JP3669164B2 - Manufacturing method of solid electrolytic capacitor - Google Patents

Manufacturing method of solid electrolytic capacitor Download PDF

Info

Publication number
JP3669164B2
JP3669164B2 JP21522998A JP21522998A JP3669164B2 JP 3669164 B2 JP3669164 B2 JP 3669164B2 JP 21522998 A JP21522998 A JP 21522998A JP 21522998 A JP21522998 A JP 21522998A JP 3669164 B2 JP3669164 B2 JP 3669164B2
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
solid electrolytic
anode body
impregnated
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21522998A
Other languages
Japanese (ja)
Other versions
JP2000049050A (en
Inventor
博司 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP21522998A priority Critical patent/JP3669164B2/en
Publication of JP2000049050A publication Critical patent/JP2000049050A/en
Application granted granted Critical
Publication of JP3669164B2 publication Critical patent/JP3669164B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は複素環式化合物および/またはその誘導体の化学酸化重合により形成される導電性高分子を固体電解質とする固体電解コンデンサの製造方法に関するものである。
【0002】
【従来の技術】
近年、電子機器の電源回路の高周波化に伴い、すべての電子部品に対して優れた高周波特性が求められている。固体電解コンデンサについても例外ではなく、これを実現するために、陽極体の表面状態、酸化皮膜の形成方法、固体電解質の改善、陰極層の表面状態、コンデンサ素子の構造などあらゆる角度から検討、改善がなされており、中でも固体電解質の改善については新材料の開発が進み、最近大いに脚光を浴びつつある技術の一つである。
【0003】
図6(a),(b)はこの種の固体電解コンデンサを構成する固体電解コンデンサ素子の構成を示した一部切欠斜視図であり、陽極体の材料としてアルミニウムやタンタルを用い、電解質として無機の固体電解質である二酸化マンガンや二酸化鉛を用いたものであり、同図にも示すように内部端子61を備え、かつ粗面化により実質の表面積を大きくした陽極箔あるいは陽極板または微粉末を焼結した陽極体62の表面に陽極酸化により誘電体酸化皮膜63を形成した後、硝酸マンガンなどの水溶液を含浸し、熱分解反応を利用して固体電解質64を焼き付けた後、コロイダルグラファイト65、銀塗料66を被覆して陰極層を形成することにより構成されている。
【0004】
また、図7はこのような固体電解コンデンサ素子の構成を模擬的に示した断面図である。
【0005】
このように構成された固体電解コンデンサ素子を用いた固体電解コンデンサは、その電解質の特徴から電解液を用いるアルミ電解コンデンサに比べて温度依存性が小さく、高周波領域でのレジスタンスが低いという利点を有するが、反面、耐電圧が低くかつ生産工法の制約から生産性でやや不利であるという面も抱えているものであった。
【0006】
さらに、この固体電解質64の低レジスタンス化を追求したものとしては、電荷移動錯体であるTCNQ塩を利用した、通称、有機半導体コンデンサ、複素環式化合物であるピロール、チオフェン、フランなどを重合して導電化した導電性高分子を利用した、通称、機能性高分子コンデンサなどが実用化されている。
【0007】
この中でも導電性高分子はその固有抵抗が著しく低いという特徴を有し、固体電解コンデンサの低レジスタンス化に有力な固体電解質ではあるが、多孔質弁金属よりなる陽極体内部の誘電体酸化皮膜に対して均一、かつ緻密で密着性に優れた被覆膜を形成するには極めて大きな制約を抱えているものであり、この点に関しては、例えば特公平4−74853号公報では、本来電解酸化重合により形成される導電性高分子膜は、選ばれた条件下で極めて緻密で、かつ電導性に優れたものを与えるが、その成膜を細孔の内部にまで形成することが極めて困難であるため、化学酸化重合により導電性高分子膜を細孔の内部にまで形成した後、これを陽極として電解酸化重合を行うという方法が開示されている。
【0008】
【発明が解決しようとする課題】
しかしながら上記従来の製造方法のように、多孔質体の内部にまで導電性高分子膜を形成するのに有利であるということから化学酸化重合を行うということは、一つの大きな欠点を補う製造方法ではあるが、陽極体62の細孔部の誘電体酸化皮膜63の表面は、浸漬する液体の表面張力と誘電体酸化皮膜63の表面の濡れ性により大きな影響を受け、細孔の内部まで均一かつ緻密で密着性に優れた導電性高分子膜を被覆形成することは極めて困難である。
【0009】
また、化学酸化重合は本質的に酸化剤と複素環式化合物および/またはその誘導体が会合したところで酸化重合反応を起こして高分子化することによって導電性高分子膜を形成するものであるから、その形成条件、方法により、形成場所、電導度、密着性、膜密度などが大きく左右される。このことが電解質そのものの低い固有抵抗と裏腹に、実際に得られる固体電解コンデンサの電気特性のロットバラツキの一因となっているという課題があった。
【0010】
従って、誘電体酸化皮膜63の表面に導電性高分子を形成するにあたり、酸化剤と複素環式化合物および/またはその誘導体の溶液は、順次陽極体62の細孔部より陽極体62の外層部で会合させるようにするのが望ましいが、これも一般的な方法では陽極体62の外層部から会合が起こって導電性高分子が形成されることが多く、固体電解コンデンサの好ましい電気特性の確保のために大きな制約を負っているのが実態であった。
【0011】
本発明はこのような従来の低レジスタンス化に有力な固体電解質である導電性高分子の被覆膜形成に係わる課題を解決し、誘電体酸化皮膜の表面に導電性高分子を均一に被覆成形することにより、高周波領域で低インピーダンスを要望される製品に適用することができる固体電解コンデンサの製造方法を提供することを目的とするものである。
【0012】
【課題を解決するための手段】
上記課題を解決するために本発明の固体電解コンデンサの製造方法は、多孔質弁金属よりなる陽極体に形成した誘電体酸化皮膜上に、複素環式化合物および/またはその誘導体の酸化電位より高い電極電位を有する酸化剤溶液を含浸し、これを乾燥した後、この乾燥を終えた陽極体を少なくとも上記複素環式化合物および/またはその誘導体を水100重量部に対して1重量部以内を含んだ希薄溶液に浸漬含浸した後引き上げて化学酸化重合させることにより導電性高分子からなる固体電解質を形成し、この固体電解質上に陰極層を形成するようにしたものである。
【0013】
この製造方法により、酸化剤と複素環式化合物および/またはその誘導体の溶液が順次容易に陽極体の細孔部より外層部で会合できるようになり、かつ上記希薄溶液中への酸化剤の逸散を最小限に抑えられるため、固体電解質である導電性高分子を効率よく誘電体酸化皮膜の表面に均一に被覆形成することができる。
【0014】
【発明の実施の形態】
本発明の請求項1に記載の発明は、多孔質弁金属よりなる陽極体に形成した誘電体酸化皮膜上に、複素環式化合物および/またはその誘導体の酸化電位より高い電極電位を有する酸化剤溶液を含浸し、これを乾燥した後、この乾燥を終えた陽極体を少なくとも上記複素環式化合物および/またはその誘導体を水100重量部に対して1重量部以内を含み、pHを少なくともpH4以下の酸性に調整した希薄溶液に浸漬含浸した後引き上げて化学酸化重合させることにより導電性高分子からなる固体電解質を形成し、この固体電解質上に陰極層を形成するようにしたもので、この製造方法によれば、乾燥により陽極体の細孔部の誘電体酸化皮膜の表面から陽極体の外層部の誘電体酸化皮膜の表面に至るまで均一に酸化剤を被覆することができ、かつ希薄溶液に浸漬された時には、その希薄溶液が速やかに陽極体の細孔部の誘電体酸化皮膜の表面まで到達して導電性高分子からなる固体電解質を形成し、また複素環式化合物およびその誘導体を水100重量部に対して1重量部以内を含んだ希薄溶液は、その低濃度の故に穏やかな化学酸化重合反応を起こすため、陽極体の細孔部の空孔部を栓塞することなく徐々に固体電解質が堆積形成されるので、陽極体の細孔部の誘電体酸化皮膜の表面まで効率よく電気性能に優れた固体電解コンデンサを得ることができるという作用を有する。また希薄溶液に短時間浸漬した後ただちに引き上げるので溶液中への酸化剤の逸散を最小限に抑えられるため、固体電解質の堆積形成効率をより高めることができるという作用を有する。
また、pHを少なくともpH4以下の酸性に調整することにより、化学酸化重合反応と同時に容易にドーパントの取り込みが行われ、電気伝導度の高い固体電解質が堆積形成されるので、より電気性能に優れた固体電解コンデンサを得ることができるという作用を有する。
【0015】
請求項2に記載の発明は、多孔質弁金属よりなる陽極体に形成した誘電体酸化皮膜上に、複素環式化合物および/またはその誘導体の酸化電位より高い電極電位を有する酸化剤溶液を含浸し、これを乾燥した後、この乾燥を終えた陽極体を少なくとも上記複素環式化合物および/またはその誘導体を水100重量部に対して1重量部以内を含みpHを少なくともpH4以下の酸性に調整した希薄溶液に浸漬含浸した後引き上げて化学酸化重合させ、これを乾燥した後、上記希薄溶液に再度浸漬含浸した後引き上げて化学酸化重合させる工程を複数回繰り返すことにより導電性高分子からなる固体電解質を形成し、この固体電解質上に陰極層を形成するようにしたもので、この製造方法によれば、溶液中への酸化剤の逸散を最小限に抑えられると同時に有効に作用させることが可能となり、段階的に陽極体の細孔部の誘電体酸化皮膜の表面から陽極体の外層部の誘電体酸化皮膜の表面にいたるまで均一に導電性高分子からなる固体電解質を形成することができるので、より容易に電気特性に優れた固体電解コンデンサを得ることができるという作用を有する。
また、pHを少なくともpH4以下の酸性に調整することにより、化学酸化重合反応と同時に容易にドーパントの取り込みが行われ、電気伝導度の高い固体電解質が堆積形成されるので、より電気性能に優れた固体電解コンデンサを得ることができるという作用を有する。
【0016】
請求項3に記載の発明は、請求項1または2に記載の発明において、乾燥を終えた陽極体を希薄溶液に浸漬含浸する際に、上記希薄溶液の液温を10℃以下で行うようにしたもので、この製造方法によれば、その低濃度と低温度の故にわずかな酸化剤が溶け込んできた場合でも化学酸化重合反応が大幅に抑制されるため、上記希薄溶液を繰り返し使用することが可能となるので、部材を効率よく活用できるという作用を有する。
【0017】
請求項4に記載の発明は、請求項1〜3のいずれか一つに記載の発明において、乾燥を終えた陽極体を希薄溶液に浸漬含浸した後引き上げて化学酸化重合させる際に、上記化学酸化重合の雰囲気温度を10℃以下で行うようにしたもので、この製造方法によれば、その低濃度と低温度の故に一層化学酸化重合反応が抑制されるため、陽極体の細孔部の空孔部を栓塞することなく徐々に固体電解質が堆積形成されるので、陽極体の細孔部の誘電体酸化皮膜の表面までより効率よく電気性能に優れた固体電解コンデンサを得ることができるという作用を有する。
【0019】
請求項5に記載の発明は、希薄溶液がナフタレンスルホン酸および/またはその誘導体を含み、かつそのpHを硫酸を用いて調整するようにしたもので、この製造方法によれば、化学酸化重合反応と同時に選択的に効率よく所望のドーパントの取り込みが行われ、電気伝導度も高く耐熱性に優れた固体電解質が堆積形成されるので、より電気性能の安定性に優れた固体電解コンデンサを得ることができるという作用を有する。
【0020】
以下、本発明の実施の形態を添付図面に基づいて説明する。
(実施の形態1)
以下、本発明の第1の実施の形態について説明する。
【0021】
まず、図1(a),(b)に示すように、内部端子11を有し、タンタル粉末を加圧、成形、真空焼結して得られた陽極となる厚み1.4mm、幅3.0mm、長さ3.8mmの陽極体12を、5%の燐酸水溶液中で20Vの陽極酸化を行って誘電体酸化皮膜13を形成した。
【0022】
次に、これを32重量%の硫酸第2鉄、0.7重量%のナフタレンスルホン酸ナトリウム、10.5重量%のエチルアルコールを主剤とする酸化剤水溶液に10分間含浸した後、105℃で10分間乾燥し、この乾燥を終えた陽極体を硫酸でpH2に調整された0.5重量%のピロールモノマー、2重量%のナフタレンスルホン酸、15重量%のエチルアルコールを主剤とする希薄な5℃のモノマー水溶液に10秒間浸漬してただちに引き上げ、そのまま雰囲気温度5℃のもので化学酸化重合を行った。
【0023】
このような化学酸化重合を5回繰り返し実施して導電性高分子固体電解質14を形成した。その後は従来の固体電解コンデンサの製造方法と同様にして、コロイダルグラファイト15、銀塗料16を塗布して固体電解コンデンサ素子を作製した。
【0024】
なお、図2は本実施の形態による製造プロセス(1)を示したものである。
(実施の形態2)
以下、本発明の第2の実施の形態について説明する。
【0025】
本実施の形態は陽極体12に形成した誘電体酸化皮膜13の外表面に形成する導電性高分子固体電解質14を、上記第1の実施の形態における酸化剤水溶液を含浸し乾燥した後、希薄な5℃のモノマー水溶液に10秒間浸漬してただちに引き上げ、そのまま雰囲気温度5℃のもとで化学酸化重合を行い、これを乾燥後再び希薄なモノマー水溶液に浸漬し乾燥を行う工程を4回繰り返した。このような化学酸化重合を5回繰り返し実施して導電性高分子固体電解質14を形成したものであり、これ以外は上記第1の実施の形態と同様であるため、その詳細な説明は省略する。
【0026】
なお、図3は本実施の形態による製造プロセス(2)を示したものである。
(実施の形態3)
以下、本発明の第3の実施の形態について説明する。
【0027】
本実施の形態は陽極体12に形成した誘電体酸化皮膜13の外表面に形成する導電性高分子固体電解質14を、上記第1の実施の形態における化学酸化重合の雰囲気温度を10℃,15℃,25℃と変化して化学酸化重合を5回繰り返して実施して各々形成したものであり、これ以外は上記第1の実施の形態と同様であるため、その詳細な説明は省略する。
【0028】
(実施の形態4)
以下、本発明の第4の実施の形態について説明する。
【0029】
本実施の形態は陽極体12に形成した誘電体酸化皮膜13の外表面に形成する導電性高分子固体電解質14を、上記第1の実施の形態におけるモノマー水溶液のpHを1,3,4,5と変化して化学酸化重合をそれぞれ5回繰り返して実施して各々形成したものであり、これ以外は上記第1の実施の形態と同様であるため、その詳細な説明は省略する。
【0030】
(比較例)
図4(a),(b)に示すように、内部端子41を有し、タンタル粉末を加圧、成形、真空焼結して得られた陽極となる厚み1.4mm、幅3.0mm、長さ3.8mmの陽極体42を、5%の燐酸水溶液中で20Vの陽極酸化を行って誘電体酸化皮膜43を形成した。次に、これを5重量%のピロールモノマー、2.5重量%のナフタレンスルホン酸、15重量%のエチルアルコールを主剤とする5℃のモノマー水溶液に10分間含浸した後、3重量%の硫酸第2鉄、1.5重量%のナフタレンスルホン酸ナトリウム、15重量%のエチルアルコールを主剤とする酸化剤水溶液に10分間浸漬して化学酸化重合を行った。このような化学酸化重合を5回繰り返し実施したものと、10回繰り返して実施したものとで各々導電性高分子固体電解質44を形成した。その後は従来の固体電解コンデンサの製造方法と同様にして、コロイダルグラファイト45、銀塗料46を塗布して固体電解コンデンサ素子を作製した。
【0031】
なお、図5は比較例の製造プロセスを示したものである。
このようにして作製した本発明の実施の形態1〜4と比較例により得られたタンタル固体電解コンデンサ素子のそれぞれについて測定した基本的な電気性能(静電容量、損失角の正接、漏れ電流、周波数100kHzのインピーダンス)を(表1)に示す。
【0032】
【表1】

Figure 0003669164
【0033】
(表1)の本発明の実施の形態1と実施の形態2より明らかなように、乾燥後再び希薄なモノマー水溶液に浸漬し乾燥を行う工程を4回繰り返すことにより、溶液中への酸化剤の逸散を最小限に抑えられると同時に、より有効に作用させることが可能となり、段階的かつ効率的に陽極体12の細孔部の誘電体酸化皮膜13の表面から陽極体12の外層部の誘電体酸化皮膜13の表面に至るまで均一に導電性高分子固体電解質14を形成することができると言える。また、比較例と実施の形態1と実施の形態2の対比からも明らかなように、本発明では比較例よりおおよそ2〜2.5倍ほど効率の良い導電性高分子固体電解質14の形成がなされていると言える。
【0034】
また、(表1)の本発明の実施の形態1と実施の形態3のインピーダンスの値より明らかなように、化学酸化重合の雰囲気温度が高くなると徐々に導電性高分子固体電解質14の電気伝導度が低下する。また、低温度の方が穏やかな化学酸化重合反応を起こすため、陽極体12の細孔部の空孔部を栓塞することなく徐々に固体電解質が堆積形成されるので、バラツキも抑制され安定した電気性能が得られる。加えて、モノマー液を低温度にすることはモノマー水溶液からの複素環式化合物および/またはその誘導体の揮散も抑制し、かつわずかな酸化剤が溶け込んできた場合でも化学酸化重合反応が大幅に抑制されることになるので、部材の有効活用面、安全衛生面からも好ましい。従って、少なくとも15℃以内、好ましくは10℃以内に化学酸化重合温度を管理するべきと言える。
【0035】
また、(表1)の本発明の実施の形態1と実施の形態4のインピーダンスの値より明らかなように、化学酸化重合のpHが4以下の酸性環境では化学酸化重合反応と同時に、容易かつ選択的に効率よく所望のドーパントの取り込みが行われて電気伝導度の高い固体電解質が堆積形成されるが、それよりアルカリ側では急激に電気伝導度の低い固体電解質しか得られなくなる。従って、化学酸化重合のpHは4以下の酸性環境に保持する必要があると言える。
【0036】
なお、上記本発明の実施の形態1〜4においては陽極体12にタンタル焼結体を用いた構成としたが、本発明はこれに限定されるものではなく、多孔質弁金属であればすべて同様に適用されるものである。また、溶液の調製には一般的なものとして水溶液を用いたが、これも同様に、用いる複素環式化合物およびその誘導体、ベンゼン、ナフタレンおよびその誘導体などの溶解を高めるための溶媒を、単一または混合して用いても同様の効果が期待できるものであることは言うまでもない。
【0037】
【発明の効果】
以上のように本発明の固体電解コンデンサの製造方法によれば、固体電解質である導電性高分子を誘電体酸化皮膜の表面に形成するにあたっては、酸化剤と複素環式化合物および/またはその誘導体の溶液が順次容易に陽極体の細孔部より外層部で会合できるようにするために、複素環式化合物および/またはその誘導体の酸化電位より高い電極電位を有する酸化剤溶液を含浸し、これを乾燥した後、この乾燥を終えた陽極体を少なくとも複素環式化合物および/またはその誘導体を水100重量部に対して1重量部以内を含んだ希薄溶液に浸漬した後引き上げて化学酸化重合させることにより導電性高分子固体電解質を形成するようにしているので、乾燥により陽極体の細孔部の誘電体酸化皮膜の表面から陽極体の外層部の誘電体酸化皮膜の表面に至るまで均一に酸化剤を被覆することができ、かつ希薄溶液に浸漬された時には、その希薄溶液が速やかに陽極体の細孔部の誘電体酸化皮膜の表面まで到達して導電性高分子固体電解質を形成することができる。
【0038】
また、複素環式化合物およびその誘導体を水100重量部に対して1重量部以内を含んだ希薄溶液は、その低濃度の故に穏やかな化学酸化重合反応を起こすため、陽極体の細孔部の空孔部を栓塞することなく徐々に堆積形成される。さらに、高濃度の酸化剤溶液の適用により従来の一般的な化学酸化重合に比べておおよそ2〜2.5倍ほど効率の良い導電性高分子固体電解質形成がなされるが、さらに酸化剤を含浸し乾燥してからモノマー液の含浸、引き上げ、乾燥を繰り返す化学酸化重合方法では、導電性高分子固体電解質の電気伝導度などの性能を変えることなく形成効率を加速することができるので、得られる固体電解コンデンサ素子は極めて安定で優れた電気特性および信頼性を有すると同時に、従来の同製造方法に比べて大幅に生産性向上が図れるものである。
【図面の簡単な説明】
【図1】(a),(b)本発明の一実施の形態による固体電解コンデンサの製造方法により得られた固体電解コンデンサ素子を示した一部切欠斜視図
【図2】同固体電解コンデンサ素子の製造工程を示した製造工程図(1)
【図3】同固体電解コンデンサ素子の製造工程を示した製造工程図(2)
【図4】(a),(b)比較例により得られた固体電解コンデンサ素子を示した一部切欠斜視図
【図5】比較例の固体電解コンデンサ素子の製造工程を示した製造工程図
【図6】(a),(b)従来の固体電解コンデンサの製造方法により得られた固体電解コンデンサ素子を示した一部切欠斜視図
【図7】従来の固体電解コンデンサの構成を模擬的に示した断面図
【符号の説明】
11 内部端子
12 陽極体
13 誘電体酸化皮膜
14 導電性高分子固体電解質
15 コロイダルグラファイト
16 銀塗料[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a solid electrolytic capacitor using a conductive polymer formed by chemical oxidative polymerization of a heterocyclic compound and / or a derivative thereof as a solid electrolyte.
[0002]
[Prior art]
In recent years, with the increase in the frequency of power supply circuits of electronic devices, excellent high frequency characteristics are required for all electronic components. Solid electrolytic capacitors are no exception, and in order to achieve this, we have studied and improved from all angles, including the anode surface condition, oxide film formation method, solid electrolyte improvement, cathode layer surface condition, and capacitor element structure. In particular, the improvement of solid electrolytes is one of the technologies that are attracting much attention recently because of the development of new materials.
[0003]
FIGS. 6 (a) and 6 (b) are partially cutaway perspective views showing the structure of a solid electrolytic capacitor element constituting this type of solid electrolytic capacitor, in which aluminum or tantalum is used as the material of the anode body, and inorganic is used as the electrolyte. As shown in the figure, an anode foil or anode plate or fine powder having an internal terminal 61 and having a substantial surface area increased by roughening is used. After the dielectric oxide film 63 is formed on the surface of the sintered anode body 62 by anodic oxidation, it is impregnated with an aqueous solution such as manganese nitrate, and the solid electrolyte 64 is baked using a thermal decomposition reaction. The cathode coating layer is formed by covering the silver paint 66.
[0004]
FIG. 7 is a cross-sectional view schematically showing the configuration of such a solid electrolytic capacitor element.
[0005]
The solid electrolytic capacitor using the solid electrolytic capacitor element configured as described above has the advantages that the temperature dependency is small and the resistance in the high frequency region is low compared to the aluminum electrolytic capacitor using the electrolytic solution due to the characteristics of the electrolyte. However, on the other hand, it has a problem that the withstand voltage is low and the productivity is somewhat disadvantageous due to the limitations of the production method.
[0006]
Furthermore, the pursuit of low resistance of the solid electrolyte 64 is to polymerize pyrrole, thiophene, furan, etc., commonly known as organic semiconductor capacitors, heterocyclic compounds using TCNQ salts that are charge transfer complexes. A so-called functional polymer capacitor using a conductive polymer made conductive has been put into practical use.
[0007]
Among these, conductive polymers have the characteristic that their specific resistance is extremely low, and they are solid electrolytes that are effective in reducing the resistance of solid electrolytic capacitors. However, they are used as dielectric oxide films inside anode bodies made of porous valve metals. On the other hand, it is extremely difficult to form a coating film that is uniform, dense, and excellent in adhesiveness. In this regard, for example, Japanese Patent Publication No. 4-74853 discloses an electrolytic oxidation polymerization. The conductive polymer film formed by the method provides an extremely dense and excellent conductive material under selected conditions, but it is extremely difficult to form the film into the pores. Therefore, a method is disclosed in which after the conductive polymer film is formed to the inside of the pores by chemical oxidative polymerization, electrolytic oxidative polymerization is performed using this as the anode.
[0008]
[Problems to be solved by the invention]
However, as in the conventional manufacturing method described above, the chemical oxidation polymerization is advantageous because it is advantageous for forming a conductive polymer film inside the porous body. However, the surface of the dielectric oxide film 63 in the pores of the anode body 62 is greatly affected by the surface tension of the liquid to be immersed and the wettability of the surface of the dielectric oxide film 63, and uniform to the inside of the pores. In addition, it is extremely difficult to form a dense conductive polymer film having excellent adhesion.
[0009]
In addition, chemical oxidative polymerization essentially forms a conductive polymer film by causing an oxidative polymerization reaction to polymerize when an oxidant and a heterocyclic compound and / or a derivative thereof are associated with each other. The formation location, conductivity, adhesion, film density, and the like greatly depend on the formation conditions and method. Contrary to the low specific resistance of the electrolyte itself, there is a problem that this contributes to lot variation in the electrical characteristics of the solid electrolytic capacitor actually obtained.
[0010]
Therefore, in forming the conductive polymer on the surface of the dielectric oxide film 63, the solution of the oxidizing agent and the heterocyclic compound and / or the derivative thereof is sequentially applied from the pores of the anode body 62 to the outer layer portion of the anode body 62. However, in general methods, association often occurs from the outer layer portion of the anode body 62 to form a conductive polymer, so that preferable electrical characteristics of the solid electrolytic capacitor are ensured. It was the actual situation that had a big restriction for.
[0011]
The present invention solves the problems associated with the conventional coating of conductive polymer, which is a solid electrolyte effective in reducing resistance, and uniformly coats conductive polymer on the surface of the dielectric oxide film. Thus, an object of the present invention is to provide a method of manufacturing a solid electrolytic capacitor that can be applied to a product that requires low impedance in a high frequency region.
[0012]
[Means for Solving the Problems]
In order to solve the above problems, the method for producing a solid electrolytic capacitor of the present invention has a higher oxidation potential of a heterocyclic compound and / or its derivative on a dielectric oxide film formed on an anode body made of a porous valve metal. After impregnating with an oxidant solution having an electrode potential and drying it, the dried anode body contains at least 1 part by weight of the above heterocyclic compound and / or its derivative with respect to 100 parts by weight of water. A solid electrolyte made of a conductive polymer is formed by dipping and impregnating in a dilute solution and then pulled up and chemically oxidized to form a cathode layer on the solid electrolyte.
[0013]
By this production method, the solution of the oxidant and the heterocyclic compound and / or the derivative thereof can be easily and sequentially associated with the outer layer portion from the pore portion of the anode body, and the oxidant is removed from the dilute solution. Since the dispersion can be minimized, the conductive polymer that is a solid electrolyte can be efficiently coated uniformly on the surface of the dielectric oxide film.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
According to the first aspect of the present invention, there is provided an oxidizing agent having an electrode potential higher than that of a heterocyclic compound and / or a derivative thereof on a dielectric oxide film formed on an anode body made of a porous valve metal. the solution was impregnated were dried, viewed contains within one part by weight with respect to at least the heterocyclic compound and / or 100 parts by weight of water derivatives anode body having been subjected to the drying, the pH of at least pH4 A solid electrolyte made of a conductive polymer is formed by immersing and impregnating in a dilute solution adjusted to the following acidity, followed by chemical oxidative polymerization, and a cathode layer is formed on the solid electrolyte. According to the manufacturing method, it is possible to uniformly coat the oxidizing agent from the surface of the dielectric oxide film in the pores of the anode body to the surface of the dielectric oxide film in the outer layer part of the anode body by drying, When immersed in a dilute solution, the dilute solution quickly reaches the surface of the dielectric oxide film in the pores of the anode body to form a solid electrolyte composed of a conductive polymer, and the heterocyclic compound and Since a dilute solution containing the derivative within 1 part by weight with respect to 100 parts by weight of water causes a mild chemical oxidative polymerization reaction due to its low concentration, the pore part of the pore part of the anode body is plugged. Since the solid electrolyte is gradually deposited and formed, the solid electrolytic capacitor having an excellent electric performance can be obtained efficiently up to the surface of the dielectric oxide film in the pores of the anode body. In addition, since it is pulled up immediately after being immersed in a dilute solution for a short time, the oxidant can be prevented from escaping into the solution to the minimum, so that the deposit formation efficiency of the solid electrolyte can be further increased.
In addition, by adjusting the pH to at least pH 4 or less, the dopant is easily taken in simultaneously with the chemical oxidative polymerization reaction, and a solid electrolyte with high electrical conductivity is deposited and formed, so that the electrical performance is more excellent. It has the effect | action that a solid electrolytic capacitor can be obtained.
[0015]
The invention according to claim 2 impregnates a dielectric oxide film formed on an anode body made of a porous valve metal with an oxidant solution having an electrode potential higher than the oxidation potential of the heterocyclic compound and / or its derivative. Then, after drying this, the dried anode body is adjusted to an acidity containing at least the above heterocyclic compound and / or its derivative within 1 part by weight with respect to 100 parts by weight of water and at least pH 4 or less. A solid composed of a conductive polymer by repeating the steps of dipping and impregnating the diluted solution and then pulling it up to cause chemical oxidative polymerization, drying it, and then dipping and impregnating it again into the diluted solution and then pulling up and chemically oxidatively polymerizing the solution. An electrolyte is formed, and a cathode layer is formed on the solid electrolyte. According to this manufacturing method, dissipation of the oxidant into the solution can be minimized. It is possible to act effectively at the same time, and it is composed of a conductive polymer uniformly stepwise from the surface of the dielectric oxide film in the pores of the anode body to the surface of the dielectric oxide film in the outer layer part of the anode body. Since the solid electrolyte can be formed, the solid electrolytic capacitor having excellent electric characteristics can be obtained more easily.
In addition, by adjusting the pH to at least pH 4 or less, the dopant is easily taken in simultaneously with the chemical oxidative polymerization reaction, and a solid electrolyte with high electrical conductivity is deposited and formed, so that the electrical performance is more excellent. It has the effect | action that a solid electrolytic capacitor can be obtained.
[0016]
According to a third aspect of the present invention, in the first or second aspect of the present invention, when the dried anode body is immersed and impregnated in a dilute solution, the liquid temperature of the dilute solution is set to 10 ° C. or less. Therefore, according to this production method, the chemical oxidative polymerization reaction is greatly suppressed even when a small amount of oxidant has dissolved due to its low concentration and low temperature, so that the dilute solution can be used repeatedly. Since it becomes possible, it has the effect | action that a member can be utilized efficiently.
[0017]
The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein when the anode body which has been dried is immersed and impregnated in a dilute solution and then pulled up and subjected to chemical oxidative polymerization. The atmospheric temperature of the oxidation polymerization is performed at 10 ° C. or less. According to this manufacturing method, the chemical oxidation polymerization reaction is further suppressed due to the low concentration and the low temperature. Since the solid electrolyte is gradually formed without plugging the pores, it is possible to obtain a solid electrolytic capacitor having more excellent electric performance more efficiently up to the surface of the dielectric oxide film in the pores of the anode body. Has an effect.
[0019]
The invention according to claim 5 is such that the dilute solution contains naphthalenesulfonic acid and / or a derivative thereof, and the pH thereof is adjusted using sulfuric acid. According to this production method, the chemical oxidative polymerization reaction is performed. At the same time, the desired dopant is selectively and efficiently incorporated, and a solid electrolyte with high electrical conductivity and excellent heat resistance is deposited and formed, so that a solid electrolytic capacitor with more excellent electrical performance can be obtained. Has the effect of being able to
[0020]
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
(Embodiment 1)
Hereinafter, a first embodiment of the present invention will be described.
[0021]
First, as shown in FIGS. 1 (a) and 1 (b), an internal terminal 11 is provided, and a thickness of 1.4 mm and a width of an anode obtained by pressurizing, molding and vacuum sintering tantalum powder. An anode body 12 having a length of 0 mm and a length of 3.8 mm was anodized at 20 V in a 5% phosphoric acid aqueous solution to form a dielectric oxide film 13.
[0022]
Next, this was impregnated for 10 minutes with an oxidizing agent aqueous solution mainly composed of 32% by weight ferric sulfate, 0.7% by weight sodium naphthalenesulfonate, and 10.5% by weight ethyl alcohol, and then at 105 ° C. After drying for 10 minutes, the dried anode body was diluted with 0.5% by weight of pyrrole monomer adjusted to pH 2 with sulfuric acid, 2% by weight naphthalenesulfonic acid and 15% by weight ethyl alcohol. Immediately after being immersed in a monomer aqueous solution at 10 ° C. for 10 seconds, it was pulled up and subjected to chemical oxidative polymerization at an ambient temperature of 5 ° C. as it was.
[0023]
Such chemical oxidative polymerization was repeated 5 times to form a conductive polymer solid electrolyte 14. Thereafter, in the same manner as in the conventional method for producing a solid electrolytic capacitor, colloidal graphite 15 and silver paint 16 were applied to produce a solid electrolytic capacitor element.
[0024]
FIG. 2 shows a manufacturing process (1) according to this embodiment.
(Embodiment 2)
Hereinafter, a second embodiment of the present invention will be described.
[0025]
In the present embodiment, the conductive polymer solid electrolyte 14 formed on the outer surface of the dielectric oxide film 13 formed on the anode body 12 is impregnated with the aqueous oxidizing agent solution in the first embodiment and dried, and then diluted. Then, it was immediately immersed in a 5 ° C monomer aqueous solution for 10 seconds, immediately pulled up, subjected to chemical oxidative polymerization at an ambient temperature of 5 ° C, dried, then immersed in a dilute monomer aqueous solution and dried four times. It was. The chemical oxidative polymerization is repeated 5 times to form the conductive polymer solid electrolyte 14, and the rest is the same as in the first embodiment, and detailed description thereof is omitted. .
[0026]
FIG. 3 shows a manufacturing process (2) according to the present embodiment.
(Embodiment 3)
Hereinafter, a third embodiment of the present invention will be described.
[0027]
In the present embodiment, the conductive polymer solid electrolyte 14 formed on the outer surface of the dielectric oxide film 13 formed on the anode body 12 is set to have an atmospheric temperature of 10 ° C. and 15 ° C. in the chemical oxidation polymerization in the first embodiment. The temperature was changed to ℃ and 25 ℃, and the chemical oxidative polymerization was repeated 5 times to form each. Except for this, it was the same as in the first embodiment, and detailed description thereof will be omitted.
[0028]
(Embodiment 4)
Hereinafter, a fourth embodiment of the present invention will be described.
[0029]
In the present embodiment, the conductive polymer solid electrolyte 14 formed on the outer surface of the dielectric oxide film 13 formed on the anode body 12 is used, and the pH of the aqueous monomer solution in the first embodiment is set to 1,3,4,4. The chemical oxidative polymerization was repeated 5 times, and each was formed, and the rest was the same as in the first embodiment, and detailed description thereof will be omitted.
[0030]
(Comparative example)
As shown in FIGS. 4 (a) and 4 (b), it has an internal terminal 41 and has a thickness of 1.4mm, a width of 3.0mm, which becomes an anode obtained by pressurizing, molding, and vacuum sintering tantalum powder. The anode body 42 having a length of 3.8 mm was anodized at 20 V in a 5% phosphoric acid aqueous solution to form a dielectric oxide film 43. Next, this was impregnated for 10 minutes in an aqueous monomer solution at 5 ° C. containing 5% by weight of pyrrole monomer, 2.5% by weight of naphthalene sulfonic acid, and 15% by weight of ethyl alcohol as the main components, and then 3% by weight of sulfuric acid. Chemical oxidative polymerization was carried out by immersing in an oxidizing agent aqueous solution mainly composed of 2 iron, 1.5% by weight sodium naphthalenesulfonate, and 15% by weight ethyl alcohol. A conductive polymer solid electrolyte 44 was formed by repeating the chemical oxidation polymerization 5 times and repeating the chemical oxidation polymerization 10 times. Thereafter, in the same manner as in the conventional method for producing a solid electrolytic capacitor, a colloidal graphite 45 and a silver paint 46 were applied to produce a solid electrolytic capacitor element.
[0031]
FIG. 5 shows the manufacturing process of the comparative example.
Basic electrical performance (capacitance, tangent of loss angle, leakage current, measured for each of the tantalum solid electrolytic capacitor elements obtained by the first to fourth embodiments of the present invention and the comparative example thus manufactured. (Impedance at a frequency of 100 kHz) is shown in (Table 1).
[0032]
[Table 1]
Figure 0003669164
[0033]
As is clear from Embodiment 1 and Embodiment 2 of the present invention (Table 1), the step of dipping in a dilute monomer aqueous solution and drying again after drying is repeated four times, thereby oxidizing the solution into the solution. Of the anode body 12 from the surface of the dielectric oxide film 13 in the pores of the anode body 12 in a stepwise and efficient manner. It can be said that the conductive polymer solid electrolyte 14 can be uniformly formed up to the surface of the dielectric oxide film 13. Further, as is clear from the comparison between the comparative example, the first embodiment, and the second embodiment, in the present invention, the formation of the conductive polymer solid electrolyte 14 is about 2 to 2.5 times more efficient than the comparative example. It can be said that it has been made.
[0034]
Further, as is clear from the impedance values of the first and third embodiments of the present invention (Table 1), the electric conduction of the conductive polymer solid electrolyte 14 gradually increases as the atmospheric temperature of the chemical oxidation polymerization increases. The degree decreases. In addition, since a lower temperature causes a mild chemical oxidative polymerization reaction, the solid electrolyte is gradually deposited without plugging the pores of the anode body 12, so that variations are suppressed and stable. Electrical performance is obtained. In addition, lowering the temperature of the monomer liquid also suppresses the volatilization of the heterocyclic compound and / or its derivative from the aqueous monomer solution, and significantly suppresses the chemical oxidative polymerization reaction even when a slight amount of oxidant is dissolved. Therefore, it is preferable from the viewpoint of effective use of members and safety and health. Therefore, it can be said that the chemical oxidative polymerization temperature should be controlled at least within 15 ° C, preferably within 10 ° C.
[0035]
In addition, as is clear from the impedance values of the first and fourth embodiments of the present invention (Table 1), in an acidic environment where the pH of chemical oxidative polymerization is 4 or less, the chemical oxidative polymerization reaction is easy and The desired dopant is selectively and efficiently taken in to deposit and form a solid electrolyte having a high electrical conductivity, but only a solid electrolyte having a low electrical conductivity is rapidly obtained on the alkali side. Therefore, it can be said that the pH of chemical oxidative polymerization needs to be maintained in an acidic environment of 4 or less.
[0036]
In the first to fourth embodiments of the present invention, the anode body 12 is made of a tantalum sintered body. However, the present invention is not limited to this, and any porous valve metal can be used. The same applies. In addition, an aqueous solution was generally used for the preparation of the solution. Similarly, a single solvent for enhancing the solubility of the used heterocyclic compound and its derivative, benzene, naphthalene and its derivative, and the like was used. It goes without saying that the same effect can be expected even when mixed.
[0037]
【The invention's effect】
As described above, according to the method for producing a solid electrolytic capacitor of the present invention, an oxidizing agent, a heterocyclic compound, and / or a derivative thereof are used in forming a conductive polymer as a solid electrolyte on the surface of a dielectric oxide film. In order to enable the solution of each of these to be easily associated with each other in the outer layer portion from the pore portion of the anode body, an oxidant solution having an electrode potential higher than the oxidation potential of the heterocyclic compound and / or its derivative is impregnated. The dried anode body is immersed in a dilute solution containing at least 1 part by weight of a heterocyclic compound and / or its derivative with respect to 100 parts by weight of water, and then pulled up for chemical oxidative polymerization. In this way, the conductive polymer solid electrolyte is formed, so that the surface of the dielectric oxide film in the pores of the anode body is dried to form the dielectric oxide film in the outer layer part of the anode body. Oxidizing agent can be uniformly coated up to the surface, and when immersed in a dilute solution, the dilute solution quickly reaches the surface of the dielectric oxide film in the pores of the anode body and has high conductivity. A molecular solid electrolyte can be formed.
[0038]
In addition, a dilute solution containing a heterocyclic compound and its derivative within 1 part by weight with respect to 100 parts by weight of water causes a mild chemical oxidative polymerization reaction due to its low concentration. It is gradually deposited and formed without plugging the pores. Furthermore, the application of a high-concentration oxidant solution can form a conductive polymer solid electrolyte that is approximately 2-2.5 times more efficient than conventional chemical oxidative polymerization. In the chemical oxidation polymerization method in which the monomer liquid is repeatedly impregnated, pulled up and dried after drying, the formation efficiency can be accelerated without changing the performance such as the electrical conductivity of the conductive polymer solid electrolyte. The solid electrolytic capacitor element is extremely stable and has excellent electrical characteristics and reliability, and at the same time, the productivity can be greatly improved as compared with the conventional manufacturing method.
[Brief description of the drawings]
FIGS. 1A and 1B are partially cutaway perspective views showing a solid electrolytic capacitor element obtained by a method of manufacturing a solid electrolytic capacitor according to an embodiment of the present invention. FIG. Manufacturing process diagram showing the manufacturing process (1)
FIG. 3 is a manufacturing process diagram (2) showing a manufacturing process of the solid electrolytic capacitor element;
FIGS. 4A and 4B are partially cutaway perspective views showing a solid electrolytic capacitor element obtained by a comparative example. FIG. 5 is a manufacturing process diagram showing a manufacturing process of a solid electrolytic capacitor element of a comparative example. 6A and 6B are partially cutaway perspective views showing a solid electrolytic capacitor element obtained by a conventional method of manufacturing a solid electrolytic capacitor. FIG. 7 schematically shows a configuration of a conventional solid electrolytic capacitor. Sectional view [Explanation of symbols]
11 Internal Terminal 12 Anode Body 13 Dielectric Oxide Film 14 Conductive Polymer Solid Electrolyte 15 Colloidal Graphite 16 Silver Paint

Claims (5)

多孔質弁金属よりなる陽極体に形成した誘電体酸化皮膜上に、複素環式化合物および/またはその誘導体の酸化電位より高い電極電位を有する酸化剤溶液を含浸し、これを乾燥した後、この乾燥を終えた陽極体を少なくとも上記複素環式化合物および/またはその誘導体を水100重量部に対して1重量部以内を含み、pHを少なくともpH4以下の酸性に調整した希薄溶液に浸漬含浸した後に引き上げて化学酸化重合させ、導電性高分子からなる固体電解質を形成し、この固体電解質上に陰極層を形成する固体電解コンデンサの製造方法。The dielectric oxide film formed on the anode body made of the porous valve metal is impregnated with an oxidant solution having an electrode potential higher than the oxidation potential of the heterocyclic compound and / or derivative thereof, dried, and then dried. the drying of the finished anode material at least the heterocyclic compounds and / or derivatives thereof viewed contains within one part by weight relative to 100 parts by weight of water, pH was immersed impregnated with a dilute solution adjusted to at least pH4 or less acidic A method for producing a solid electrolytic capacitor, which is later pulled up and chemically oxidized to form a solid electrolyte made of a conductive polymer, and a cathode layer is formed on the solid electrolyte. 多孔質弁金属よりなる陽極体に形成した誘電体酸化皮膜上に、複素環式化合物および/またはその誘導体の酸化電位より高い電極電位を有する酸化剤溶液を含浸し、これを乾燥した後、この乾燥を終えた陽極体を少なくとも上記複素環式化合物および/またはその誘導体を水100重量部に対して1重量部以内を含み、pHを少なくともpH4以下の酸性に調整した希薄溶液に浸漬含浸した後引き上げて化学酸化重合させ、これを乾燥した後、上記希薄溶液に再度浸漬含浸した後引き上げて化学酸化重合させる工程を複数回繰り返すことにより導電性高分子からなる固体電解質を形成し、この固体電解質上に陰極層を形成する固体電解コンデンサの製造方法。The dielectric oxide film formed on the anode body made of the porous valve metal is impregnated with an oxidant solution having an electrode potential higher than the oxidation potential of the heterocyclic compound and / or derivative thereof, dried, and then dried. the drying of the finished anode material at least the heterocyclic compounds and / or derivatives thereof viewed contains within one part by weight relative to 100 parts by weight of water, pH was immersed impregnated with a dilute solution adjusted to at least pH4 or less acidic After being pulled up and subjected to chemical oxidative polymerization, and drying this, a solid electrolyte made of a conductive polymer is formed by repeating the steps of immersing and impregnating again in the diluted solution and then pulling up and performing chemical oxidative polymerization to form a solid electrolyte. A method for producing a solid electrolytic capacitor, wherein a cathode layer is formed on an electrolyte. 乾燥を終えた陽極体を希薄溶液に浸漬含浸する際に、上記希薄溶液の液温を10℃以下で行うようにした請求項1または2に記載の固体電解コンデンサの製造方法。  3. The method for producing a solid electrolytic capacitor according to claim 1, wherein when the dried anode body is immersed and impregnated in a dilute solution, the temperature of the dilute solution is 10 ° C. or lower. 乾燥を終えた陽極体を希薄溶液に浸漬含浸した後引き上げて化学酸化重合させる際に、上記化学酸化重合の雰囲気温度を10℃以下で行うようにした請求項1〜3のいずれか一つに記載の固体電解コンデンサの製造方法。  The anode body after drying is immersed and impregnated in a dilute solution, and then pulled up and subjected to chemical oxidative polymerization, and the atmospheric temperature of the chemical oxidative polymerization is performed at 10 ° C or lower. The manufacturing method of the solid electrolytic capacitor of description. 希薄溶液がナフタレンスルホン酸および/またはその誘導体を含み、かつそのpHを硫酸を用いて調整するようにした請求項1または2に記載の固体電解コンデンサの製造方法。The method for producing a solid electrolytic capacitor according to claim 1 or 2, wherein the dilute solution contains naphthalenesulfonic acid and / or a derivative thereof and the pH thereof is adjusted using sulfuric acid.
JP21522998A 1998-07-30 1998-07-30 Manufacturing method of solid electrolytic capacitor Expired - Fee Related JP3669164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21522998A JP3669164B2 (en) 1998-07-30 1998-07-30 Manufacturing method of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21522998A JP3669164B2 (en) 1998-07-30 1998-07-30 Manufacturing method of solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2000049050A JP2000049050A (en) 2000-02-18
JP3669164B2 true JP3669164B2 (en) 2005-07-06

Family

ID=16668857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21522998A Expired - Fee Related JP3669164B2 (en) 1998-07-30 1998-07-30 Manufacturing method of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP3669164B2 (en)

Also Published As

Publication number Publication date
JP2000049050A (en) 2000-02-18

Similar Documents

Publication Publication Date Title
JPH1154374A (en) Electrolytic capacitor and its manufacture
JP4683318B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2765453B2 (en) Method for manufacturing solid electrolytic capacitor
JP2001102255A (en) Tantalum solid electrolytic capacitor and manufacturing method therefor
JP3515938B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH04112519A (en) Manufacture of solid electrolytic capacitor
KR100365370B1 (en) Method for producing a solid electrolytic capacitor
JP2003037024A (en) Method of manufacturing solid electrolytic capacitor
JP3671828B2 (en) Manufacturing method of solid electrolytic capacitor
JP3669164B2 (en) Manufacturing method of solid electrolytic capacitor
JP4345227B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP3465076B2 (en) Solid electrolytic capacitors
JP3543526B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2657932B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0494110A (en) Manufacture of solid electrolytic capacitor
JP3991429B2 (en) Electrolytic capacitor and manufacturing method thereof
JPH11307396A (en) Manufacture of solid electrolytic capacitor
JP3255091B2 (en) Method for manufacturing solid electrolytic capacitor
TWI283877B (en) Solid electrolytic capacitor and method for producing the same
JP3568382B2 (en) Organic solid electrolytic capacitor and method of manufacturing the same
JPH05159979A (en) Manufacture of solid electrolytic capacitor
JP3663104B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH09213575A (en) Production of solid electrolytic capacitor
JPH06120086A (en) Manufacture of solid-state electrolytic capacitor
JP3750476B2 (en) Manufacturing method of solid electrolytic capacitor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050404

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080422

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees