JP3668919B2 - ヘリウムガス凝縮液化装置 - Google Patents

ヘリウムガス凝縮液化装置 Download PDF

Info

Publication number
JP3668919B2
JP3668919B2 JP29961497A JP29961497A JP3668919B2 JP 3668919 B2 JP3668919 B2 JP 3668919B2 JP 29961497 A JP29961497 A JP 29961497A JP 29961497 A JP29961497 A JP 29961497A JP 3668919 B2 JP3668919 B2 JP 3668919B2
Authority
JP
Japan
Prior art keywords
stage
refrigerator
cooling
helium gas
cooling stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29961497A
Other languages
English (en)
Other versions
JPH11118349A (ja
Inventor
充 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP29961497A priority Critical patent/JP3668919B2/ja
Publication of JPH11118349A publication Critical patent/JPH11118349A/ja
Application granted granted Critical
Publication of JP3668919B2 publication Critical patent/JP3668919B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/0007Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0225Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using other external refrigeration means not provided before, e.g. heat driven absorption chillers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0258Construction and layout of liquefaction equipments, e.g. valves, machines vertical layout of the equipments within in the cold box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0276Laboratory or other miniature devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/17Re-condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/10Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point with several cooling stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/02Separating impurities in general from the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/90Processes or apparatus involving steps for recycling of process streams the recycled stream being boil-off gas from storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/908External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by regenerative chillers, i.e. oscillating or dynamic systems, e.g. Stirling refrigerator, thermoelectric ("Peltier") or magnetic refrigeration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はヘリウムガス凝縮液化装置にかかるもので、とくに液来ヘリウムレベルの温度(大気圧で温度4.2K)にヘリウムガスを冷却可能な蓄冷式冷凍機(たとえばGM冷凍機など)その他の冷凍機を用いて、ヘリウムガスを液体ヘリウムに凝縮液化可能なヘリウムガス凝縮液化装置に関するものである。
【0002】
【従来の技術】
従来から、液体ヘリウムを使用する各種の液体ヘリウム装置、たとえば超電導磁石、SQUID(超電導量子干渉デバイス)およびMRI(磁気共鳴像)、などにおいては、蒸発して消費される液体ヘリウムの補給が問題となる。
この液体ヘリウムの補給システムとして、たとえばヘリウムガスを液体ヘリウムに冷却可能な冷凍機を装備することにより、蒸発ガスを再凝縮し、補給なしで連続的に運転することが可能になる。また、何らかの理由により液体ヘリウムの量が減少した場合に、外部から供給されるヘリウムガスを液化してこれを補充する追加的な液化システムが必要となる。
すなわち、液体ヘリウムの補給システムに装備するヘリウム冷凍機としては、再凝縮運転モード、さらに、追加的液化運転モードないし液化運転モードの両方の運転モードが要求されるケースが多い。
【0003】
上述のような液体ヘリウム補給システム用のヘリウム冷凍機として温度4Kレベルに冷却可能なGM冷凍機(4K−GM冷凍機)などの蓄冷式冷凍機を使用することができるが、1台当たりの冷凍能力に限界があり、要求される冷凍能力が大きな場合には、複数台の冷凍機を用いることになる。
【0004】
なお、ヘリウムガスを単純に液化するためのヘリウムガス液化装置においても、上述と同様にヘリウムガスを液化する機能はもちろん、蒸発ガスを再凝縮する機能を要求される場合がある。
【0005】
図8は、温度4Kレベルの冷凍能力を有する蓄冷式冷凍機(たとえばGM冷凍機)を複数台(たとえば2台)用いた場合の一般的なヘリウムガス凝縮液化装置1の概略側面図であって、ヘリウムガス凝縮液化装置1は、液体ヘリウム装置2(液体ヘリウム容器)から蒸発するヘリウムガスを再凝縮して液体ヘリウムとするとともに、外部からヘリウムガスを補充してこれを液体ヘリウムとして供給することができるもので、クライオスタット3と、2台のGM冷凍機(第1のGM冷凍機4および第2のGM冷凍機5)と、凝縮器6と、を有する。
【0006】
液体ヘリウム装置2は、液体ヘリウムを使用する、たとえば超電導磁石、SQUID(超電導量子干渉デバイス)、MRI(磁気共鳴像)、あるいはヘリウムガスの液化装置などである。
【0007】
クライオスタット3は、その内部にヘリウムガス凝縮液化装置1とともに液体ヘリウム装置2を収容してある。
【0008】
第1のGM冷凍機4および第2のGM冷凍機5は、同一の構成を有するとともにこれを並列的に使用するもので、第1のGM冷凍機4は第1段冷却ステージ7および第2段冷却ステージ8を、第2のGM冷凍機5は第1段冷却ステージ9および第2段冷却ステージ10をそれぞれ有する。
それぞれの第1段冷却ステージ7および第1段冷却ステージ9を熱伝導性の良好な第1段熱接触部材11により互いに熱接触させる。第2段冷却ステージ8および第2段冷却ステージ10を同じく熱伝導性の良好な第2段熱接触部材12により互いに熱接触させる。
【0009】
第1のGM冷凍機4および第2のGM冷凍機5の運転によって、第1段冷却ステージ7および第1段冷却ステージ9(第1段熱接触部材11)は通常、温度30K〜60K程度に冷却され、第2段冷却ステージ8および第2段冷却ステージ10(第2段熱接触部材12)は、温度4K程度に冷却される。
【0010】
凝縮器6は、これを第2段冷却ステージ8および第2段冷却ステージ10(第2段熱接触部材12)に熱接触させてあるもので、外部からのヘリウムガスの供給配管13(予冷配管)、液体ヘリウム装置2からの蒸発配管14、および液体ヘリウム装置2への液化配管15を接続してある。
【0011】
供給配管13には、第1段冷却ステージ7および第1段冷却ステージ9の部分において第1の熱交換器16を設け、第2段冷却ステージ8および第2段冷却ステージ10の部分において第2の熱交換器17を設けてある。
これら第1の熱交換器16および第2の熱交換器17の構成としては、第1のGM冷凍機4および第2のGM冷凍機5のステンレス製のシリンダーに銅製円筒状の熱負荷フランジをロウ付けし、この熱負荷フランジに供給配管13の部分の銅管をコイル状に巻き付けるとともにロウ付けて予冷用の構成とするのが一般的である。
【0012】
こうした構成のヘリウムガス凝縮液化装置1において、ヘリウムの蒸発ガスを再凝縮して液体ヘリウム装置2内の液面を一定に保持する再凝縮運転モードの場合、蒸発したヘリウムガスを低温状態のまま蒸発配管14を介して凝縮器6に導いて再凝縮する。この再凝縮運転モードの場合には、供給配管13を介した外部からのヘリウムガスの供給は行われず、基本的に、温度4.2Kの蒸発ヘリウムガスを凝縮して温度4.2Kの液体ヘリウムにするだけであり、凝縮器6における熱負荷は、ヘリウムガスの蒸発潜熱量のみである。
【0013】
液体ヘリウム装置2内の液面が低下してヘリウムを追加液化する追加液化運転モードの場合、あるいは運転当初に液体ヘリウム装置2内に液体ヘリウムを充填するような液化運転モード場合には、ヘリウムボンベ(図示せず)などからの常温のヘリウムガスを供給配管13からヘリウムガス凝縮液化装置1に供給し、第1段冷却ステージ7および第1段冷却ステージ9の第1の熱交換器16の部分で温度約40Kまで予冷し、次の第2段冷却ステージ8および第2段冷却ステージ10の第2の熱交換器17の部分における凝縮器6で温度約4.2Kに冷却して凝縮液化し、液化配管15を介して液体ヘリウムとして液体ヘリウム装置2に補充ないし充填する。
【0014】
上述のような液化運転モードの場合には、再凝縮運転モードの場合とは異なり、第2段冷却ステージ8および第2段冷却ステージ10における熱負荷は、第1段冷却ステージ7および第1段冷却ステージ9の温度に予冷されたヘリウムガスをさらに液化温度まで冷却するために必要とする顕熱量と、液化温度にあるヘリウムガスを凝縮して液体ヘリウムとするために必要とする蒸発潜熱量との和となる。
ヘリウムガスの顕熱量は比較的大きいため、第1のGM冷凍機4および第2のGM冷凍機5におけるそれぞれの第2段冷却ステージ8および第2段冷却ステージ10の冷凍能力は、かなりの部分をこの顕熱量分の冷却に費やされることになる。
【0015】
たとえば、1気圧のヘリウムガスを液化する場合、第1段冷却ステージ7および第1段冷却ステージ9の温度を40Kとすると、温度40Kのヘリウムガスを温度4.2Kのヘリウムガスに冷却するための顕熱量は、温度40Kのヘリウムガスのエンタルピーが223ジュール/グラム、温度4.2Kのヘリウムガスのエンタルピーが30ジュール/グラムであるから、223−30=193ジュール/グラムとなる。
また、温度4.2Kのヘリウムガスを同じ温度の液体ヘリウムにするための潜熱量は、温度4.2Kの液体ヘリウムのエンタルピーが10.1ジュール/グラムであるから、30−10.1=19.9ジュール/グラムとなる。
上記顕熱量とこの潜熱量との比は、193:19.9≒10:1にもなる。すなわち、液化速度でみれば、再凝縮運転モードでは、たとえば1リットル/日だけの液体ヘリウムを得ることができるが、液化運転モードでは、1/11リットル/日しか液化することができないことになる。
【0016】
具体的な流量を計算してみると、図8のヘリウムガス凝縮液化装置1において2台の第1のGM冷凍機4および第2のGM冷凍機5を並列に組み合わせて冷凍能力を上げようとする場合、1台の第2段冷却ステージにおける冷凍能力(熱負荷)を1ワットとすると、2台を組み合わせた場合に温度4Kレベルにおける冷凍能力は、1+1=2ワットである。実際の熱負荷は、温度40Kのヘリウムガスを温度4.2Kの液体ヘリウムにするのであるから、(223−10.1)×流量となる。したがって、2=(223−10.1)×流量、の式から、流量=2/212.9=0.0094グラム/秒、つまり毎秒0.0094グラムの液体ヘリウムしか得られないことになる。
【0017】
要するに、要求される冷凍能力を高めるために複数台の第1のGM冷凍機4および第2のGM冷凍機5を使用する場合に、これを単純に並列に接続して運転する構成では、それほど冷凍能力を高めることにはならず、冷凍能力を向上可能なヘリウムガス凝縮液化装置が要請されるものである。
【0018】
【発明が解決しようとする課題】
本発明は以上のような諸問題にかんがみなされたもので、液体ヘリウム装置などにおける蒸発ガスを再凝縮して液体ヘリウム面を保持するとともに、必要に応じて外部からヘリウムガスを供給して追加液化することができるヘリウムガス凝縮液化装置を提供することを課題とする。
【0019】
また本発明は、液化能力を高めることが可能なヘリウムガス凝縮液化装置を提供することを課題とする。
【0020】
また本発明は、必要に応じて能率よくヘリウムガスを液体ヘリウムに凝縮液化することができるヘリウムガス凝縮液化装置を提供することを課題とする。
【0021】
【課題を解決するための手段】
すなわち本発明は、少なくとも2台のGM冷凍機を用いてヘリウムガスを液体ヘリウムに凝縮液化するに際し、第1のGM冷凍機および第2のGM冷凍機の第1段冷却ステージおよび第2段冷却ステージ(最終段冷却ステージ)においてヘリウムガス温度を順次低下させて冷却することに着目したもので、第一の発明は、少なくとも二段の冷却ステージを有するとともにその最終段冷却ステージを液体ヘリウム温度とすることができる冷凍機を少なくとも2台用いることにより、上記最終段冷却ステージに熱接触させた凝縮器においてヘリウムガスを凝縮液化可能なヘリウムガス凝縮液化装置であって、上記一方の冷凍機の最終段冷却ステージを第1の冷却温度とするとともに、上記他方の冷凍機の最終段冷却ステージをこの第1の冷却温度より低い第2の冷却温度に運転可能とし、上記凝縮器を上記他方の冷凍機におけるこの第2の冷却温度にある最終冷却ステージに熱接触させ上記一方の冷凍機の第1段冷却ステージを第1の冷却温度とするとともに上記他方の冷凍機の第1段冷却ステージをこの第1の冷却温度より低い第2の冷却温度に運転可能とし、外部から供給される前記ヘリウムガスがこの第1の冷却温度の第1段冷却ステージおよびこの第2の冷却温度の第1段冷却ステージとそれぞれ順次熱交換可能とすることを特徴とするヘリウムガス凝縮液化装置である
【0023】
上記冷凍機の冷却ステージに熱接触可能に外部から供給される上記ヘリウムガスを、上記少なくとも2台の冷凍機の第1段冷却ステージにそれぞれ熱交換可能に室温部から供給する予冷配管を設け、これらの予冷配管の少なくとも一方に流量調節弁を設けることができる。
【0024】
上記凝縮器は、これを上記それぞれの冷凍機の上記最終冷却ステージにそれぞれ設けるとともに、一方の凝縮器と他方の凝縮器との間を上記ヘリウムガスおよび液体ヘリウムが流れるように配管接続することができる。
【0025】
上記ヘリウムガスの精製器を上記冷凍機の上流側に取り付けるとともに、上記冷凍機によって冷却される低温精製器として、ヘリウムガス中の不純物を除去することができる。
【0026】
上記冷凍機の少なくとも一方の第1段冷却ステージに電気ヒーターなどの加熱手段を設けることができる。
【0027】
第二の発明は、ふたつの凝縮器をそれぞれ熱的に独立して最終段冷却ステージに熱接触することに着目したもので、少なくとも二段の冷却ステージを有するとともにその最終段冷却ステージを液体ヘリウム温度とすることができる冷凍機を少なくとも2台用いることにより、上記最終段冷却ステージに熱接触させた凝縮器においてヘリウムガスを凝縮液化可能なヘリウムガス凝縮液化装置であって、上記凝縮器は、これを上記それぞれの冷凍機の上記最終冷却ステージにそれぞれ設け、かつ互いに熱的に分離するとともに、これら凝縮器の互いの間にガス相配管および混相配管を接続したことを特徴とするヘリウムガス凝縮液化装置である。
【0028】
本発明によるヘリウムガス凝縮液化装置においては、第1のGM冷凍機および第2のGM冷凍機の第1段冷却ステージおよび第2段冷却ステージ(最終段冷却ステージ)においてヘリウムガス温度を順次低下させて冷却するようにしたので、それぞれの冷却ステージの間における冷却温度差を小さくし、能率的な冷却を可能とする。
換言すれば、高温部から低温部にいきなり冷却するのではなく、徐々に低温に冷却し、より低い温度で有効に機能するGM冷凍機を活用するようにしたので、ヘリウムガス凝縮液化装置としての冷凍能力を増強することができる。
【0029】
また第二の発明においては、ふたつの凝縮器を熱的に独立に最終段冷却ステージに熱接触するようにしたので、再凝縮運転モード(ヘリウムガスを液体ヘリウム装置からの蒸発ガスとして凝縮器に直接供給可能とする場合)のみを行う場合は2台の冷凍機ともに第2段冷却ステージは約4Kの温度となり、蒸発ガスはどちらの凝縮器にも流入して凝縮される。すなわち、凝縮器を2個設けたことにより、2台分の冷凍能力で凝縮を行うことができる。
一方、液化運転モード(ヘリウムガスを外部から第1段冷却ステージを経て順次供給する場合)では、前段の凝縮器は、たとえば約6Kの温度となって凝縮作用は行わず、外部から供給されるヘリウムガスを温度6Kに予冷する役割を担うことになり、凝縮器が1個だけの場合と同じように最終段の凝縮器が凝縮液化の役割を行うことになる。
【0030】
本発明によるヘリウムガス凝縮液化装置は、液体ヘリウムを使用する各種の液体ヘリウム装置、たとえば超電導磁石、SQUID(超電導量子干渉デバイス)、MRI(磁気共鳴像)用のヘリウム液面保持装置としてはもちろん、ヘリウムガスの液化装置としても使用可能である。
【0031】
【発明の実施の形態】
つぎに本発明の基本的な形態によるヘリウムガス凝縮液化装置20を図1にもとづき説明する。ただし、図8と同様の部分には同一符号を付し、その詳述はこれを省略する。図1は、ヘリウムガス凝縮液化装置20の概略側面図であって、ヘリウムガス凝縮液化装置20は、ヘリウムガス凝縮液化装置1(図8)とは異なり、凝縮器6に相当する凝縮器21を第2のGM冷凍機5の第2段冷却ステージ10のみに設けてこれに熱接触させてある。第1のGM冷凍器4の第2段冷却ステージ8には凝縮器を設けていない。
【0032】
すなわち、供給配管13の第1の熱交換器16を第1段冷却ステージ7および第1段冷却ステージ9に熱接触させるとともに、第2の熱交換器17は第2段冷却ステージ8および第2段冷却ステージ10に共通ではなく第2段冷却ステージ8のみに熱接触させてある。つまり、第2段冷却ステージ8および第2段冷却ステージ10を第2段熱接触部材12(図8)などで熱的に接触させることなく、第2段冷却ステージ8および第2段冷却ステージ10が異なる冷却温度で運転することができるようにする。
たとえば、第2段冷却ステージ8における第2の熱交換器17は温度6Kレベル(第1の冷却温度)でヘリウムガスを冷却し、第2段冷却ステージ10は温度4Kレベル(第2の冷却温度)でヘリウムガスを冷却する。
【0033】
こうした構成のヘリウムガス凝縮液化装置20において、追加液化運転モードの場合、第1段冷却ステージ7および第1段冷却ステージ9の第1の熱交換器16の部分で予冷されたヘリウムガスは、従来のようにいきなり温度4Kレベルに冷却されるのではなく、第2段冷却ステージ8(第2の熱交換器17)の部分において一度温度6Kに冷却された上で第2のGM冷凍機5の第2段冷却ステージ10において温度4Kに冷却されるので、第2段冷却ステージ10の部分における冷却能率を向上させることができる。
【0034】
具体的な流量を計算してみると、1台の第2のGM冷凍機5の第2段冷却ステージ10における冷凍能力(熱負荷)を1ワットとする。
実際の熱負荷は、温度6Kのヘリウムガスのエンタルピーが43ジュール/グラムであるから、温度6Kのヘリウムガスを温度4.2Kの液体ヘリウムにするのであるから、(43−10.1)×流量となる。
したがって、1=(43−10.1)×流量、の式から、流量=1/32.9=0.0304グラム/秒、つまり毎秒0.0304グラムの液体ヘリウムを得ることができる。
図8のヘリウムガス凝縮液化装置1の場合には、GM冷凍機4、5の2台で0.0094グラム/秒であるから、本実施の形態のヘリウムガス凝縮液化装置20のように第2段冷却ステージ8および第2段冷却ステージ10を分離して使用する場合の方が液化能力を増強することができる。
【0035】
なお、再凝縮運転モードの場合には、蒸発配管14からの蒸発ヘリウムガスの凝縮能率は、ヘリウムガス凝縮液化装置1(図8)の場合の約半分となる。上述のように、追加液化運転モードにおける能率を大幅に向上させると同時に、再凝縮運転モードでの凝縮能率も維持したい場合には、後述するように、2台の冷凍機のそれぞれに凝縮器を設ければよい。
【0036】
図2は、本発明の第の実施の形態によるヘリウムガス凝縮液化装置30の概略側面図であって、ヘリウムガス凝縮液化装置20(図1)のように第2段冷却ステージ8および第2段冷却ステージ10の分離のみではなく、第1段冷却ステージ7および第1段冷却ステージ9もこれを熱的に分離した構成としてある。すなわち、ヘリウムガス凝縮液化装置30は、第2段冷却ステージ10のみに凝縮器21を熱接触してあるとともに、供給配管13の第1の熱交換器16を分離して、第1段冷却ステージ7に熱接触している第1の熱交換器31、および第1の熱交換器31とは独立に第1段冷却ステージ9に熱接触している第2の熱交換器32を設けている。したがって、供給配管13の第1の熱交換器31、第2の熱交換器32および第2の熱交換器17は、直列に接続されていることになる。
【0037】
こうした構成のヘリウムガス凝縮液化装置30において、たとえば図示のように第1のGM冷凍機4の第1段冷却ステージ7を温度60K(図1のヘリウムガス凝縮液化装置20とは異なり第1の熱交換器31は第1のGM冷凍機4のみに熱接触しているので、温度40Kまでには低下しない)、第2のGM冷凍機5の第1段冷却ステージ9を温度35K、第1のGM冷凍機4の第2段冷却ステージ8を温度6K、さらに第2のGM冷凍機5の第2段冷却ステージ10および凝縮器21を温度4Kに保持して運転することが可能となり、供給配管13からの常温のヘリウムガスを段階的に冷却することができ、さらに冷却能率を向上することができる。
【0038】
すなわち、図1のヘリウムガス凝縮液化装置20の場合に比較して、ヘリウムガス凝縮液化装置30では、第1のGM冷凍機4の第1段冷却ステージ7から第2のGM冷凍機5の第1段冷却ステージ9へと順次冷却していくため、ヘリウムガスをより低い温度で第1のGM冷凍機4の第2段冷却ステージ8へ送り込むことができる。
【0039】
ただし、第2のGM冷凍機5の第1段冷却ステージ9の温度が低くなりすぎると、第1段冷却ステージ9にヘリウムガスがより多く通過する結果、その第2段冷却ステージ10へのヘリウムガスの供給量が減少して、第2段冷却ステージ10の冷凍能力が低下するおそれがある。
図3は、4K−GM冷凍機の冷凍性能試験のグラフであって、グラフ中の縦方向の一群のプロットは、第1段冷却ステージの熱負荷が0ワット、20ワット、40ワットの場合を示し、グラフ中の横方向の一群のプロットは、第2段冷却ステージの熱負荷が0ワット、2ワット、4ワット、6ワット、8ワット、10ワット、12ワットの場合を示している。
たとえば、第1段冷却ステージおよび第2段冷却ステージともに無負荷(熱負荷が0ワット)で運転した場合、第1段冷却ステージの温度が約21K、第2段冷却ステージの温度が約3Kで安定することを示しており、また図1のヘリウムガス凝縮液化装置20の場合のように第1段冷却ステージ7(第1段冷却ステージ9)を温度40K、第2段冷却ステージ8を温度6Kで運転した場合には、第1段冷却ステージ7(第1段冷却ステージ9)の熱負荷は約37ワット、第2段冷却ステージ8の熱負荷は約3.5ワットであることを示している。
図3に示すように、同じ熱負荷で第1段冷却ステージ9を運転している前提でその温度がより低くなると、第2段冷却ステージ10の部分の冷凍能力が低下してしまうことになる。
【0040】
図4は、本発明の第の実施の形態によるヘリウムガス凝縮液化装置40の概略側面図であって、ヘリウムガス凝縮液化装置40では第1のGM冷凍機4および第2のGM冷凍機5へのヘリウムガスの供給量を調整可能とすることにより、第2のGM冷凍機5の第1段冷却ステージ9の温度を調整しやすくして、第2段冷却ステージ10の部分の冷凍能力が低下してしまうことを防止可能としている。すなわち、ヘリウムガス凝縮液化装置40においては、ヘリウムガス凝縮液化装置30(図2)に加えて、供給配管13を第1のGM冷凍機側予冷配管41および第2のGM冷凍機側予冷配管42に分岐して第1のGM冷凍機4への配管をバイパスして第2のGM冷凍機5にも直接ヘリウムガスを供給可能とするとともに、第2のGM冷凍機側予冷配管42に流量調節弁43を設けて、第1のGM冷凍機4および第2のGM冷凍機5へのヘリウムガスの流量を調節可能としてある。
【0041】
こうした構成のヘリウムガス凝縮液化装置40においては、第1のGM冷凍機4および第2のGM冷凍機5へのヘリウムガスの供給量を、たとえば1:1あるいは2:1などと任意に配分することができるので、第1のGM冷凍機4および第2のGM冷凍機5の第2段冷却ステージ8および第2段冷却ステージ10の冷凍能力を最適化することができる。
【0042】
すなわち、図3に示したように、第2段冷却ステージ8あるいは第2段冷却ステージ10の冷凍能力は第1段冷却ステージ7あるいは第1段冷却ステージ9におけるそれぞれの温度の影響を受けることになる。そこで、流量調節弁43を操作して第1のGM冷凍機4および第2のGM冷凍機5へのヘリウムガスの流量配分を調節することにより、第1段冷却ステージ7および第1段冷却ステージ9の冷凍負荷すなわち温度を調節して、第2段冷却ステージ8および第2段冷却ステージ10の冷凍能力がより大となるように適正化し、追加液化運転モードの性能を向上させることができる。
【0043】
図5は、本発明の第の実施の形態によるヘリウムガス凝縮液化装置50の概略側面図であって、ヘリウムガス凝縮液化装置50においては、ヘリウムガス凝縮液化装置40(図4)に加えて、第2のGM冷凍機5の第2段冷却ステージ10に熱接触している凝縮器21(第2の凝縮器)とは熱的に独立して、第1のGM冷凍機4の第2段冷却ステージ8にも凝縮器51(第1の凝縮器)を熱接触してある。凝縮器51には、温度6K(あるいは4K、後述)の第2段冷却ステージ8が熱接触しているとともに、凝縮器21との間にガス相配管52および混相配管53を接続してある。
【0044】
ガス相配管52は、凝縮器51のガス相部と凝縮器21の上方に位置するガス相部とを接続している。混相配管53は、再凝縮運転モード時には、液体およびガスが、液化運転モード時においてはガスが流れ、凝縮器21のガス相部に接続している。
【0045】
なお、少なくとも第1のGM冷凍機4の第1段冷却ステージ7あるいは第2のGM冷凍機5の第1段冷却ステージ9に電気ヒーター54(加熱手段)を設け、必要に応じて第1段冷却ステージ7あるいは第1段冷却ステージ9の温度をより高く調節可能として、第2段冷却ステージ8あるいは第2段冷却ステージ10の冷凍能力の効率化を図る。
【0046】
また、凝縮器51を設けてある第2段冷却ステージ8の部分に第2の熱交換器17を設け、ヘリウムガスの予冷を確実に行うことができるようにしてある。
【0047】
こうした構成のヘリウムガス凝縮液化装置50において、再凝縮運転モードの場合には、液体ヘリウム装置2から蒸発したヘリウムガスは、蒸発配管14を介して凝縮器21内、あるいはさらにガス相配管52を通って凝縮器51内のいずれにおいても冷却されて再凝縮され、凝縮器51から混相配管53を通って、あるいは凝縮器21から直接、液化配管15から液体ヘリウム装置2に至る。
なお、この再凝縮運転モードの場合には、第1のGM冷凍機4の第2段冷却ステージ8および第2のGM冷凍機5の第2段冷却ステージ10いずれもが温度約4.2Kで運転される(図中カッコ内、およびガス相配管52における点線の矢印参照)。したがって、再凝縮能力としては、図8のヘリウムガス凝縮液化装置1の場合ととくに変わるところはない。
【0048】
ヘリウムガスを供給配管13から供給する液化運転モードの場合は、ヘリウムガス凝縮液化装置40(図4)の場合と同様に、第1のGM冷凍機4の第1段冷却ステージ7および第2のGM冷凍機5の第1段冷却ステージ9において予冷され、第1のGM冷凍機4の第2段冷却ステージ8において温度6Kに冷却された上で第2のGM冷凍機5の第2段冷却ステージ10において温度約4.2Kで最後に液体ヘリウムに凝縮液化される(図中、ガス相配管52における実線の矢印参照)。
なお、液化運転モードが主体の場合には、凝縮器51はこれを設けなくても構わない。
【0049】
かくして、このヘリウムガス凝縮液化装置50においては、再凝縮運転モードおよび液化運転モードのいずれの場合にも良好な冷凍能力で運転可能である。
【0050】
なお、第1のGM冷凍機4および第2のGM冷凍機5において、第1段冷却ステージ7および第1段冷却ステージ9の温度が低すぎる場合、第1段冷却ステージ7および第1段冷却ステージ9におけるヘリウムガスの流量が増加し、第1のGM冷凍機4および第2のGM冷凍機5における圧縮器流量の配分として第2段冷却ステージ8および第2段冷却ステージ10に供給されるヘリウムガスの流量分が低下するため、第2段冷却ステージ8および第2段冷却ステージ10の冷凍能力が低下する傾向を示すことが多い。
そこで、ヘリウムガス凝縮液化装置50においては、第1段冷却ステージ7および第1段冷却ステージ9の冷凍能力に余裕があって第1段冷却ステージ7および第1段冷却ステージ9の温度が低くなりすぎる場合には、電気ヒーター54により、たとえば第1段冷却ステージ9の温度を上昇させ、第2段冷却ステージ8および第2段冷却ステージ10の冷凍能力を向上させることができる。
【0051】
図6は、本発明の第の実施の形態によるヘリウムガス凝縮液化装置60の概略側面図であって、ヘリウムガス凝縮液化装置60においては、ヘリウムガス凝縮液化装置50(図5)に加えてヘリウムガスの精製器61を第1のGM冷凍機4の上流側に設けてある。精製器61は、その内部に活性炭を収容し、供給配管13からのヘリウムガス中の不純物を吸着除去することにより、下流側への不純物の流入を防止し、冷却によるその固化を回避する。精製器61は、これを冷却するほど精製能力が高まるので、第1のGM冷凍機4の第1段冷却ステージ7においてこれを冷却可能としている。
【0052】
すなわち、精製器61と第1のGM冷凍機4の第1段冷却ステージ7との間に精製器用熱接触部材62を設けてこれを冷却可能とし、供給配管13からまず精製器61にヘリウムガスを供給可能とし、精製器61において精製されたヘリウムガスを精製器側予冷配管63および熱交換器64を通し、さらに第2のGM冷凍機側予冷配管42の流量調節弁43を介して、第2のGM冷凍機5の第1段冷却ステージ9に供給可能とする。
また、精製器側予冷配管63から冷凍機側予冷配管65を分岐させ、第1の熱交換器31および流量調節弁66を介して第2の熱交換器32に至る。
【0053】
こうした構成のヘリウムガス凝縮液化装置60においては、精製器61を第1のGM冷凍機4の第1段冷却ステージ7において冷却しつつヘリウムガス中の不純物を除去して安定した運転を保証することができる。
精製器61を再生する場合には、流量調節弁66および流量調節弁43を閉鎖し、第1のGM冷凍機4を停止・昇温する。第2のGM冷凍機5はそのまま冷却運転を継続し、蒸発ガスの再凝縮作用を続行することができる。
【0054】
図7は、本発明の第の実施の形態によるヘリウムガス凝縮液化装置70の概略側面図であって、第1のGM冷凍機4および第2のGM冷凍機5に加えてさらに第3のGM冷凍機71を設け、3台の冷凍機4、5、71で冷却する場合を示す。すなわち、第3のGM冷凍機71は、第1段冷却ステージ72および第2段冷却ステージ73を有して、第2段冷却ステージ73に凝縮器21を熱接触してある。
【0055】
さらにこの実施の形態においては、より単純化を図るために、図8に示したヘリウムガス凝縮液化装置1のように、第1段熱接触部材11および第2段熱接触部材12により第1のGM冷凍機4と第2のGM冷凍機5とを第1段冷却ステージ7および第1段冷却ステージ9において、ならびに第2段冷却ステージ10および第2段冷却ステージ73においてそれぞれ熱的に一体化し、第2段熱接触部材12に単一の凝縮器21を設ける。
また、図2に示したヘリウムガス凝縮液化装置30のように、第1の熱交換器31および第2の熱交換器32を設けるとともに、第3のGM冷凍機71の第1段冷却ステージ72に第3の熱交換器74を設け、図4に示したヘリウムガス凝縮液化装置40のように、流量調節弁43を設けてある。
【0056】
こうした構成のヘリウムガス凝縮液化装置70においては、たとえば第1のGM冷凍機4の第1段冷却ステージ7および第2のGM冷凍機5の第1段冷却ステージ9で温度50K、第3のGM冷凍機71の第1段冷却ステージ72で温度30Kのように、順次低温とし、複数段による冷却効率の向上を図ることができる。
以下、同様にして任意の複数台のGM冷凍機を用いた場合にもカスケード式に順次ヘリウムガスの温度を低下させて、冷凍能力の増強を図ることも可能である。
【0057】
上述のいずれの実施の形態によるヘリウムガス凝縮液化装置20(図1)、30(図2)、40(図4)、50(図5)、60(図6)、70(図7)も液体ヘリウム装置2の種類および条件、第1のGM冷凍機4および第2のGM冷凍機5の種類や運転条件、その他要請される諸条件に応じて任意に選択して実施可能であるとともに、それぞれの構成の要素を任意に組み合わせて適宜構成することも可能である。
【0058】
【発明の効果】
以上のように本発明によれば、少なくとも2台のGM冷凍機の最終段冷却ステージにおける凝縮器を熱的に分離し、ヘリウムガスを段階的に冷却する構成としたので、冷凍能力を向上し、凝縮液化性能の増強を図ることができる。
【図面の簡単な説明】
【図1】一般的な形態によるヘリウムガス凝縮液化装置20の概略側面図である。
【図2】本発明の第の実施の形態によるヘリウムガス凝縮液化装置30の概略側面図である。
【図3】一般の4K−GM冷凍機の冷凍性能試験のグラフである。
【図4】本発明の第の実施の形態によるヘリウムガス凝縮液化装置40の概略側面図である。
【図5】本発明の第の実施の形態によるヘリウムガス凝縮液化装置50の概略側面図である。
【図6】本発明の第の実施の形態によるヘリウムガス凝縮液化装置60の概略側面図である。
【図7】本発明の第の実施の形態によるヘリウムガス凝縮液化装置70の概略側面図である。
【図8】温度4Kレベルの冷凍能力を有する蓄冷式冷凍機(たとえばGM冷凍機)を複数台(たとえば2台)用いた場合の一般的なヘリウムガス凝縮液化装置1の概略側面図である。
【符号の説明】
1 ヘリウムガス凝縮液化装置(図8)
2 液体ヘリウム装置(液体ヘリウム容器)
3 クライオスタット
4 第1のGM冷凍機(冷凍機)
5 第2のGM冷凍機(冷凍機)
6 凝縮器
7 第1のGM冷凍機4の第1段冷却ステージ
8 第1のGM冷凍機4の第2段冷却ステージ
9 第2のGM冷凍機5の第1段冷却ステージ
10 第2のGM冷凍機5の第2段冷却ステージ
11 第1段熱接触部材
12 第2段熱接触部材
13 ヘリウムガスの供給配管(予冷配管)
14 蒸発配管
15 液化配管
16 第1の熱交換器
17 第2の熱交換器
20 ヘリウムガス凝縮液化装置(一般的な形態、図1)
21 凝縮器
30 ヘリウムガス凝縮液化装置(第の実施の形態、図2)
31 第1の熱交換器
32 第2の熱交換器
40 ヘリウムガス凝縮液化装置(第の実施の形態、図4)
41 第1のGM冷凍機側予冷配管(予冷配管)
42 第2のGM冷凍機側予冷配管(予冷配管)
43 流量調節弁
50 ヘリウムガス凝縮液化装置(第の実施の形態、図5)
51 凝縮器(第1の凝縮器)
52 ガス相配管
53 混相配管
54 電気ヒーター(加熱手段)
60 ヘリウムガス凝縮液化装置(第の実施の形態、図6)
61 ヘリウムガスの精製器
62 精製器用熱接触部材
63 精製器側予冷配管
64 熱交換器
65 冷凍機側予冷配管
66 流量調節弁
70 ヘリウムガス凝縮液化装置(第の実施の形態、図7)
71 第3のGM冷凍機(冷凍機)
72 第3のGM冷凍機71の第1段冷却ステージ
73 第3のGM冷凍機71の第2段冷却ステージ
74 第3の熱交換器

Claims (6)

  1. 少なくとも二段の冷却ステージを有するとともにその最終段冷却ステージを液体ヘリウム温度とすることができる冷凍機を少なくとも2台用いることにより、前記最終段冷却ステージに熱接触させた凝縮器においてヘリウムガスを凝縮液化可能なヘリウムガス凝縮液化装置であって、前記一方の冷凍機の最終段冷却ステージを第1の冷却温度とするとともに、前記他方の冷凍機の最終段冷却ステージをこの第1の冷却温度より低い第2の冷却温度に運転可能とし、前記凝縮器を前記他方の冷凍機におけるこの第2の冷却温度にある最終冷却ステージに熱接触させ、前記一方の冷凍機の第1段冷却ステージを第1の冷却温度とするとともに前記他方の冷凍機の第1段冷却ステージをこの第1の冷却温度より低い第2の冷却温度に運転可能とし、外部から供給される前記ヘリウムガスがこの第1の冷却温度の第1段冷却ステージおよびこの第2の冷却温度の第1段冷却ステージとそれぞれ順次熱交換可能としたことを特徴とするヘリウムガス凝縮液化装置。
  2. 少なくとも二段の冷却ステージを有するとともにその最終段冷却ステージを液体ヘリウム温度とすることができる冷凍機を少なくとも2台用いることにより、前記最終段冷却ステージに熱接触させた凝縮器においてヘリウムガスを凝縮液化可能なヘリウムガス凝縮液化装置であって、前記一方の冷凍機の最終段冷却ステージを第1の冷却温度とするとともに、前記他方の冷凍機の最終段冷却ステージをこの第1の冷却温度より低い第2の冷却温度に運転可能とし、前記凝縮器を前記他方の冷凍機におけるこの第2の冷却温度にある最終冷却ステージに熱接触させ、
    前記冷凍機の冷却ステージに熱接触可能に外部から供給される前記ヘリウムガスを、前記少なくとも2台の冷凍機の第1段冷却ステージにそれぞれ熱交換可能に室温部から供給する予冷配管を設け、これらの予冷配管の少なくとも一方に流量調節弁を設けたことを特徴とするヘリウムガス凝縮液化装置。
  3. 少なくとも二段の冷却ステージを有するとともにその最終段冷却ステージを液体ヘリウム温度とすることができる冷凍機を少なくとも2台用いることにより、前記最終段冷却ステージに熱接触させた凝縮器においてヘリウムガスを凝縮液化可能なヘリウムガス凝縮液化装置であって、前記一方の冷凍機の最終段冷却ステージを第1の冷却温度とするとともに、前記他方の冷凍機の最終段冷却ステージをこの第1の冷却温度より低い第2の冷却温度に運転可能とし、前記凝縮器を前記他方の冷凍機におけるこの第2の冷却温度にある最終冷却ステージに熱接触させ、
    前記凝縮器は、これを前記それぞれの冷凍機の前記最終冷却ステージにそれぞれ設けるとともに、一方の凝縮器と他方の凝縮器との間を前記ヘリウムガスおよび液体ヘリウムが流れるように配管接続したことを特徴とするヘリウムガス凝縮液化装置。
  4. 少なくとも二段の冷却ステージを有するとともにその最終段冷却ステージを液体ヘリウム温度とすることができる冷凍機を少なくとも2台用いることにより、前記最終段冷却ステージに熱接触させた凝縮器においてヘリウムガスを凝縮液化可能なヘリウムガス凝縮液化装置であって、前記一方の冷凍機の最終段冷却ステージを第1の冷却温度とするとともに、前記他方の冷凍機の最終段冷却ステージをこの第1の冷却温度より低い第2の冷却温度に運転可能とし、前記凝縮器を前記他方の冷凍機におけるこの第2の冷却温度にある最終冷却ステージに熱接触させ、
    前記ヘリウムガスの精製器を前記冷凍機の上流側に取り付けるとともに、前記冷凍機により冷却される低温精製器としたことを特徴とするヘリウムガス凝縮液化装置。
  5. 少なくとも二段の冷却ステージを有するとともにその最終段冷却ステージを液体ヘリウム温度とすることができる冷凍機を少なくとも2台用いることにより、前記最終段冷却ステージに熱接触させた凝縮器においてヘリウムガスを凝縮液化可能なヘリウムガス凝縮液化装置であって、前記一方の冷凍機の最終段冷却ステージを第1の冷却温度とするとともに、前記他方の冷凍機の最終段冷却ステージをこの第1の冷却温度より低い第2の冷却温度に運転可能とし、前記凝縮器を前記他方の冷凍機におけるこの第2の冷却温度にある最終冷却ステージに熱接触させ、
    前記冷凍機の少なくとも一方の第1段冷却ステージに加熱手段を設けたことを特徴とす リウムガス凝縮液化装置。
  6. 少なくとも二段の冷却ステージを有するとともにその最終段冷却ステージを液体ヘリウム温度とすることができる冷凍機を少なくとも2台用いることにより、前記最終段冷却ステージに熱接触させた凝縮器においてヘリウムガスを凝縮液化可能なヘリウムガス凝縮液化装置であって、前記凝縮器は、これを前記それぞれの冷凍機の前記最終冷却ステージにそれぞれ設け、かつ互いに熱的に分離するとともに、これら凝縮器の互いの間にガス相配管および混相配管を接続したことを特徴とするヘリウムガス凝縮液化装置。
JP29961497A 1997-10-17 1997-10-17 ヘリウムガス凝縮液化装置 Expired - Fee Related JP3668919B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29961497A JP3668919B2 (ja) 1997-10-17 1997-10-17 ヘリウムガス凝縮液化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29961497A JP3668919B2 (ja) 1997-10-17 1997-10-17 ヘリウムガス凝縮液化装置

Publications (2)

Publication Number Publication Date
JPH11118349A JPH11118349A (ja) 1999-04-30
JP3668919B2 true JP3668919B2 (ja) 2005-07-06

Family

ID=17874911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29961497A Expired - Fee Related JP3668919B2 (ja) 1997-10-17 1997-10-17 ヘリウムガス凝縮液化装置

Country Status (1)

Country Link
JP (1) JP3668919B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085700A (ja) * 2005-09-26 2007-04-05 Taiyo Nippon Sanso Corp ヘリウム凝縮装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3726965B2 (ja) 2002-07-01 2005-12-14 富士電機システムズ株式会社 酸素の製造方法と装置
JP4932466B2 (ja) * 2006-12-15 2012-05-16 住友重機械工業株式会社 冷媒再凝縮装置
DE102011003041A1 (de) * 2011-01-24 2012-07-26 Siemens Aktiengesellschaft Vorrichtung und Verfahren zur Kühlung einer supraleitenden Maschine
WO2016005463A1 (en) * 2014-07-09 2016-01-14 Bluefors Cryogenics Oy Ltd Recuperative trapping stage, refrigerator comprising a recuperative trapping stage and method of cleaning a recuperative trapping stage
JP2016180558A (ja) * 2015-03-24 2016-10-13 株式会社新領域技術研究所 蒸発ヘリウムガスの回収方法およびシステム
CN107677045B (zh) * 2017-10-09 2020-04-10 中国科学院理化技术研究所 内纯化器研究***
DE102021205423B4 (de) * 2021-05-27 2023-09-21 Bruker Switzerland Ag Vorrichtung zur Reinigung und Verflüssigung von Helium und zugehöriges Verfahren
CN116538761B (zh) * 2023-07-03 2023-09-22 东营市赫邦化工有限公司 一种氯气液化装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085700A (ja) * 2005-09-26 2007-04-05 Taiyo Nippon Sanso Corp ヘリウム凝縮装置
JP4570546B2 (ja) * 2005-09-26 2010-10-27 大陽日酸株式会社 ヘリウム凝縮装置

Also Published As

Publication number Publication date
JPH11118349A (ja) 1999-04-30

Similar Documents

Publication Publication Date Title
KR101136709B1 (ko) 액화 가스 재액화 장치, 이것을 구비한 액화 가스 저장 설비 및 액화 가스 운반선 및 액화 가스 재액화 방법
EP1586833A2 (en) Cooling apparatus
CN1375881A (zh) 具有冷却和正常操作模式的低温冷却***
JP2001147050A (ja) 2個の蒸発器を備えた冷蔵庫の冷凍システム
JP3668919B2 (ja) ヘリウムガス凝縮液化装置
KR102124677B1 (ko) 냉동 및/또는 액화 장치 및 대응 방법
CN107906844A (zh) 用于提高基于制冷机的致冷剂气体液化器中的液化速率的***和方法
EP0578241B1 (en) Cryogenic refrigeration system and refrigeration method therefor
KR20090025514A (ko) Lng 운반선에 대한 bog 재액화 시스템
JPH0515764A (ja) 冷却機付き真空容器
JP3530040B2 (ja) 多重循環式液体ヘリウム再凝縮装置および方法
JP4409828B2 (ja) ガス液化装置
JPH10246524A (ja) 冷凍装置
US20210215421A1 (en) Cryocooler Suitable for Gas Liquefaction Applications, Gas Liquefaction System and Method Comprising the Same
JP2005003314A (ja) 超電導電磁石冷却装置
JP2021533321A (ja) 高温超電導体冷蔵システム
JPH06241647A (ja) 水素液化装置及びスラッシュ水素製造装置
JPH06323663A (ja) 冷凍装置
JP2018505373A (ja) 閉サイクル式冷凍剤再循環システム及び方法
JP2003247760A (ja) 二元冷凍機
JPS6036547B2 (ja) 液化ガス気化装置における気化熱の有効利用方法
JPH08159584A (ja) ヘリウム液化冷凍装置及びその運転方法
JPS6266067A (ja) ヘリウム冷却装置
JPS62280571A (ja) 液化冷凍装置の予冷方法及びその装置
JPH02203162A (ja) 蓄熱式冷凍装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050331

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080422

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees