流継電装置1に入力される。
両差電流継電装置1は、モデムを通して、有線又は無線の伝送回線で結ばれていて、後述するスカラー値A,Bの伝送が行われる。そして、各差電流継電装置1のCPUで区間内の地絡故障判定が行われる。区間内の地絡故障が検出されたときは、差電流継電装置1はトリップ指令を出し、配電線に設置された遮断器(図示せず)を動作させる。
【0017】
図4は、電気所Aに設置された差電流継電装置1のCPUが行う、地絡故障判定のための処理の流れを示すフローチャートである。
まず、GPTで測定される零相電圧V0Aが整定値以上かどうかを判定する(ステップS1)。整定値以上であれば、ループ配電線のどこかに地絡故障が発生していると判断できる。
ステップS1でYESの場合に、A=Im[3I0AV0A*]を計算する(ステップS2)。ここでI0Aは、電気所AのZCTで測定された零相電流である。虚数部をとるので、Aは位相に関係のないスカラー値になる。
【0018】
次に、電気所Bに設置された差電流継電装置1から、スカラー値B=Im[3I0BV0B*]を取得し(ステップS3)、A+Bを計算する(ステップS4)。
そして、このA+Bの符号を判定する。具体的には、−3I0S|V0A|以下であるかどうかを判定する(ステップS5)。ここで、I0Sは手動で設定することのできる整定値(地絡故障時の最小流出電流)である。|V0A|がかかっているのは、単位を合わせるためである。|V0A|はほぼ一定値とみなすことができる。なお、|V0A|に代えて|V0B|を採用してもよい。|V0A|と|V0B|とは、ほぼ等しいからである。
【0019】
A+Bが−I0S|V0A|よりも大きければ、区間外事故と判定し、A+Bが−I0S|V0A|以下であれば、区間内事故と判定して、トリップ指令を出す(ステップS6)。
図5は、電気所Bに設置された差電流継電装置1のCPUが行う、地絡故障判定のための処理の流れを示すフローチャートである。
図4の処理と比べると、電気所Bに設置されているZCT及びGPTの測定電流、電圧を用いること(ステップT1,T2)、Aを伝送路を通して取得すること(ステップT3)、B+Aを−I0S|V0B|と比較すること(ステップT5)、が異なっているが、あとは図4の処理と同様である。
【0020】
以上で、本発明の実施の形態を説明したが、本発明の実施は、前記の形態に限定されるものではなく、本発明の範囲内で種々の変更を施すことが可能である。
【0021】
【発明の効果】
以上のように非接地系ループ配電線に設置される本発明の差電流継電装置によれば、各端子で収集されたデータ間の同期をとる必要がなく、簡易で安価な伝送回路を使用することができる。
【図面の簡単な説明】
【図1】本発明の差電流継電装置が適用される典型的な非接地系ループ配電線の回路図である。
【図2】零相電圧V0を基準とした位相平面図である。
【図3】図1に示した非接地系ループ配電線の一部の、電気所A,B間の通信線路2及び差電流継電装置1を示す図である。
【図4】電気所Aに設置された差電流継電装置1のCPUが行う、地絡故障判定のための処理の流れを示すフローチャートである。
【図5】電気所Bに設置された差電流継電装置1のCPUが行う、地絡故障判定のための処理の流れを示すフローチャートである。
【符号の説明】
1 差電流継電装置
2 通信線路[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a differential current relay device installed in a non-grounded loop distribution line.
[0002]
[Prior art]
In order to detect a ground fault in an ungrounded loop distribution line, a method is generally used in which electrical stations are connected by an optical fiber, and current and voltage data are synchronously sampled and transmitted.
The reason why synchronous sampling is performed is that electric current current and voltage data phase information is required.
[0003]
[Problems to be solved by the invention]
In the above method, it is troublesome to take synchronization when sampling, and correction of transmission time or the like is also necessary when transmitting data.
Therefore, there is a need for a differential current relay device that does not need to be synchronized when installed on a non-grounded loop distribution line, and that requires a simple and inexpensive transmission circuit.
[0004]
[Means for Solving the Problems]
The differential current relay device of the present invention includes a zero-phase current detecting means for detecting a zero-phase current I0 flowing through the distribution line, a zero-phase voltage detecting means for detecting a zero-phase voltage V0 of the distribution line, and a zero-phase current I0. The imaginary part calculation means for calculating the imaginary part Im [I0AV0A * ] of the product of the complex conjugate V0 * of the zero-phase voltage V0 and the imaginary number through the transmission line from the adjacent differential current relay installed on the same distribution line Part Im [I0BV0B * ] is obtained, and by determining the sign of the sum of the obtained imaginary part and the imaginary part calculated by the imaginary part calculation means, a ground fault is detected by the adjacent difference current relay. And determining means for determining whether or not the error occurs in the section with the apparatus.
[0005]
The operation based on the above configuration will be described below.
Hereinafter, voltage V and current I represent vectors.
FIG. 1 is a circuit diagram of a typical ungrounded loop distribution line to which the differential current relay device of the present invention is applied.
This distribution line has a loop shape that passes from the electric station A through the electric stations B and C to return to the original electric station A. Electricity station A is transmitted from a substation.
[0006]
A zero-phase current transformer ZCT is grounded at each electric station A, B, C in each direction. A zero-phase transformer GPT is grounded to the bus.
The distribution line is divided into three sections between the electric stations A and B, between the electric stations B and C, and between the electric stations C and A, which are referred to as section 1, section 2, and section 3, respectively. The earth-to-ground capacity in each section is C1, C2, and C3, respectively.
It is assumed that a ground fault has occurred in one phase of section 1 (referred to as phase a). The ground fault resistance value is written as Rg. Of course, the value of Rg is unknown. The voltage drop in the distribution line is small, and the phase voltages Va, Vb, Vc of the distribution line are assumed to be equal in the loop.
[0007]
Let the transmission currents from the substation be Ia, Ib, Ic. The phase currents flowing from both ends of the section n (n = 1, 2, 3) are Ian, Ibn, Icn; Ian ′, Ibn ′, Icn ′, and the zero phase currents are I0n, I0n ′.
If we focus on section 1,
Ia1 + Ia1 ′ = jωC1Va + Va / Rg,
Ib1 + Ib1 ′ = jωC1Vb,
Ic1 + Ic1 '= jωC1Vc
Holds. If you add the three equations,
3I01 + 3I01 '= jω3C1V0 + Va / Rg (1)
It becomes. If we focus on section 2,
Ia2 + Ia2 '= jωC2Va,
Ib2 + Ib2 '= jωC2Vb,
Ic2 + Ic2 '= jωC2Vc
Holds. If you add the three equations,
3I02 + 3I02 '= jω3C2V0 (2)
It becomes. If we focus on section 3,
Ia3 + Ia3 '= jωC3Va,
Ib3 + Ib3 ′ = jωC3Vb,
Ic3 + Ic3 '= jωC3Vc
Holds. If you add the three equations,
3I03 + 3I03 '= jω3C3V0 (3)
It becomes.
[0008]
Paying attention to the current flowing from substation to electric station A,
Ia = Ia1 + Ia3 ′,
Ib = Ib1 + Ib3 ′,
Ic = Ic1 + Ic3 '
Holds. If you add the three equations, Ia + Ib + Ic = 0 (since the transformer is a Δ winding)
0 = 3I01 + I03 '(4)
It becomes. In addition, in electric station B,
Ia1 ′ + Ia2 = 0,
Ib1 ′ + Ib2 = 0,
Ic1 '+ Ic2 = 0
If we add the three expressions,
3I01 '+ 3I02 = 0 (5)
It becomes. In electrical station C,
Ia2 '+ Ia3 = 0,
Ib2 '+ Ib3 = 0,
Ic2 '+ Ic3 = 0
If we add the three expressions,
3I02 '+ 3I03 = 0 (6)
It becomes.
[0009]
If the above equations (1), (2) and (3) are added, the left side is
3I01 + 3I01 '+ 3I02 + 3I02' + 3I03 + 3I03 '
However, if the equations (4), (5), and (6) are used, this left side becomes zero. Therefore, the formula obtained by adding the formulas (1), (2) and (3) is
0 = jω3 (C1 + C2 + C3) V0 + Va / Rg (7)
It becomes. If this equation is transformed,
Va / Rg = -jω3 (C1 + C2 + C3) V0 (8)
It becomes. Substituting this equation (8) into equation (1),
3I01 + 3I01 '=-jω3 (C2 + C3) V0 (9)
Holds.
[0010]
Looking at the equations (2) and (3), the vector sum of the zero-phase currents at both ends of the section 2 or section 3 where there is no ground fault is obtained by multiplying the zero-phase voltage V0 by the 90 ° rotation vector j. On the other hand, looking at the equation (9), the vector sum of the zero-phase currents at both ends of the section 1 where the ground fault is present is obtained by multiplying the zero-phase voltage V0 by the -90 ° rotation vector -j. That is, it can be seen that the vector sum of the zero-phase currents at both ends in the section has a phase difference on the phase plane depending on the presence or absence of a ground fault in the section.
[0011]
FIG. 2 is a phase plan view based on the zero-phase voltage V0. The vector 3I01 + 3I01 'in the section 1 with the internal accident is in the right half plane, and the vectors 3I02 + 3I02', 3I03 + 3I03 'in the sections 2 and 3 with the external accident. Is in the left half plane.
Therefore, if the phase is determined by obtaining the vector sum of the zero-phase currents at both ends in the section, it is possible to know whether the fault is in the section or in the section outside.
However, this determination requires synchronous sampling of the zero-phase current data at both ends of the section, and correction of the data transmission delay time is also necessary. Therefore, the configuration of the data collection device and the transmission device is complicated and expensive.
[0012]
Therefore, a differential current relay device is proposed in which data collection may be asynchronous sampling and a transmission line is simple.
The complex conjugate zero-phase voltage V0 * of the zero-phase voltage V0 is applied to both sides of the equation (9).
Figure 0003669269
Taking the imaginary part of this equation,
Figure 0003669269
It becomes. Taking the imaginary part by applying the zero-phase voltage V0 * to both sides of the equation (2),
Im [3I02V0 * ] + Im [3I02'V0 * ] = ω3C2 | V0 | 2 (11)
It becomes. Taking the imaginary part by applying the zero-phase voltage V0 * to both sides of the equation (3),
Im [3I03V0 * ] + Im [3I03'V0 * ] = ω3C3 | V0 | 2 (12)
It becomes.
[0013]
The quantities such as Im [3I01V0 * ] on the left side of the equations (10), (11), and (12) are scalar quantities. The left side of these equations is calculated to determine the sign, and if it is positive, it can be determined as an out-of-interval failure, and if negative, it can be determined as an in-interval failure.
According to this method, when sampling is performed at each terminal, synchronization between terminals is not necessary, and calculation can be performed independently for each terminal. In addition, when data is transmitted, correction of transmission time or the like is not required, so that the transmission circuit can be simple and inexpensive.
[0014]
Note that the voltage to be taken as the zero-phase voltage V0. Considering that there is almost no difference in the zero-phase voltage at the time of one-line ground fault at all terminals of the distribution line, the zero-phase voltage is zero-phase change. What is necessary is just to use the zero phase voltage of the electric station in which the flow device ZCT is installed. Specifically, a zero-phase voltage may be obtained from an instrument transformer GPT at an electric station.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 3 is a diagram showing the communication line 2 and the differential current relay device 1 between the electric stations A and B, which are part of the non-grounded loop distribution line shown in FIG.
The inside of the differential current relay device 1 is composed of a voltage converting transformer, a sample-and-hold circuit, an A / D converter, a CPU (Central Processing Unit), various memories such as ROM and RAM, and known heartware such as a modem. ing.
[0016]
In the electric station A, a zero-phase current transformer ZCT for measuring a zero-phase current flowing through the distribution line and an instrument transformer GPT for measuring a bus zero-phase voltage are installed. The ZCT and GPT measurement signals are input to the differential current relay device 1.
ZCT and GPT are also installed in the electric station B, and these measurement signals are input to the differential current relay device 1.
Both differential current relay devices 1 are connected by a wired or wireless transmission line through a modem, and scalar values A and B, which will be described later, are transmitted. Then, the ground fault failure determination in the section is performed by the CPU of each differential current relay device 1. When a ground fault in the section is detected, the differential current relay device 1 issues a trip command and operates a circuit breaker (not shown) installed on the distribution line.
[0017]
FIG. 4 is a flowchart showing a flow of processing for determining a ground fault, which is performed by the CPU of the differential current relay device 1 installed in the electric station A.
First, it is determined whether the zero-phase voltage V0A measured by GPT is equal to or higher than a set value (step S1). If it is equal to or higher than the set value, it can be determined that a ground fault has occurred somewhere in the loop distribution line.
If YES in step S1, A = Im [3I0AV0A * ] is calculated (step S2). Here, I0A is a zero-phase current measured by the ZCT of electric station A. Since the imaginary part is taken, A is a scalar value unrelated to the phase.
[0018]
Next, a scalar value B = Im [3I0BV0B * ] is acquired from the differential current relay device 1 installed at the electric station B (step S3), and A + B is calculated (step S4).
Then, the sign of this A + B is determined. Specifically, it is determined whether or not it is less than −3I0S | V0A | (step S5). Here, I0S is a settling value (minimum outflow current at the time of ground fault) that can be set manually. | V0A | is applied to adjust the unit. | V0A | can be regarded as a substantially constant value. Note that | V0B | may be used instead of | V0A |. This is because | V0A | and | V0B | are substantially equal.
[0019]
If A + B is greater than -I0S | V0A |, it is determined that an out-of-section accident has occurred, and if A + B is less than -I0S | V0A |
FIG. 5 is a flowchart showing a flow of processing for determining a ground fault, which is performed by the CPU of the differential current relay device 1 installed in the electric station B.
Compared with the process of FIG. 4, the measured current and voltage of ZCT and GPT installed at the electric station B are used (steps T1 and T2), A is acquired through the transmission line (step T3), and B + A is − Compared with I0S | V0B | (step T5), the rest is the same as the processing of FIG.
[0020]
Although the embodiments of the present invention have been described above, the embodiments of the present invention are not limited to the above-described embodiments, and various modifications can be made within the scope of the present invention.
[0021]
【The invention's effect】
As described above, according to the differential current relay device of the present invention installed on a non-grounded loop distribution line, it is not necessary to synchronize data collected at each terminal, and a simple and inexpensive transmission circuit is used. can do.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of a typical ungrounded loop distribution line to which a differential current relay device of the present invention is applied.
FIG. 2 is a phase plan view based on a zero-phase voltage V0.
3 is a diagram showing a communication line 2 and a differential current relay device 1 between electric stations A and B, which are part of the non-grounded loop distribution line shown in FIG. 1;
FIG. 4 is a flowchart showing a flow of processing for determining a ground fault, which is performed by the CPU of the differential current relay device 1 installed in the electric station A.
FIG. 5 is a flowchart showing a flow of processing for determining a ground fault, which is performed by the CPU of the differential current relay device 1 installed in the electric station B.
[Explanation of symbols]
1 differential current relay device 2 communication line

Claims (1)

非接地系ループ配電線に設置される差電流継電装置であって、
配電線を流れる零相電流I0を検出する零相電流検出手段と、
零相電圧V0を検出する零相電圧検出手段と、
零相電流I0と、零相電圧V0の複素共役V0*との積の虚数部Im[I0AV0A*]を算出する虚数部算出手段と、
同じ配電線に設置された隣の差電流継電装置より、伝送回線を通して虚数部Im[I0BV0B*]を取得し、この取得された虚数部と、前記虚数部算出手段で算出した虚数部との和の符号を判定することにより、地絡故障が前記隣の差電流継電装置との区間内で発生しているか否かを判定する判定手段とを有することを特徴とする差電流継電装置。
A differential current relay device installed in a non-grounded loop distribution line,
Zero phase current detecting means for detecting zero phase current I0 flowing through the distribution line;
Zero phase voltage detection means for detecting zero phase voltage V0;
An imaginary part calculating means for calculating an imaginary part Im [I0AV0A * ] of a product of the zero-phase current I0 and the complex conjugate V0 * of the zero-phase voltage V0;
The imaginary part Im [I0BV0B * ] is acquired from the adjacent differential current relay installed on the same distribution line through the transmission line, and the acquired imaginary part and the imaginary part calculated by the imaginary part calculating means A differential current relay device comprising: a determination unit configured to determine whether a ground fault has occurred in a section with the adjacent differential current relay device by determining a sign of the sum; .
JP2000376423A 2000-12-11 2000-12-11 Differential current relay Expired - Fee Related JP3669269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000376423A JP3669269B2 (en) 2000-12-11 2000-12-11 Differential current relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000376423A JP3669269B2 (en) 2000-12-11 2000-12-11 Differential current relay

Publications (2)

Publication Number Publication Date
JP2002186165A JP2002186165A (en) 2002-06-28
JP3669269B2 true JP3669269B2 (en) 2005-07-06

Family

ID=18845283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000376423A Expired - Fee Related JP3669269B2 (en) 2000-12-11 2000-12-11 Differential current relay

Country Status (1)

Country Link
JP (1) JP3669269B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103245883A (en) * 2013-04-27 2013-08-14 昆明理工大学 Power distribution network fault circuit selection method based on transient zero-sequence current time-frequency characteristic vectors

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2375525B1 (en) 2010-04-12 2018-02-28 ABB Schweiz AG Method and apparatus for differential protection of an electric connection
CN101813739B (en) * 2010-04-14 2012-01-04 天津大学 Adaptive three-phase symmetric fault phase selecting method for ultra high voltage transmission line
CN101924346A (en) * 2010-09-01 2010-12-22 介国安 Current and zero-sequence difunctional mutual inductor
CN102508116B (en) * 2011-10-26 2013-12-18 南京国电南自电网自动化有限公司 Phase selection method of double-circuit transmission lines on same pole of intelligent substation based on current balance principle
CN102854437B (en) * 2012-08-22 2015-02-11 广东电网公司电力科学研究院 Fault line selection method of low current grounding system using time-frequency atom decomposition theory
CN103308822B (en) * 2013-05-07 2015-06-24 河南理工大学 Small current earth fault line selection method for radial distribution network
CN104035002B (en) * 2014-04-16 2017-02-01 武汉大学 Fault phase selection method using traveling wave inherent frequency and atom decomposition energy entropy
CN104777404B (en) * 2015-04-28 2018-01-12 上海交通大学 Based on differential energy than distribution line fault section location method
CN106771838B (en) * 2016-12-29 2019-09-13 许继集团有限公司 Transformer CT broken string method of discrimination, device and differential protecting method, device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103245883A (en) * 2013-04-27 2013-08-14 昆明理工大学 Power distribution network fault circuit selection method based on transient zero-sequence current time-frequency characteristic vectors
CN103245883B (en) * 2013-04-27 2015-12-02 昆明理工大学 A kind of distribution network fault line selection method based on transient zero-sequence current time-frequency characteristics vector

Also Published As

Publication number Publication date
JP2002186165A (en) 2002-06-28

Similar Documents

Publication Publication Date Title
Ngu et al. A combined impedance and traveling wave based fault location method for multi-terminal transmission lines
JP3669269B2 (en) Differential current relay
RU2540851C2 (en) Method for selection of short-circuited phase and determination of short circuit type
TWI425225B (en) A fault position detection system and method for a power transmission line
KR100350722B1 (en) Apparatus and method for locating fault distance in a power double circuit transmision line
US20150226780A1 (en) Locating Multi-Phase Faults in Ungrounded Power Distribution Systems
EP3564687B1 (en) Determination of power transmission line parameters using asynchronous measurements
WO2010004757A1 (en) Fault locating method and fault locating apparatus
EP1342095B1 (en) Fault location method and device
EP3639337B1 (en) Method and control system for fault direction detection
MX2008009446A (en) Current sensor.
JPH07122650B2 (en) Fault location method
CN109713649B (en) Self-synchronizing resistor differential protection method for direct current boosting convergence access system
Bo et al. A new directional relay based on the measurement of fault generated current transients
JPH07270481A (en) Fault point locating method
JPH10132890A (en) Method and device for locating failure point
JP4921246B2 (en) Ground fault distance relay
CN112698145B (en) Fault distance measuring method and device suitable for power transmission line containing series reactor
Voloh et al. Fault locator based on line current differential relays synchronized measurements
JPH08101244A (en) Method for location of fault point in transmission line
JPH11344525A (en) Fault point plotting device
JP4564199B2 (en) Accident point locator
JP2818248B2 (en) Fault location device
Li et al. Analysis and verification of a novel current comparison pilot protection
Sreelekha et al. Comparative Study of WAMS-Based Transmission Line Fault Detection and Protection Techniques

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080422

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees