JP3666140B2 - Induction heating device - Google Patents

Induction heating device Download PDF

Info

Publication number
JP3666140B2
JP3666140B2 JP26266696A JP26266696A JP3666140B2 JP 3666140 B2 JP3666140 B2 JP 3666140B2 JP 26266696 A JP26266696 A JP 26266696A JP 26266696 A JP26266696 A JP 26266696A JP 3666140 B2 JP3666140 B2 JP 3666140B2
Authority
JP
Japan
Prior art keywords
switching element
input power
induction heating
voltage
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26266696A
Other languages
Japanese (ja)
Other versions
JPH10106738A (en
Inventor
大象 緒方
潔 井崎
直昭 石丸
秀和 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP26266696A priority Critical patent/JP3666140B2/en
Publication of JPH10106738A publication Critical patent/JPH10106738A/en
Application granted granted Critical
Publication of JP3666140B2 publication Critical patent/JP3666140B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、一般家庭及びレストランなどで使用される誘導加熱調理器に代表される誘導加熱装置に関するもので、更に詳しく述べればその誘導加熱用インバータ回路の入力電力制御手段に特徴を有する誘導加熱装置に関するものである。
【0002】
【従来の技術】
近年、安全な加熱源としての誘導加熱調理器が脚光を浴びつつある。この誘導加熱調理器は、スイッチング素子をオンオフさせてコイルに高周波電流を流すことにより、コイル近傍に誘導磁界が発生するため、コイル近傍に鉄などの金属を材料とした鍋を載置し、鍋に誘導磁界による誘導電流を発生させて、鉄損による発熱を利用した機器である。
【0003】
従来の誘導加熱調理器における制御手段を用いてなる誘導加熱調理器のインバータ回路の一例を図54、図55を用いて説明する。
【0004】
図54は従来の誘導加熱調理器の回路の一例である。図54で551は直流電源、552は加熱コイルで、図には特に記載していないがこの上に被加熱物(鍋等)が置かれる。553は第一コンデンサで、加熱コイル552と共振回路を構成している。554は第一スイッチング素子で、本例では高耐圧のIGBTを用いており、555は逆導通ダイオードで、第一スイッチング素子554と並列回路を構成している。557は第一スイッチング素子555を制御する制御回路、558は第一スイッチング素子の電圧検知手段で、第一スイッチング素子554の両端電圧Vceを検知し、制御回路559に出力している。制御回路557は、第一スイッチング素子の電圧検知手段558によってVceを検知し、第一スイッチング素子554の両端電圧がゼロボルト以下になった場合に、第一スイッチング素子554を導通させるように制御している。
【0005】
図55は従来のインバータ回路の動作波形であり、(A)は制御回路559から出力されるドライブ信号でこの出力がHighの時に第一スイッチング素子554が導通状態になる。(B)は、第一スイッチング素子554のIGBTと逆導通ダイオード555に流れる電流Icで、(C)は第一スイッチング素子554の両端電圧Vceである。
【0006】
以下、図54、図55をもとに、この回路の動作の説明を行う。制御回路559は第一スイッチング素子554を所定時間導通させた後、開放して加熱コイル552と第一コンデンサ553からなる共振回路を共振させる。さらに制御回路557は、第一スイッチング素子の電圧検知手段558によって第一スイッチング素子の両端電圧Vceを検知しており、Vceがゼロボルトよりも低くなると再び、第一スイッチング素子554をオンさせる。以上の動作を繰り返すため、図55において制御回路559から出力されるドライブ信号(A)に対して、Icは(B)の様に、Vceは、(C)の様になり、加熱コイル552上に置かれた鍋等の被加熱物が発熱する。被加熱物に供給される電力、及び第一スイッチング素子の電圧Vceはスイッチング素子554の導通時間を制御することにより自在に制御することができる。
【0007】
【発明が解決しようとする課題】
しかしながら、上記従来のインバータ回路の制御手段では、入力電力の増加に伴って共振電圧であるVceも増加するため、大きな入力電力を必要とする機器はVceのピーク値が高くなるために高耐圧のスイッチング素子が必要であり、低コスト化の妨げとなっていた。また、所定の入力電力を入れる場合に、その動作周波数は、コイルと第一コンデンサの共振によって決定するため、その周波数が鍋などの被加熱物の有する固有振動周波数と合致した場合には、耳障りな音が発生していた。
【0008】
【課題を解決するための手段】
上記課題を解決するために本発明は、直流電源にその一端を接続されたコイルと、前記直流電源に対して前記コイルと直列に接続される第一スイッチング素子と、前記コイルと共振回路を形成する第一コンデンサと、前記コイルと並列接続される第二スイッチング素子と第二共振コンデンサの直列接続と、前記第一スイッチング素子と前記第二スイッチング素子を導通制御する制御回路とを備え、前記制御回路は前記各スイッチング素子を交互に導通制御するとともに、動作周波数を増加して入力電力を増加すべく第一スイッチング素子の導通時間を固定し、第二スイッチング素子の導通時間を減少してなるものである。
【0009】
【発明の実施の形態】
請求項1に記載の発明は、直流電源にその一端を接続されたコイルと、前記直流電源に対して前記コイルと直列に接続される第一スイッチング素子と第一逆導通ダイオードの並列回路と、前記コイルと共振回路を形成する第一コンデンサと、前記コイルと並列接続される第二スイッチング素子と第二逆導通ダイオードの並列回路と直列接続される第二共振コンデンサとでなる直列回路と、前記第一スイッチング素子と前記第二スイッチング素子を導通制御する制御回路とを備え、前記制御回路は前記各スイッチング素子を交互に導通制御するとともに、動作周波数を増加して入力電力を増加すべく第一スイッチング素子の導通時間を固定し、第二スイッチング素子の導通時間を減少するために、第一スイッチング素子の両端電圧が入力電力の増加に伴って上がるものの、第二共振コンデンサと第二スイッチング素子と第二逆導通ダイオードによって、第一スイッチング素子の共振電圧がクランプされ、従来よりも低い両端電圧で制御する事が可能となる。
【0010】
【実施例】
(実施例1)
図1に、本発明の第1の実施例の誘導加熱調理器の回路の一例を示す。図1で11は直流電源である。12は加熱コイルで直流電源1のプラス側に一端を接続されており、図には特に記載していないがこの上に被加熱物(鍋等)が置かれる。13は第一コンデンサで、加熱コイル12と並列共振回路を形成している。14は第一スイッチング素子で、本例ではIGBT用いており、15は第一逆導通ダイオードで第一スイッチング素子14と並列回路を構成している。この第一スイッチング素子14と第一逆導通ダイオード15の並列回路は、加熱コイル12の他端と直流電源11のマイナス側に接続されている。直流電源11、加熱コイル12、第一コンデンサ13、第一スイッチング素子14、及び第一逆導通ダイオード15の構成は、従来例に示した回路と同じ構成であり、16の第二コンデンサは、17の第二スイッチング素子と18の第二逆導通ダイオードの並列回路と直列に接続され、加熱コイル12と並列回路を構成しており、第二コンデンサと第二スイッチング素子16の直列回路は、第一スイッチング素子15解放時の共振電圧を、第二コンデンサの充放電によって、クランプする役割を持っている。19の制御回路は第一スイッチング素子14と第二スイッチング素子17を交互に導通させるドライブ信号を出力し、入力電力制御を行う。
【0011】
図2に、図1の回路図に記載の第一スイッチング素子と第二スイッチング素子の電圧電流波形を示す。図2は、vge1は第一スイッチング素子のゲート・エミッタ間電圧、vge2は第二スイッチング素子のゲート・エミッタ間電圧、ic1とvce1は第一スイッチング素子のコレクタ電流とコレクタ・エミッタ間電圧、ic2とvce2は第二スイッチング素子のコレクタ電流とコレクタ・エミッタ間電圧をそれぞれ表しており、第一スイッチング素子の解放時の電圧が、第二スイッチング素子の導通時にクランプされている様子を示している。
【0012】
図3に、当実施例の制御手段による入力電力特性の一例を示す。図3は、横軸を第二スイッチング素子の導通時間、縦軸を入力電力として特性を表しており、第二スイッチング素子の導通時間の増加に伴って入力電力が低下するため、入力電力の制御を第二スイッチング素子の導通時間で行うことが可能である。
【0013】
なお、以上の説明では、第二コンデンサ16と、第二スイッチング素子17、第二逆導通ダイオード18の直列回路を図1の様に構成したが、図4の様に第二コンデンサ16と、第二スイッチング素子17、第二逆導通ダイオード18を入れ替えた構成にしても、また、図5の様に直列回路を第一スイッチング素子14に並列に接続した構成にしても、同様に実施可能である。
【0014】
図6に、当実施例の別な制御手段による入力電力特性の一例を示す。図6は、横軸を第一スイッチング素子の導通時間、縦軸を入力電力として特性を表しており、第一スイッチング素子の導通時間の増加に伴って入力電力が増加するため、入力電力の制御を第一スイッチング素子の導通時間で行うことが可能である。また、入力電力が大きい時に動作周波数が低くなるため、第一スイッチング素子のスイッチング損失を低減することが可能となる。
【0015】
(実施例2)
図7に、本発明の第2の実施例の誘導加熱調理器の回路図の一例を示す。この構成は、実施例1の回路構成に、直流電源11からの出力電流を検知する電流検知手段20を備えたもので、出力電流の情報を基にフィードバックを行い入力電力を制御する。
【0016】
図8に、図7の回路図に記載の直流電源11からの出力電流と入力電力の特性の一例を示す。図8は、横軸を直流電源11からの出力電流、縦軸を入力電力として特性を表しており、直流電源11からの出力電流の増加に伴って入力電力が増加するため、入力電力の制御は、直流電源の出力電流の情報を基にフィードバックを行うことによって、精度の良い制御が可能となる。
【0017】
(実施例3)
図9に、本発明の第3の実施例の誘導加熱調理器の回路図の一例を示す。この構成は、実施例1の回路構成に、加熱コイル12の動作周波数を検知する周波数検知手段21を備えたもので、動作周波数の情報を基にフィードバックを行い、入力電力を制御する。
【0018】
図10に、実施例1の制御手段を用いて入力電力の制御を行った場合の、図9の回路図に記載の動作周波数検知手段21によって検知された動作周波数と入力電力の特性の一例を示す。図10は、横軸を動作周波数、縦軸を入力電力として特性を表しており、第二スイッチング素子の導通時間の減少、すなわち動作周波数の増加に伴って入力電力が増加することを示している。よって、入力電力の制御は、動作周波数の情報を基にフィードバックを行うことによって、精度の良い制御が可能となる。
【0019】
図11に、当実施例の制御手段を用いて入力電力の制御を行った場合の、図9の回路図に記載の動作周波数検知手段21によって検知された動作周波数と入力電力の特性の一例を示す。図11は、横軸を動作周波数、縦軸を入力電力として特性を表しており、第一スイッチング素子の導通時間の増加、すなわち動作周波数の減少に伴って入力電力が増加することを示している。よって、入力電力の制御は、動作周波数の情報を基にフィードバックを行うことによって、精度の良い制御が可能となる。
【0020】
図12に、当実施例の別の制御手段を用いて入力電力の制御を行った場合の、図9回路図記載の動作周波数検知手段21によって検知された動作周波数と入力電力の特性の一例を示す。図10、図11で説明したように、第二スイッチング素子の導通時間の減少は、動作周波数を増加し、入力電力を増加する特性があり、第一スイッチング素子の導通時間の増加は、動作周波数を減少し、入力電力を増加する働きがある。この特性を、所定の動作周波数範囲内に適用し、図の矢印で示したように入力電力を増加させる。この制御方法によって、鍋などの負荷が有する固有振動周波数を避けた制御が可能となる。
【0021】
また、本実施例においては、加熱コイルの電流から動作周波数を検知しているが、このインバータを構成しているどの部品も動作周波数は同じであるため、例えばスイッチング素子の動作周波数を検知する構成をとっても、得られる値は同じである。
【0022】
(実施例4)
図13に、本発明の第4の実施例の誘導加熱調理器の回路図の一例を示す。この構成は、実施例1の回路構成に、第一スイッチング素子に流れる電流のピーク値を検知するピーク電流値検知手段22を備えたもので、ピーク電流値の情報を基にフィードバックを行い入力電力を制御する。
【0023】
図14に、当実施例の制御手段を用いて、図13の回路図記載のピーク電流値検値手段によって検知されたピーク電流値と入力電力の特性を示す。図13は、横軸をピーク電流値、縦軸を入力電力として特性を表しており、第一スイッチング素子の導通時間の増加、すなわちピーク電流値の増加に伴って入力電力が増加するため、入力電力の制御は、ピーク電流値の情報を基にフィードバックを行うことによって、精度の良い制御が可能となる。
【0024】
(実施例5)
図15に、本発明の第6の実施例の誘導加熱調理器の回路図の一例を示す。この構成は、実施例1の回路構成に、第一逆導通ダイオードに流れる電流のピーク値を検知するピーク電流値検知手段22を備えたもので、ピーク電流値の情報を基にフィードバックを行い入力電力を制御する。
【0025】
図16に、当実施例の制御手段を用いて、図15の回路図記載のピーク電流値検値手段によって検知されたピーク電流値と入力電力の特性を示す。図16は、横軸をピーク電流値、縦軸を入力電力として特性を表しており、第一スイッチング素子の導通時間の増加によって、第一逆導通ダイオードのピーク電流値は、第一スイッチング素子のピーク電流値と同様に増加し、入力電力も増加するため、入力電力の制御は、ピーク電流値の情報を基にフィードバックを行うことによって、精度の良い制御が可能となる。尚、図14、図16共に第一スイッチング素子の導通時間の増加に伴って、ピーク電流値は増加するため、和を求めても増加特性となるため、同様の効果があることは言うまでもない。
【0026】
(実施例6)
図17に、本発明の第6の実施例の誘導加熱調理器の回路図の一例を示す。この構成は、実施例1の回路構成に、第一スイッチング素子に流れる電流の実効値を検知する実効値電流検知手段23を備えたもので、実効値電流の情報を基にフィードバックを行い入力電力を制御する。
【0027】
図18に、当実施例の制御手段を用いて、図17の回路図記載の実効値電流検値手段によって検知された実効値電流と入力電力の特性を示す。図17は、横軸を実効値電流、縦軸を入力電力として特性を表しており、第一スイッチング素子の導通時間の増加、すなわち実効値電流の増加に伴って入力電力が増加するため、入力電力の制御は、実効値電流の情報を基にフィードバックを行うことによって、精度の良い制御が可能となる。
【0028】
(実施例7)
図19に、本発明の第7の実施例の誘導加熱調理器の回路図の一例を示す。この構成は、実施例1の回路構成に、第二逆導通ダイオードに流れる電流のピーク値を検知するピーク電流値検知手段22を備えたもので、ピーク電流値の情報を基にフィードバックを行い入力電力を制御する。
【0029】
図20に、当実施例の制御手段を用いて、図20の回路図記載のピーク電流値検値手段によって検知されたピーク電流値と入力電力の特性を示す。図20は、横軸をピーク電流値、縦軸を入力電力として特性を表しており、第一スイッチング素子の導通時間の増加、すなわちピーク電流値の増加に伴って入力電力が増加するため、入力電力の制御は、ピーク電流値の情報を基にフィードバックを行うことによって、精度の良い制御が可能となる。
【0030】
(実施例8)
図21に、本発明の第8の実施例の誘導加熱調理器の回路図の一例を示す。この構成は、実施例1の回路構成に、第二スイッチング素子と第二逆導通ダイオードに流れる電流の実効値を検知する実効値電流検知手段23を備えたもので、この実効値電流は第二コンデンサの実効値電流でもあり、この実効値電流の情報を基にフィードバックを行い入力電力を制御する。
【0031】
図22に、実施例1の制御手段を用いて、図21の回路図記載の実効値電流検知手段によって検知された実効値電流と入力電力の特性の一例を示す。図22は、横軸を実効値電流、縦軸を入力電力として特性を表しており、第一スイッチング素子の導通時間の増加、すなわち実効値電流の増加に伴って入力電力が増加するため、入力電力の制御は、実効値電流の情報を基にフィードバックを行うことによって、精度の良い制御が可能となる。
【0032】
図23に、実施例1の制御手段を用いて、図21の回路図記載の実効値電流検知手段によって検知された実効値電流と入力電力の特性の一例を示す。図23は、図22と同様に横軸を実効値電流、縦軸を入力電力として特性を表しており、第二スイッチング素子の導通時間の減少、すなわち実効値電流の減少に伴って入力電力が増加するため、入力電力の制御は、実効値電流の情報を基にフィードバックを行うことによって、精度の良い制御が可能となる。
【0033】
図24に、当実施例の制御手段を用いて、図21の回路図記載の実効値電流検知手段によって検知された実効値電流と入力電力の特性の一例を示す。図24は、図22、図23と同様に横軸を実効値電流、縦軸を入力電力として特性を表している。図22、図23の説明で述べたように、第一スイッチング素子の導通時間の増加は、実効電流を増加して入力電力を増加するが、第二スイッチング素子の導通時間の減少は、実効値電流を減少して入力電力を増加するため、第二コンデンサの実効値電流を一定値以下に抑えて、発熱による破壊を防ぎつつ入力電力の制御が可能となる。
【0034】
(実施例9)
図25に、本発明の第9の実施例の誘導加熱調理器の回路図の一例を示す。この構成は、実施例1の回路構成に、加熱コイルに流れる電流のピーク値を検知するピーク電流値検知手段22を備えたもので、ピーク電流値の情報を基にフィードバックを行い入力電力を制御する。
【0035】
図26に、当実施例の制御手段を用いて、図25の回路図記載のピーク電流値検値手段によって検知されたピーク電流値と入力電力の特性を示す。図25は、横軸をピーク電流値、縦軸を入力電力として特性を表しており、第一スイッチング素子の導通時間の増加、すなわちピーク電流値の増加に伴って入力電力が増加するため、入力電力の制御は、ピーク電流値の情報を基にフィードバックを行うことによって、精度の良い制御が可能となる。
【0036】
(実施例10)
図27に、本発明の第10の実施例の誘導加熱調理器の回路図の一例を示す。この構成は、実施例1の回路構成に、加熱コイルに流れる電流の実効値を検知する実効値電流検知手段23を備えたもので、この実効値電流の情報を基にフィードバックを行い入力電力を制御する。
【0037】
図28に、当実施例の制御手段を用いて、図27の回路図記載の実効値電流検知手段によって検知された実効値電流と入力電力の特性の一例を示す。図28は、横軸を実効値電流、縦軸を入力電力として特性を表しており、第一スイッチング素子の導通時間の増加、すなわち実効値電流の増加に伴って入力電力が増加するため、入力電力の制御は、実効値電流の情報を基にフィードバックを行うことによって、精度の良い制御が可能となる。
【0038】
(実施例11)
図29に、本発明の第11の実施例の誘導加熱調理器の回路図の一例を示す。この構成は、実施例1の回路構成に、第一コンデンサに流れる電流のピーク値を検知するピーク電流値検知手段22を備えたもので、ピーク電流値の情報を基にフィードバックを行い入力電力を制御する。
【0039】
図30に、当実施例の制御手段を用いて、図29の回路図記載のピーク電流値検値手段によって検知されたピーク電流値と入力電力の特性を示す。図30は、横軸をピーク電流値、縦軸を入力電力として特性を表しており、第一スイッチング素子の導通時間の増加、すなわちピーク電流値の増加に伴って入力電力が増加するため、入力電力の制御は、ピーク電流値の情報を基にフィードバックを行うことによって、精度の良い制御が可能となる。
【0040】
(実施例12)
図31に、本発明の第12の実施例の誘導加熱調理器の回路図の一例を示す。この構成は、実施例1の回路構成に、第一コンデンサに流れる電流の実効値を検知する実効値電流検知手段23を備えたもので、この実効値電流の情報を基にフィードバックを行い入力電力を制御する。
【0041】
図32に、当実施例の制御手段を用いて、図31の回路図記載の実効値電流検知手段によって検知された実効値電流と入力電力の特性の一例を示す。図32は、横軸を実効値電流、縦軸を入力電力として特性を表しており、第二スイッチング素子の導通時間の減少、すなわち実効値電流の増加に伴って入力電力が増加するため、入力電力の制御は、実効値電流の情報を基にフィードバックを行うことによって、精度の良い制御が可能となる。
【0042】
図33に、当実施例の制御手段を用いて、図31の回路図記載の実効値電流検知手段によって検知された実効値電流と入力電力の特性の一例を示す。図33は、横軸を実効値電流、縦軸を入力電力として特性を表しており、第一スイッチング素子の導通時間の増加、すなわち実効値電流の増加に伴って入力電力が増加するため、入力電力の制御は、実効値電流の情報を基にフィードバックを行うことによって、精度の良い制御が可能となる。尚、実施例1の制御手段を用いた場合よりも傾きが急になっている。
【0043】
図34に、当実施例の制御手段を用いて、図31の回路図記載の実効値電流検知手段によって検知された実効値電流と入力電力の特性の一例を示す。図34は、図32、図33と同様に横軸を実効値電流、縦軸を入力電力として特性を表している。図32、図33の説明で述べたように、第二スイッチング素子の導通時間の減少、第一スイッチング素子の導通時間の増加は、実効電流を増加して入力電力を増加するが、その傾きは図34に示すように異なっており、第二スイッチング素子の導通時間の増加は、第一スイッチング素子の導通時間の減少に比べて、実効値電流を大幅に減少するため、第一コンデンサの実効値電流を一定値以下に抑えて、発熱による破壊を防ぎつつ入力電力の制御が可能となる。
【0044】
(実施例13)
図35に、本発明の第13の実施例の誘導加熱調理器の回路図を示す。この構成は、実施例1の回路図に、第一スイッチング素子14の両端電圧検知手段24を備え、両端電圧を検知してフィードバックをおこない、入力電力を制御する。
【0045】
図36に、実施例1の制御手段を用いて、図35の回路図記載の第一スイッチング素子の両端電圧検知手段によって検知された両端電圧と入力電力の特性の一例を示す。図36は、横軸を第一スイッチング素子の両端電圧、縦軸を入力電力として特性を表しており、第二スイッチング素子の導通時間の減少、すなわち第一スイッチング素子の両端電圧の増加に伴って入力電力が増加するため、入力電力の制御を第一スイッチング素子の両端電圧の情報を基にフィードバックを行うことによって、精度の良い制御が可能となる。
【0046】
図37に、当実施例の制御手段を用いて、図35の回路図記載の第一スイッチング素子の両端電圧検知手段によって検知された両端電圧と入力電力の特性の一例を示す。図37は、図36で示したように横軸は両端電圧、縦軸は入力電力であり、第一スイッチング素子の導通時間の増加によって、両端電圧が増加し、入力電力も増加するので、入力電力の制御を第一スイッチング素子の両端電圧を検知してフィードバックを行うことが可能となる。
【0047】
(実施例14)
図38に、本発明の第14の実施例の誘導加熱調理器の回路図を示す。この構成は、実施例1の回路図に、第二スイッチング素子17の両端電圧検知手段25を備え、両端電圧を検知してフィードバックをおこない、入力電力を制御する。
【0048】
図39に、当実施例の制御手段を用いて、図38の回路図記載の第二スイッチング素子の両端電圧検知手段25によって検知された両端電圧と入力電力の特性の一例を示す。図39は、横軸を第二スイッチング素子の両端電圧、縦軸を入力電力として特性を表しており、第二スイッチング素子の導通時間の減少、すなわち第二スイッチング素子の両端電圧の増加に伴って入力電力が増加するため、入力電力の制御を第一スイッチング素子の両端電圧の情報を基にフィードバックを行うことによって、精度の良い制御が可能となる。
【0049】
(実施例15)
図40に、本発明の第15の実施例の誘導加熱調理器の回路図を示す。この構成は、実施例1の回路図に、第一スイッチング素子14の両端電圧検知手段24と、第二スイッチング素子17の両端電圧検知手段25と、各電圧検知手段によって検知された両端電圧の差を求める減算手段26を備え、各スイッチング素子の両端電圧を検知し、その差を求めてフィードバックをおこない、入力電力を制御する。
【0050】
図41に、当実施例の制御手段を用いて、図40の回路図記載の減算手段によって検知された各スイッチング素子の両端電圧の差と入力電力の特性の一例を示す。図41は、横軸を各スイッチング素子の両端電圧の差、縦軸を入力電力として特性を表しており、第二スイッチング素子の導通時間の減少、すなわち各スイッチング素子の両端電圧の差の減少に伴って入力電力が増加するため、入力電力の制御を各スイッチング素子の両端電圧の差の情報を基にフィードバックを行うことによって、精度の良い制御が可能となる。
【0051】
(実施例16)
図42に、本発明の第16の実施例の誘導加熱調理器の回路図を示す。この構成は、実施例1の回路図に、第一コンデンサ13の両端電圧検知手段24を備え、両端電圧を検知してフィードバックをおこない、入力電圧を制御する。
【0052】
図43に、当実施例の制御手段を用いて、図42の回路図記載の第一コンデンサの両端電圧検知手段によって検知された両端電圧と入力電力の特性の一例を示す。図43は、横軸を第一コンデンサの両端電圧、縦軸を入力電力として特性を表しており、第二スイッチング素子の導通時間の減少、すなわち第一コンデンサの両端電圧の増加に伴って入力電力が増加するため、入力電力の制御を第一コンデンサの両端電圧の情報を基にフィードバックを行うことによって、精度の良い制御が可能となる。
【0053】
(実施例17)
図44に、本発明の第17の実施例の誘導加熱調理器の回路図を示す。この構成は、実施例1の回路図に、第二コンデンサ16の両端電圧検知手段24を備え、両端電圧を検知してフィードバックをおこない、入力電圧を制御する。
【0054】
図45に、当実施例の制御手段を用いて、図44の回路図記載の第二コンデンサの両端電圧検知手段によって検知された両端電圧と入力電力の特性の一例を示す。図45は、横軸を第二コンデンサの両端電圧、縦軸を入力電力として特性を表しており、第二スイッチング素子の導通時間の減少、すなわち第二コンデンサの両端電圧の減少に伴って入力電力が増加するため、入力電力の制御を第二コンデンサの両端電圧の情報を基にフィードバックを行うことによって、精度の良い制御が可能となる。
【0055】
(実施例18)
図46に、本発明の第18の実施例の誘導加熱調理器の回路図の一例を示す。この構成は、第一スイッチング素子14の両端電圧検知手段を備え、直流電源11からの出力電流を検知する電流検知手段の情報を基に入力電力を制御すると同時に、第一スイッチング素子の両端電圧が所定値以下となるように制御する。
【0056】
図47に、当実施例の制御手段を用いて、図46の回路図記載の第一スイッチング素子の両端電圧検知手段によって検知された両端電圧と入力電力の特性の制御手段の一例を示す。図47は、横軸を第一スイッチング素子の両端電圧、縦軸を入力電力として特性を表しており、第一スイッチング素子の導通時間の増加、すなわち入力電力の増加に伴って第一スイッチング素子の両端電圧は増加し、両端電圧が設定値となると、第二スイッチング素子の導通時間を増加して、両端電圧を下げて、再び、第一スイッチング素子の導通時間を増加して、入力電力を増加させる。
【0057】
(実施例19)
図48に、本発明の第19の実施例の誘導加熱調理器の回路図の一例を示す。この構成は、第二スイッチング素子17の両端電圧検知手段を備え、直流電源11からの出力電流を検知する電流検知手段の情報を基に入力電力を制御すると同時に、第二スイッチング素子の両端電圧が所定値以下となるように制御する。
【0058】
図49に、当実施例の制御手段を用いて、図48の回路図記載の第二スイッチング素子の両端電圧検知手段によって検知された両端電圧と入力電力の特性の制御手段の一例を示す。図47は、横軸を第二スイッチング素子の両端電圧、縦軸を入力電力として特性を表しており、第一スイッチング素子の導通時間の増加、すなわち入力電力の増加に伴って第二スイッチング素子の両端電圧は増加し、両端電圧が設定値となると、第二スイッチング素子の導通時間を増加して、両端電圧を下げて、再び、第一スイッチング素子の導通時間を増加して、入力電力を増加させる。
【0059】
(実施例20)
図50に、本発明の第20の実施例の誘導加熱調理器の回路図の一例を示す。この構成は、第一コンデンサ13の両端電圧検知手段を備え、直流電源11からの出力電流を検知する電流検知手段の情報を基に入力電力を制御すると同時に、第一コンデンサの両端電圧が所定値以下となるように制御する。
【0060】
図51に、当実施例の制御手段を用いて、図50の回路図記載の第一コンデンサの両端電圧検知手段によって検知された両端電圧と入力電力の特性の制御手段の一例を示す。図51は、横軸を第一コンデンサの両端電圧、縦軸を入力電力として特性を表しており、第一スイッチング素子の導通時間の増加、すなわち入力電力の増加に伴って第一コンデンサの両端電圧は増加し、両端電圧が設定値となると、第二スイッチング素子の導通時間を増加して、両端電圧を下げて、再び、第一スイッチング素子の導通時間を増加して、入力電力を増加させる。
【0061】
(実施例21)
図52に、本発明の第21の実施例の誘導加熱調理器の回路図の一例を示す。この構成は、第二コンデンサ16の両端電圧検知手段を備え、直流電源11からの出力電流を検知する電流検知手段の情報を基に入力電力を制御すると同時に、第二コンデンサの両端電圧が所定値以下となるように制御する。
【0062】
図53に、当実施例の制御手段を用いて、図52の回路図記載の第二コンデンサの両端電圧検知手段によって検知された両端電圧と入力電力の特性の制御手段の一例を示す。図53は、横軸を第二コンデンサの両端電圧、縦軸を入力電力として特性を表しており、第一スイッチング素子の導通時間の増加、すなわち入力電力の増加に伴って第二コンデンサの両端電圧は増加し、両端電圧が設定値となると、第二スイッチング素子の導通時間を増加して、両端電圧を下げて、再び、第一スイッチング素子の導通時間を増加して、入力電力を増加させる。
【0063】
【発明の効果】
以上の実施例から明らかなように、請求項1記載の発明によれば、入力電力を制御すべく第一スイッチング素子の導通時間を固定し、第二スイッチング素子の導通時間を変更するために、第一スイッチング素子の両端電圧が入力電力の増加に伴って上がるものの、第二共振コンデンサと第二スイッチング素子によって、第一スイッチング素子の電圧がクランプされ、第二スイッチング素子が動作しない従来例よりも低い両端電圧で制御する事が可能となり、第一スイッチング素子を低耐圧で低コストの部品と変換可能となる効果が得られるる。
【図面の簡単な説明】
【図1】 本発明の第1の実施例の誘導加熱装置の回路図
【図2】 同誘導加熱装置の各スイッチング素子の動作波形図
【図3】 同誘導加熱装置の入力電力特性図
【図4】 同誘導加熱装置の別な回路図
【図5】 同誘導加熱装置の更に別な回路図
【図6】 同誘導加熱装置の別な入力電力特性図
【図7】 本発明の第2の実施例の誘導加熱装置の回路図
【図8】 同誘導加熱装置の出力電流と入力電力の特性図
【図9】 本発明の第3の実施例の誘導加熱装置の回路図
【図10】 同誘導加熱装置の動作周波数と入力電力の特性図
【図11】 同誘導加熱装置の動作周波数と入力電力の特性図
【図12】 同誘導加熱装置の別の動作周波数と入力電力の特性図
【図13】 本発明の第4の実施例の誘導加熱装置の回路図
【図14】 同誘導加熱装置のピーク電流値と入力電力の特性図
【図15】 本発明の第5の実施例の誘導加熱装置の回路図
【図16】 同誘導加熱装置のピーク電流値と入力電力の特性図
【図17】 本発明の第6の実施例の誘導加熱装置の回路図
【図18】 同誘導加熱装置の実効値電流と入力電力の特性図
【図19】 本発明の第7の実施例の誘導加熱装置の回路図
【図20】 同誘導加熱装置のピーク電流値と入力電力の特性図
【図21】 本発明の第8の実施例の誘導加熱装置の回路図
【図22】 同誘導加熱装置の実効値電流と入力電力の特性図
【図23】 同誘導加熱装置の別の実効値電流と入力電力の特性図
【図24】 同誘導加熱装置の更に別の実効値電流と入力電力の特性図
【図25】 本発明の第9の実施例の誘導加熱装置の回路図
【図26】 同誘導加熱装置のピーク電流値と入力電力の特性図
【図27】 本発明の第10の実施例の誘導加熱装置の回路図
【図28】 同誘導加熱装置の実効値電流と入力電力の特性図
【図29】 本発明の第11の実施例の誘導加熱装置の回路図
【図30】 同誘導加熱装置のピーク電流値と入力電力の特性図
【図31】 本発明の第12の実施例の誘導加熱装置の回路図
【図32】 同誘導加熱装置の実効値電流と入力電力の特性図
【図33】 同誘導加熱装置の別の実効値電流と入力電力の特性図
【図34】 同誘導加熱装置の更に別の実効値電流と入力電力の特性図
【図35】 本発明の第13の実施例の誘導加熱装置の回路図
【図36】 同誘導加熱装置の両端電圧と入力電力の特性図
【図37】 同誘導加熱装置の別の両端電圧と入力電力の特性図
【図38】 本発明の第14の実施例の誘導加熱装置の回路図
【図39】 同誘導加熱装置の両端電圧と入力電力の特性図
【図40】 本発明の第15の実施例の誘導加熱装置の回路図
【図41】 同誘導加熱装置の各両端電圧の差と入力電力の特性図
【図42】 本発明の第16の実施例の誘導加熱装置の回路図
【図43】 同誘導加熱装置の両端電圧と入力電力の特性図
【図44】 本発明の第17の実施例の誘導加熱装置の回路図
【図45】 同誘導加熱装置の両端電圧と入力電力の特性図
【図46】 本発明の第18の実施例の誘導加熱装置の回路図
【図47】 同誘導加熱装置の両端電圧と入力電力の特性図
【図48】 本発明の第19の実施例の誘導加熱装置の回路図
【図49】 同誘導加熱装置の両端電圧と入力電力の特性図
【図50】 本発明の第20の実施例の誘導加熱装置の回路図
【図51】 同誘導加熱装置の両端電圧と入力電力の特性図
【図52】 本発明の第21の実施例の誘導加熱装置の回路図
【図53】 同誘導加熱装置の両端電圧と入力電力の特性図
【図54】 従来例の誘導加熱調理装置の回路図
【図55】 同誘導加熱装置のスイッチング素子の動作波形図
【符号の説明】
11、551 直流電源
12、552 加熱コイル
13、553 第一コンデンサ
14、554 第一スイッチング素子
15、555 第一逆導通ダイオード
16 第二コンデンサ
17 第二スイッチング素子
18 第二逆導通ダイオード
19、559 制御回路
20 電流検知手段
21 周波数検知手段
22 ピーク電流値検知手段
23 実効値電流検知手段
24、558 両端電圧検知手段
25 両端電圧検知手段
26 減算手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an induction heating apparatus typified by an induction heating cooker used in general households and restaurants, and more specifically, an induction heating apparatus characterized by input power control means of an inverter circuit for induction heating. It is about.
[0002]
[Prior art]
In recent years, induction cooking devices as a safe heating source have been in the spotlight. In this induction heating cooker, an induction magnetic field is generated in the vicinity of the coil by turning on and off the switching element and causing a high-frequency current to flow through the coil. This is a device that uses the heat generated by iron loss by generating an induced current due to an induced magnetic field.
[0003]
An example of the inverter circuit of the induction heating cooker using the control means in the conventional induction heating cooker will be described with reference to FIGS.
[0004]
FIG. 54 is an example of a circuit of a conventional induction heating cooker. In FIG. 54, reference numeral 551 denotes a DC power source, and reference numeral 552 denotes a heating coil, which is not particularly shown in the figure, and an object to be heated (such as a pan) is placed thereon. Reference numeral 553 denotes a first capacitor, which forms a resonance circuit with the heating coil 552. Reference numeral 554 denotes a first switching element. In this example, a high breakdown voltage IGBT is used. Reference numeral 555 denotes a reverse conducting diode, which forms a parallel circuit with the first switching element 554. Reference numeral 557 denotes a control circuit for controlling the first switching element 555, and 558 denotes voltage detection means for the first switching element, which detects the voltage Vce across the first switching element 554 and outputs it to the control circuit 559. The control circuit 557 detects Vce by the voltage detecting means 558 of the first switching element, and controls the first switching element 554 to be conductive when the voltage across the first switching element 554 becomes zero volts or less. Yes.
[0005]
FIG. 55 shows operation waveforms of a conventional inverter circuit. FIG. 55A shows a drive signal output from the control circuit 559. When this output is High, the first switching element 554 is in a conductive state. (B) is the current Ic flowing through the IGBT of the first switching element 554 and the reverse conducting diode 555, and (C) is the voltage Vce across the first switching element 554.
[0006]
The operation of this circuit will be described below with reference to FIGS. The control circuit 559 causes the first switching element 554 to conduct for a predetermined time, and then opens to resonate a resonance circuit including the heating coil 552 and the first capacitor 553. Further, the control circuit 557 detects the voltage Vce across the first switching element by the voltage detection means 558 of the first switching element, and turns on the first switching element 554 again when Vce becomes lower than zero volts. In order to repeat the above operation, Ic becomes like (B) and Vce becomes like (C) with respect to the drive signal (A) output from the control circuit 559 in FIG. The object to be heated, such as a pan placed in, generates heat. The power supplied to the object to be heated and the voltage Vce of the first switching element can be freely controlled by controlling the conduction time of the switching element 554.
[0007]
[Problems to be solved by the invention]
However, in the conventional inverter circuit control means, Vce, which is the resonance voltage, increases as the input power increases, so that devices that require large input power have a high peak voltage because the peak value of Vce is high. A switching element is required, which hinders cost reduction. In addition, when a predetermined input power is input, the operating frequency is determined by the resonance of the coil and the first capacitor. Therefore, if the frequency matches the natural vibration frequency of a heated object such as a pan, it is annoying. The sound was generated.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, the present invention forms a coil having one end connected to a DC power source, a first switching element connected in series with the DC power source to the DC power source, and a resonance circuit with the coil. And a control circuit for controlling conduction of the first switching element and the second switching element, and a control circuit that controls conduction of the first switching element and the second switching element. The circuit alternately controls the conduction of the switching elements, fixes the conduction time of the first switching element to increase the input power by increasing the operating frequency, and reduces the conduction time of the second switching element. It is.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to claim 1 is a coil having one end connected to a DC power source, a parallel circuit of a first switching element and a first reverse conducting diode connected in series with the coil with respect to the DC power source, A first circuit that forms a resonance circuit with the coil; a series circuit including a second switching element connected in parallel with the coil and a second resonance capacitor connected in series with a parallel circuit of a second reverse conducting diode; and A control circuit for controlling conduction of the first switching element and the second switching element, wherein the control circuit alternately controls conduction of the switching elements, and first increases the operating frequency to increase the input power. In order to fix the conduction time of the switching element and reduce the conduction time of the second switching element, the voltage across the first switching element is Although up with the pressure, the second resonance capacitor and a second switching element and the second reverse conducting diode, the resonance voltage of the first switching element is clamped, it is possible to control at a lower voltage across than conventional.
[0010]
【Example】
(Example 1)
In FIG. 1, an example of the circuit of the induction heating cooking appliance of the 1st Example of this invention is shown. In FIG. 1, reference numeral 11 denotes a DC power source. Reference numeral 12 denotes a heating coil, one end of which is connected to the positive side of the DC power source 1, and an object to be heated (such as a pan) is placed on the heating coil, although not particularly shown in the figure. Reference numeral 13 denotes a first capacitor, which forms a parallel resonance circuit with the heating coil 12. Reference numeral 14 denotes a first switching element, which uses an IGBT in this example, and reference numeral 15 denotes a first reverse conducting diode, which forms a parallel circuit with the first switching element 14. The parallel circuit of the first switching element 14 and the first reverse conducting diode 15 is connected to the other end of the heating coil 12 and the negative side of the DC power supply 11. The configurations of the DC power supply 11, the heating coil 12, the first capacitor 13, the first switching element 14, and the first reverse conducting diode 15 are the same as those in the circuit shown in the conventional example, and the 16 second capacitors are 17 Are connected in series with the parallel circuit of the second switching element 18 and the second reverse conducting diode 18 to constitute a parallel circuit with the heating coil 12, and the series circuit of the second capacitor and the second switching element 16 is the first circuit. It has a role to clamp the resonance voltage when the switching element 15 is released by charging and discharging the second capacitor. A control circuit 19 outputs a drive signal for alternately conducting the first switching element 14 and the second switching element 17 to perform input power control.
[0011]
FIG. 2 shows voltage-current waveforms of the first switching element and the second switching element described in the circuit diagram of FIG. In FIG. 2, vge1 is the gate-emitter voltage of the first switching element, vge2 is the gate-emitter voltage of the second switching element, ic1 and vce1 are the collector current and collector-emitter voltage of the first switching element, and ic2 vce2 represents the collector current and the collector-emitter voltage of the second switching element, respectively, and shows that the voltage when the first switching element is released is clamped when the second switching element is conductive.
[0012]
FIG. 3 shows an example of input power characteristics by the control means of this embodiment. FIG. 3 shows the characteristics with the horizontal axis representing the conduction time of the second switching element and the vertical axis representing the input power. Since the input power decreases as the conduction time of the second switching element increases, the input power is controlled. Can be performed with the conduction time of the second switching element.
[0013]
In the above description, the series circuit of the second capacitor 16, the second switching element 17, and the second reverse conducting diode 18 is configured as shown in FIG. 1, but as shown in FIG. The present invention can be similarly implemented even if the two switching elements 17 and the second reverse conducting diode 18 are replaced, or the series circuit is connected in parallel to the first switching element 14 as shown in FIG. .
[0014]
FIG. 6 shows an example of the input power characteristic by another control means of the present embodiment. FIG. 6 shows the characteristics with the horizontal axis representing the conduction time of the first switching element and the vertical axis representing the input power. Since the input power increases as the conduction time of the first switching element increases, the input power is controlled. Can be performed with the conduction time of the first switching element. In addition, since the operating frequency is lowered when the input power is large, the switching loss of the first switching element can be reduced.
[0015]
(Example 2)
In FIG. 7, an example of the circuit diagram of the induction heating cooking appliance of the 2nd Example of this invention is shown. In this configuration, the circuit configuration of the first embodiment is provided with the current detection means 20 for detecting the output current from the DC power supply 11, and feedback is performed based on the output current information to control the input power.
[0016]
FIG. 8 shows an example of the characteristics of the output current and input power from the DC power supply 11 shown in the circuit diagram of FIG. FIG. 8 shows the characteristics with the horizontal axis representing the output current from the DC power supply 11 and the vertical axis representing the input power. Since the input power increases as the output current from the DC power supply 11 increases, the input power is controlled. The feedback control is performed based on the information on the output current of the DC power supply, so that accurate control can be performed.
[0017]
(Example 3)
In FIG. 9, an example of the circuit diagram of the induction heating cooking appliance of the 3rd Example of this invention is shown. In this configuration, the circuit configuration of the first embodiment is provided with frequency detection means 21 for detecting the operating frequency of the heating coil 12, and feedback is performed based on information on the operating frequency to control the input power.
[0018]
FIG. 10 shows an example of characteristics of the operating frequency and the input power detected by the operating frequency detecting means 21 shown in the circuit diagram of FIG. 9 when the input power is controlled using the control means of the first embodiment. Show. FIG. 10 shows the characteristics with the horizontal axis as the operating frequency and the vertical axis as the input power, and shows that the input power increases as the operating time of the second switching element decreases, that is, the operating frequency increases. . Therefore, the input power can be controlled with high accuracy by performing feedback based on the information on the operating frequency.
[0019]
FIG. 11 shows an example of the characteristics of the operating frequency and the input power detected by the operating frequency detecting means 21 shown in the circuit diagram of FIG. 9 when the input power is controlled using the control means of this embodiment. Show. FIG. 11 shows the characteristics with the horizontal axis as the operating frequency and the vertical axis as the input power, and shows that the input power increases as the conduction time of the first switching element increases, that is, the operating frequency decreases. . Therefore, the input power can be controlled with high accuracy by performing feedback based on the information on the operating frequency.
[0020]
FIG. 12 shows an example of characteristics of the operating frequency and the input power detected by the operating frequency detecting means 21 shown in the circuit diagram of FIG. 9 when the input power is controlled using another control means of this embodiment. Show. As described with reference to FIGS. 10 and 11, the decrease in the conduction time of the second switching element has a characteristic of increasing the operating frequency and increasing the input power, and the increase in the conduction time of the first switching element is the operating frequency. Has a function of decreasing the input power and increasing the input power. This characteristic is applied within a predetermined operating frequency range to increase the input power as indicated by the arrows in the figure. By this control method, control that avoids the natural vibration frequency of a load such as a pan is possible.
[0021]
Further, in this embodiment, the operating frequency is detected from the current of the heating coil, but since the operating frequency is the same for all the parts constituting this inverter, for example, the configuration for detecting the operating frequency of the switching element. The value obtained is the same even if.
[0022]
(Example 4)
In FIG. 13, an example of the circuit diagram of the induction heating cooking appliance of the 4th Example of this invention is shown. This configuration includes the peak current value detection means 22 for detecting the peak value of the current flowing through the first switching element in the circuit configuration of the first embodiment, and performs feedback based on the information on the peak current value to input power. To control.
[0023]
FIG. 14 shows the characteristics of the peak current value and the input power detected by the peak current value detection means shown in the circuit diagram of FIG. 13 using the control means of this embodiment. FIG. 13 shows the characteristics with the horizontal axis representing the peak current value and the vertical axis representing the input power, and the input power increases as the conduction time of the first switching element increases, that is, the peak current value increases. The power can be controlled with high accuracy by performing feedback based on the peak current value information.
[0024]
(Example 5)
In FIG. 15, an example of the circuit diagram of the induction heating cooking appliance of the 6th Example of this invention is shown. This configuration includes the peak current value detecting means 22 for detecting the peak value of the current flowing through the first reverse conducting diode in the circuit configuration of the first embodiment, and performs feedback based on the information on the peak current value. Control power.
[0025]
FIG. 16 shows the characteristics of the peak current value and the input power detected by the peak current value detection means shown in the circuit diagram of FIG. 15 using the control means of this embodiment. FIG. 16 shows the characteristics with the horizontal axis representing the peak current value and the vertical axis representing the input power. As the conduction time of the first switching element increases, the peak current value of the first reverse conducting diode is As the peak current value increases and the input power also increases, the input power can be controlled with high accuracy by performing feedback based on the information on the peak current value. 14 and FIG. 16, since the peak current value increases as the conduction time of the first switching element increases, it is needless to say that the same effect is obtained because the increase characteristic is obtained even if the sum is obtained.
[0026]
(Example 6)
In FIG. 17, an example of the circuit diagram of the induction heating cooking appliance of the 6th Example of this invention is shown. This configuration includes the effective value current detection means 23 for detecting the effective value of the current flowing through the first switching element in the circuit configuration of the first embodiment, and performs feedback based on information on the effective value current to input power. To control.
[0027]
FIG. 18 shows the characteristics of the effective value current and the input power detected by the effective value current detection means shown in the circuit diagram of FIG. 17 using the control means of this embodiment. FIG. 17 shows the characteristics with the horizontal axis representing the effective current and the vertical axis representing the input power. The input power increases as the conduction time of the first switching element increases, that is, the effective current increases. The power control can be performed with high accuracy by performing feedback based on the information on the effective value current.
[0028]
(Example 7)
In FIG. 19, an example of the circuit diagram of the induction heating cooking appliance of the 7th Example of this invention is shown. This configuration includes the peak current value detection means 22 for detecting the peak value of the current flowing through the second reverse conducting diode in the circuit configuration of the first embodiment, and performs feedback based on the information on the peak current value. Control power.
[0029]
FIG. 20 shows the characteristics of the peak current value and the input power detected by the peak current value detection means shown in the circuit diagram of FIG. 20 using the control means of this embodiment. FIG. 20 shows the characteristics with the horizontal axis representing the peak current value and the vertical axis representing the input power, and the input power increases as the conduction time of the first switching element increases, that is, the peak current value increases. The power can be controlled with high accuracy by performing feedback based on the peak current value information.
[0030]
(Example 8)
In FIG. 21, an example of the circuit diagram of the induction heating cooking appliance of the 8th Example of this invention is shown. This configuration is provided with effective value current detection means 23 for detecting the effective value of the current flowing through the second switching element and the second reverse conducting diode in the circuit configuration of the first embodiment. It is also the effective value current of the capacitor, and feedback is performed based on the information on the effective value current to control the input power.
[0031]
FIG. 22 shows an example of the characteristics of the effective value current and the input power detected by the effective value current detecting means shown in the circuit diagram of FIG. 21 using the control means of the first embodiment. FIG. 22 shows characteristics with the horizontal axis representing the effective current and the vertical axis representing the input power, and the input power increases as the conduction time of the first switching element increases, that is, the effective current increases. The power control can be performed with high accuracy by performing feedback based on the information on the effective value current.
[0032]
FIG. 23 shows an example of the characteristics of the effective value current and the input power detected by the effective value current detecting means shown in the circuit diagram of FIG. 21 using the control means of the first embodiment. FIG. 23 shows the characteristics with the horizontal axis representing the effective current and the vertical axis representing the input power, as in FIG. 22, and the input power decreases as the conduction time of the second switching element decreases, that is, the effective current decreases. Therefore, the input power can be controlled with high accuracy by performing feedback based on the information on the effective value current.
[0033]
FIG. 24 shows an example of the characteristics of the effective value current and the input power detected by the effective value current detecting means shown in the circuit diagram of FIG. 21 using the control means of this embodiment. FIG. 24 shows the characteristics with the horizontal axis representing the effective current and the vertical axis representing the input power, as in FIGS. 22 and FIG. 23, the increase in the conduction time of the first switching element increases the effective current and the input power, but the decrease in the conduction time of the second switching element is the effective value. Since the input power is increased by decreasing the current, the effective value current of the second capacitor can be suppressed to a certain value or less, and the input power can be controlled while preventing destruction due to heat generation.
[0034]
Example 9
In FIG. 25, an example of the circuit diagram of the induction heating cooking appliance of the 9th Example of this invention is shown. This configuration includes the peak current value detecting means 22 for detecting the peak value of the current flowing through the heating coil in the circuit configuration of the first embodiment, and controls the input power by performing feedback based on the information on the peak current value. To do.
[0035]
FIG. 26 shows the characteristics of the peak current value and the input power detected by the peak current value detection means shown in the circuit diagram of FIG. 25 using the control means of this embodiment. FIG. 25 shows the characteristics with the horizontal axis representing the peak current value and the vertical axis representing the input power. The input power increases as the conduction time of the first switching element increases, that is, the peak current value increases. The power can be controlled with high accuracy by performing feedback based on the peak current value information.
[0036]
(Example 10)
In FIG. 27, an example of the circuit diagram of the induction heating cooking appliance of the 10th Example of this invention is shown. This configuration is provided with effective value current detection means 23 for detecting the effective value of the current flowing through the heating coil in the circuit configuration of the first embodiment. Feedback is performed based on the information on the effective value current, and the input power is obtained. Control.
[0037]
FIG. 28 shows an example of the characteristics of the effective value current and the input power detected by the effective value current detecting means shown in the circuit diagram of FIG. 27 using the control means of this embodiment. FIG. 28 shows the characteristics with the horizontal axis representing the effective current and the vertical axis representing the input power. The input power increases as the conduction time of the first switching element increases, that is, the effective current increases. The power control can be performed with high accuracy by performing feedback based on the information on the effective value current.
[0038]
(Example 11)
In FIG. 29, an example of the circuit diagram of the induction heating cooking appliance of the 11th Example of this invention is shown. This configuration includes the peak current value detection means 22 for detecting the peak value of the current flowing through the first capacitor in the circuit configuration of the first embodiment, and performs feedback based on the information on the peak current value to obtain the input power. Control.
[0039]
FIG. 30 shows the characteristics of the peak current value and the input power detected by the peak current value detection means shown in the circuit diagram of FIG. 29 using the control means of this embodiment. FIG. 30 shows the characteristics with the horizontal axis representing the peak current value and the vertical axis representing the input power, and the input power increases as the conduction time of the first switching element increases, that is, the peak current value increases. The power can be controlled with high accuracy by performing feedback based on the peak current value information.
[0040]
(Example 12)
In FIG. 31, an example of the circuit diagram of the induction heating cooking appliance of the 12th Example of this invention is shown. In this configuration, the circuit configuration of the first embodiment is provided with an effective value current detection means 23 for detecting the effective value of the current flowing through the first capacitor. To control.
[0041]
FIG. 32 shows an example of the characteristics of the effective value current and the input power detected by the effective value current detecting means shown in the circuit diagram of FIG. 31 using the control means of this embodiment. FIG. 32 shows the characteristics with the horizontal axis representing the effective current and the vertical axis representing the input power. Since the input power increases as the conduction time of the second switching element decreases, that is, the effective current increases, the input power increases. The power control can be performed with high accuracy by performing feedback based on the information on the effective value current.
[0042]
FIG. 33 shows an example of the characteristics of the effective value current and the input power detected by the effective value current detecting means shown in the circuit diagram of FIG. 31 using the control means of this embodiment. FIG. 33 shows characteristics with the horizontal axis representing the effective current and the vertical axis representing the input power, and the input power increases as the conduction time of the first switching element increases, that is, the effective current increases. The power control can be performed with high accuracy by performing feedback based on the information on the effective value current. Note that the inclination is steeper than in the case of using the control means of the first embodiment.
[0043]
FIG. 34 shows an example of the characteristics of the effective value current and the input power detected by the effective value current detecting means shown in the circuit diagram of FIG. 31 using the control means of this embodiment. FIG. 34 shows characteristics with the horizontal axis representing the effective current and the vertical axis representing the input power, as in FIGS. 32 and 33. As described in FIGS. 32 and 33, the decrease in the conduction time of the second switching element and the increase in the conduction time of the first switching element increase the effective current and increase the input power, but the slope is As shown in FIG. 34, since the increase in the conduction time of the second switching element significantly reduces the effective current compared to the decrease in the conduction time of the first switching element, the effective value of the first capacitor is reduced. It is possible to control the input power while keeping the current below a certain value and preventing destruction due to heat generation.
[0044]
(Example 13)
In FIG. 35, the circuit diagram of the induction heating cooking appliance of the 13th Example of this invention is shown. This configuration includes the voltage detection means 24 at both ends of the first switching element 14 in the circuit diagram of the first embodiment, detects the voltage at both ends, performs feedback, and controls input power.
[0045]
FIG. 36 shows an example of the characteristics of both-end voltage and input power detected by the both-end voltage detecting means of the first switching element shown in the circuit diagram of FIG. 35 using the control means of the first embodiment. FIG. 36 shows the characteristics with the horizontal axis representing the voltage across the first switching element and the vertical axis representing the input power. As the conduction time of the second switching element decreases, that is, as the voltage across the first switching element increases. Since the input power increases, accurate control is possible by performing feedback based on the information on the voltage across the first switching element.
[0046]
FIG. 37 shows an example of the characteristics of both-end voltage and input power detected by the both-end voltage detecting means of the first switching element shown in the circuit diagram of FIG. 35 using the control means of this embodiment. In FIG. 37, as shown in FIG. 36, the horizontal axis indicates the voltage at both ends, the vertical axis indicates the input power, and the voltage at both ends increases and the input power increases as the conduction time of the first switching element increases. The power can be controlled by detecting the voltage across the first switching element and performing feedback.
[0047]
(Example 14)
In FIG. 38, the circuit diagram of the induction heating cooking appliance of the 14th Example of this invention is shown. This configuration includes the voltage detection means 25 for both ends of the second switching element 17 in the circuit diagram of the first embodiment, detects the voltages at both ends, performs feedback, and controls input power.
[0048]
FIG. 39 shows an example of the characteristics of both-end voltage and input power detected by the both-end voltage detecting means 25 of the second switching element shown in the circuit diagram of FIG. 38 using the control means of this embodiment. FIG. 39 shows the characteristics with the horizontal axis representing the voltage across the second switching element and the vertical axis representing the input power. As the conduction time of the second switching element decreases, that is, as the voltage across the second switching element increases. Since the input power increases, accurate control can be performed by performing feedback based on information on the voltage across the first switching element.
[0049]
(Example 15)
In FIG. 40, the circuit diagram of the induction heating cooking appliance of the 15th Example of this invention is shown. This configuration is different from the circuit diagram of the first embodiment in the voltage difference between both ends detected by the both ends voltage detecting means 24 of the first switching element 14, the both ends voltage detecting means 25 of the second switching element 17, and each voltage detecting means. Subtracting means 26 is provided for detecting the voltage at both ends of each switching element, and the difference is obtained for feedback to control the input power.
[0050]
FIG. 41 shows an example of the difference between the voltages at both ends of each switching element and the characteristics of the input power detected by the subtracting means shown in the circuit diagram of FIG. 40 using the control means of this embodiment. FIG. 41 shows the characteristics with the horizontal axis representing the difference between the voltages across the switching elements and the vertical axis representing the input power. The conduction time of the second switching element is reduced, that is, the difference between the voltages across the switching elements is reduced. Accordingly, the input power increases, and therefore, accurate control can be performed by performing feedback based on information on the difference between the voltages at both ends of each switching element.
[0051]
(Example 16)
In FIG. 42, the circuit diagram of the induction heating cooking appliance of the 16th Example of this invention is shown. This configuration includes the voltage detection means 24 at both ends of the first capacitor 13 in the circuit diagram of the first embodiment, detects the voltage at both ends, performs feedback, and controls the input voltage.
[0052]
FIG. 43 shows an example of the characteristics of both-end voltage and input power detected by the both-end voltage detecting means of the first capacitor shown in the circuit diagram of FIG. 42 using the control means of this embodiment. FIG. 43 shows the characteristics with the horizontal axis representing the voltage across the first capacitor and the vertical axis representing the input power, and the input power is reduced as the conduction time of the second switching element decreases, that is, the voltage across the first capacitor increases. Therefore, by controlling the input power based on the information on the voltage across the first capacitor, accurate control can be performed.
[0053]
(Example 17)
In FIG. 44, the circuit diagram of the induction heating cooking appliance of the 17th Example of this invention is shown. This configuration includes the voltage detection means 24 at both ends of the second capacitor 16 in the circuit diagram of the first embodiment, detects the voltages at both ends, performs feedback, and controls the input voltage.
[0054]
FIG. 45 shows an example of the characteristics of both-end voltage and input power detected by the both-end-end voltage detecting means of the second capacitor shown in the circuit diagram of FIG. 44 using the control means of this embodiment. FIG. 45 shows the characteristics with the horizontal axis representing the voltage across the second capacitor and the vertical axis representing the input power. The reduction in the conduction time of the second switching element, that is, the input power as the voltage across the second capacitor decreases. Therefore, by controlling the input power based on the information on the voltage across the second capacitor, accurate control can be performed.
[0055]
(Example 18)
In FIG. 46, an example of the circuit diagram of the induction heating cooking appliance of the 18th Example of this invention is shown. This configuration includes a voltage detection means for both ends of the first switching element 14 and controls input power based on information of current detection means for detecting an output current from the DC power supply 11, and at the same time, a voltage across the first switching element Control is performed to be equal to or less than a predetermined value.
[0056]
FIG. 47 shows an example of the control means for the characteristics of both-end voltage and input power detected by the both-end voltage detection means of the first switching element shown in the circuit diagram of FIG. 46 using the control means of this embodiment. FIG. 47 shows the characteristics with the horizontal axis as the voltage across the first switching element and the vertical axis as the input power. The conduction time of the first switching element increases, that is, as the input power increases, The voltage at both ends increases, and when the voltage at both ends reaches the set value, the conduction time of the second switching element is increased, the voltage at both ends is lowered, and the conduction time of the first switching element is increased again to increase the input power. Let
[0057]
(Example 19)
In FIG. 48, an example of the circuit diagram of the induction heating cooking appliance of the 19th Example of this invention is shown. This configuration includes a voltage detection means for both ends of the second switching element 17 and controls the input power based on the information of the current detection means for detecting the output current from the DC power supply 11, and at the same time the voltage across the second switching element is Control is performed to be equal to or less than a predetermined value.
[0058]
FIG. 49 shows an example of a control means for the characteristics of both-end voltage and input power detected by the both-end voltage detection means of the second switching element shown in the circuit diagram of FIG. 48 using the control means of this embodiment. FIG. 47 shows characteristics with the horizontal axis representing the voltage across the second switching element and the vertical axis representing the input power. The conduction time of the first switching element increases, that is, as the input power increases, The voltage at both ends increases, and when the voltage at both ends reaches the set value, the conduction time of the second switching element is increased, the voltage at both ends is lowered, and the conduction time of the first switching element is increased again to increase the input power. Let
[0059]
(Example 20)
In FIG. 50, an example of the circuit diagram of the induction heating cooking appliance of the 20th Example of this invention is shown. This configuration includes a voltage detection means for both ends of the first capacitor 13 and controls the input power based on the information of the current detection means for detecting the output current from the DC power supply 11, and at the same time the voltage across the first capacitor is a predetermined value. Control to be as follows.
[0060]
FIG. 51 shows an example of the control means for the characteristics of both-end voltage and input power detected by the both-end voltage detection means of the first capacitor shown in the circuit diagram of FIG. 50 using the control means of this embodiment. FIG. 51 shows the characteristics with the horizontal axis representing the voltage across the first capacitor and the vertical axis representing the input power. The conduction voltage of the first switching element increases, that is, the voltage across the first capacitor increases as the input power increases. When the voltage at both ends reaches the set value, the conduction time of the second switching element is increased, the voltage at both ends is lowered, and the conduction time of the first switching element is increased again to increase the input power.
[0061]
(Example 21)
In FIG. 52, an example of the circuit diagram of the induction heating cooking appliance of the 21st Example of this invention is shown. This configuration includes a voltage detection means for both ends of the second capacitor 16 and controls the input power based on the information of the current detection means for detecting the output current from the DC power supply 11, and at the same time the voltage across the second capacitor is a predetermined value. Control to be as follows.
[0062]
FIG. 53 shows an example of the control means for the characteristics of both-end voltage and input power detected by the both-end voltage detection means of the second capacitor shown in the circuit diagram of FIG. 52 using the control means of this embodiment. FIG. 53 shows the characteristics with the horizontal axis representing the voltage across the second capacitor and the vertical axis representing the input power. The increase in the conduction time of the first switching element, that is, the voltage across the second capacitor as the input power increases. When the voltage at both ends reaches the set value, the conduction time of the second switching element is increased, the voltage at both ends is lowered, and the conduction time of the first switching element is increased again to increase the input power.
[0063]
【The invention's effect】
As apparent from the above embodiment, according to the invention described in claim 1, in order to fix the conduction time of the first switching element and change the conduction time of the second switching element to control the input power, Although the voltage across the first switching element increases as the input power increases, the voltage of the first switching element is clamped by the second resonant capacitor and the second switching element, and the second switching element does not operate. It is possible to control with a low voltage between both ends, and the effect that the first switching element can be converted into a low-voltage and low-cost component can be obtained.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of an induction heating apparatus according to a first embodiment of the present invention.
FIG. 2 is an operation waveform diagram of each switching element of the induction heating apparatus.
Fig. 3 Input power characteristics of the induction heating device
FIG. 4 is another circuit diagram of the induction heating apparatus.
FIG. 5 is still another circuit diagram of the induction heating apparatus.
FIG. 6 is another input power characteristic diagram of the induction heating apparatus.
FIG. 7 is a circuit diagram of an induction heating apparatus according to a second embodiment of the present invention.
FIG. 8 is a characteristic diagram of output current and input power of the induction heating apparatus.
FIG. 9 is a circuit diagram of an induction heating apparatus according to a third embodiment of the present invention.
FIG. 10 is a characteristic diagram of operating frequency and input power of the induction heating apparatus.
FIG. 11 is a characteristic diagram of operating frequency and input power of the induction heating apparatus.
FIG. 12 is a characteristic diagram of another operating frequency and input power of the induction heating apparatus.
FIG. 13 is a circuit diagram of an induction heating apparatus according to a fourth embodiment of the present invention.
FIG. 14 is a characteristic diagram of peak current value and input power of the induction heating apparatus.
FIG. 15 is a circuit diagram of an induction heating apparatus according to a fifth embodiment of the present invention.
FIG. 16 is a characteristic diagram of peak current value and input power of the induction heating apparatus.
FIG. 17 is a circuit diagram of an induction heating apparatus according to a sixth embodiment of the present invention.
FIG. 18 is a characteristic diagram of effective current and input power of the induction heating apparatus.
FIG. 19 is a circuit diagram of an induction heating apparatus according to a seventh embodiment of the present invention.
FIG. 20 is a characteristic diagram of peak current value and input power of the induction heating apparatus.
FIG. 21 is a circuit diagram of an induction heating apparatus according to an eighth embodiment of the present invention.
FIG. 22 is a characteristic diagram of effective current and input power of the induction heating apparatus.
FIG. 23 is a characteristic diagram of another effective current and input power of the induction heating apparatus.
FIG. 24 is a characteristic diagram of yet another effective current and input power of the induction heating apparatus.
FIG. 25 is a circuit diagram of an induction heating apparatus according to a ninth embodiment of the present invention.
FIG. 26 is a characteristic diagram of peak current value and input power of the induction heating apparatus.
FIG. 27 is a circuit diagram of an induction heating apparatus according to a tenth embodiment of the present invention.
FIG. 28 is a characteristic diagram of effective value current and input power of the induction heating apparatus.
FIG. 29 is a circuit diagram of an induction heating apparatus according to an eleventh embodiment of the present invention.
FIG. 30 is a characteristic diagram of peak current value and input power of the induction heating apparatus.
FIG. 31 is a circuit diagram of an induction heating apparatus according to a twelfth embodiment of the present invention.
FIG. 32 is a characteristic diagram of effective current and input power of the induction heating apparatus.
FIG. 33 is a characteristic diagram of another effective current and input power of the induction heating apparatus.
FIG. 34 is a characteristic diagram of yet another effective current and input power of the induction heating apparatus.
FIG. 35 is a circuit diagram of an induction heating apparatus according to a thirteenth embodiment of the present invention.
FIG. 36 is a characteristic diagram of both-end voltage and input power of the induction heating apparatus.
FIG. 37 is a characteristic diagram of another voltage across the induction heating device and input power.
FIG. 38 is a circuit diagram of an induction heating apparatus according to a fourteenth embodiment of the present invention.
FIG. 39 is a characteristic diagram of both-end voltage and input power of the induction heating apparatus.
FIG. 40 is a circuit diagram of an induction heating apparatus according to a fifteenth embodiment of the present invention.
FIG. 41 is a characteristic diagram of the voltage difference between both ends of the induction heating device and the input power.
FIG. 42 is a circuit diagram of an induction heating apparatus according to a sixteenth embodiment of the present invention.
FIG. 43 is a characteristic diagram of both-end voltage and input power of the induction heating apparatus.
FIG. 44 is a circuit diagram of an induction heating apparatus according to a seventeenth embodiment of the present invention.
FIG. 45 is a characteristic diagram of both-end voltage and input power of the induction heating apparatus.
FIG. 46 is a circuit diagram of an induction heating apparatus according to an eighteenth embodiment of the present invention.
FIG. 47 is a characteristic diagram of both-end voltage and input power of the induction heating apparatus.
FIG. 48 is a circuit diagram of an induction heating apparatus according to a nineteenth embodiment of the present invention.
FIG. 49 is a characteristic diagram of both-end voltage and input power of the induction heating apparatus.
FIG. 50 is a circuit diagram of an induction heating apparatus according to a twentieth embodiment of the present invention.
FIG. 51 is a characteristic diagram of both-end voltage and input power of the induction heating apparatus.
FIG. 52 is a circuit diagram of an induction heating apparatus according to a twenty-first embodiment of the present invention.
FIG. 53 is a characteristic diagram of both-end voltage and input power of the induction heating apparatus.
FIG. 54 is a circuit diagram of a conventional induction heating cooking apparatus.
FIG. 55 is an operation waveform diagram of the switching element of the induction heating apparatus.
[Explanation of symbols]
11,551 DC power supply
12,552 Heating coil
13, 553 1st capacitor
14, 554 First switching element
15,555 First reverse conducting diode
16 Second capacitor
17 Second switching element
18 Second reverse conducting diode
19, 559 Control circuit
20 Current detection means
21 Frequency detection means
22 Peak current value detection means
23 RMS current detection means
24, 558 Voltage detection means at both ends
25 Voltage detection means at both ends
26 Subtraction means

Claims (1)

直流電源にその一端を接続されたコイルと、前記直流電源に対して前記コイルと直列接続される第一スイッチング素子と第一逆導通ダイオードとの並列回路と、前記コイルと共振回路を形成する第一コンデンサと、前記コイルもしくは第一スイッチング素子に対して並列接続される第二スイッチング素子と第二逆導通ダイオードの並列回路と直列接続される第二コンデンサとでなる直列回路と、前記第一スイッチング素子と前記第二スイッチング素子を導通制御する制御回路とを備え、前記制御回路は、前記各スイッチング素子を交互に導通制御するとともに、前記コイルの動作周波数を増加して入力電力を増加すべく第一スイッチング素子の導通時間を固定し、第二スイッチング素子の導通時間を減少してなる誘導加熱装置。  A coil having one end connected to a DC power supply, a parallel circuit of a first switching element and a first reverse conducting diode connected in series with the DC power supply, and a first circuit that forms a resonance circuit with the coil A series circuit comprising a capacitor, a second switching element connected in parallel to the coil or the first switching element, and a second capacitor connected in series with a parallel circuit of a second reverse conducting diode; and the first switching And a control circuit for controlling conduction of the second switching element. The control circuit alternately controls conduction of the switching elements, and increases the operating frequency of the coil to increase input power. An induction heating apparatus in which the conduction time of one switching element is fixed and the conduction time of the second switching element is reduced.
JP26266696A 1996-10-03 1996-10-03 Induction heating device Expired - Fee Related JP3666140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26266696A JP3666140B2 (en) 1996-10-03 1996-10-03 Induction heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26266696A JP3666140B2 (en) 1996-10-03 1996-10-03 Induction heating device

Publications (2)

Publication Number Publication Date
JPH10106738A JPH10106738A (en) 1998-04-24
JP3666140B2 true JP3666140B2 (en) 2005-06-29

Family

ID=17378930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26266696A Expired - Fee Related JP3666140B2 (en) 1996-10-03 1996-10-03 Induction heating device

Country Status (1)

Country Link
JP (1) JP3666140B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4720009B2 (en) * 2001-05-09 2011-07-13 パナソニック株式会社 Induction heating inverter
JP3799324B2 (en) * 2002-12-02 2006-07-19 株式会社東芝 Induction heating cooker
JP4194530B2 (en) * 2004-06-03 2008-12-10 キヤノン株式会社 Fixing device
JP4775418B2 (en) * 2008-07-30 2011-09-21 パナソニック株式会社 Induction heating cooker
JP5106575B2 (en) * 2010-05-18 2012-12-26 三菱電機株式会社 Induction heating cooker
JP5894683B2 (en) * 2011-12-29 2016-03-30 アルチュリク・アノニム・シルケチ Wireless kitchen utensils operated on induction cooker

Also Published As

Publication number Publication date
JPH10106738A (en) 1998-04-24

Similar Documents

Publication Publication Date Title
JPH06225524A (en) Power supply device of electronic range
US5571438A (en) Induction heating cooker operated at a constant oscillation frequency
JP3666140B2 (en) Induction heating device
JP3843528B2 (en) Induction heating device
JPH0594868A (en) Induction heating cooker
JPS5836473B2 (en) induction heating device
JP2020064719A (en) Electromagnetic induction heating device
JP7344740B2 (en) electromagnetic induction heating device
KR100692634B1 (en) Driving circuit for induction heating device and the driving method thereof
JP2019204733A (en) Electromagnetic induction heating cooker
US20230007740A1 (en) Method and system to control a qr-inverter in a induction cooking appliance
JP4103081B2 (en) Induction heating cooker
JP3334274B2 (en) Inverter device
KR100253548B1 (en) Induction heating cooker
JPH05326128A (en) High-frequency invertor
JP3446507B2 (en) Induction heating cooker
JP3175576B2 (en) Induction heating cooker
JPH09223577A (en) Induction heating cooking appliance
KR100266616B1 (en) High power induction heating device
KR100186471B1 (en) Inverter loss decrease apparatus for induction heating cooker
JP3394273B2 (en) Induction heating cooker
EP0269414A2 (en) Induction heating circuits for cooking appliances
KR960007569B1 (en) Switching control circuit of inverter of d-type zero vtg switching
JPH10116683A (en) Induction heating device
JP2568523B2 (en) Induction heating cooker

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050328

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080415

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120415

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees