JP3665920B2 - Remote nondestructive inspection equipment - Google Patents

Remote nondestructive inspection equipment Download PDF

Info

Publication number
JP3665920B2
JP3665920B2 JP00095898A JP95898A JP3665920B2 JP 3665920 B2 JP3665920 B2 JP 3665920B2 JP 00095898 A JP00095898 A JP 00095898A JP 95898 A JP95898 A JP 95898A JP 3665920 B2 JP3665920 B2 JP 3665920B2
Authority
JP
Japan
Prior art keywords
traveling
nondestructive inspection
welded portion
identification rail
traveling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00095898A
Other languages
Japanese (ja)
Other versions
JPH11194119A (en
Inventor
賢治 岡田
宣夫 阿波村
洋司 高須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP00095898A priority Critical patent/JP3665920B2/en
Publication of JPH11194119A publication Critical patent/JPH11194119A/en
Application granted granted Critical
Publication of JP3665920B2 publication Critical patent/JP3665920B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2695Bottles, containers

Landscapes

  • Pressure Vessels And Lids Thereof (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の属する技術分野】
【0001】
本発明は、圧力容器等の溶接部の非破壊検査に係り、特に、永久磁石により圧力容器等の鉄鋼構造物に吸着して走行し、溶接部と並走しながら溶接部を非破壊的に検査する非破壊検査装置に関する。
【従来の技術】
【0002】
従来の遠隔非破壊検査装置においては、圧力容器等の溶接部を超音波で探傷検査する場合、超音波探触子の位置精度すなわち走行装置の溶接部に対する位置制御および再現性が重要になる。
【0003】
一般に、圧力容器等の非破壊検査装置(非破壊検査手段)は、圧力容器外周部に軌道を設置し、軌道に走行駆動装置を取付けてラックとピニオンとを噛み合せながら走行させ、位置を制御する構造を採用すれば、位置精度および再現性は確保される。
【0004】
しかし、軌道式装置の場合、走行駆動装置を軌道に取付けるので、軌道の剛性を確保するとともに、軌道も堅固に固定する必要があり、さらに検査範囲が増加するに伴って大がかりな軌道を準備しなければならない。
【0005】
一方、特開昭47−40635号公報,特開昭51−79498号公報,特開昭56−79069号公報,特開昭60−18464号公報,特開平7−322837号公報等に記載されているように、無限軌道式磁気吸着走行装置(走行装置)を使用した検査装置がそれぞれの目的に応じて開発されている。無限軌道式磁気吸着走行装置は、軌道が不要であり、任意の場所を走行できる。
【0006】
しかし、前記無限軌道式磁気吸着走行装置では、水平面の凹凸部の走行安定性または垂直面の走行安定性は優れているが、例えば、溶接部に平行に精度良く走行させる方法については考慮されていない。
【発明が解決しようとする課題】
【0007】
従来の遠隔非破壊検査装置にあっては、圧力容器等の溶接部を超音波で探傷検査する場合、超音波探触子の位置精度、すなわち走行装置の溶接部に対する位置制御および再現性が考慮されていなかった。
【0008】
本発明の課題は、位置精度および位置再現性を容易に確保し、圧力容器の溶接部の非破壊検査を精度良く実施できる遠隔非破壊検査装置を提供することである。
【課題を解決するための手段】
【0009】
本発明は、上記課題を達成するために、無限軌道を有し磁力により壁面に吸着して壁面の溶接部と並走する走行装置と、走行装置に搭載され溶接部を非破壊的に検査する非破壊検査手段とからなる遠隔非破壊検査装置において、溶接部とほぼ平行にかつ壁面から離間して敷設される識別レールと、走行装置に搭載され識別レールの断面形状を認識し識別レールとの相対位置を検出する複数の検出器とを有し、検出された相対位置に基づき走行装置の溶接部に対する走行方向を制御する走行方向修正手段を備えた遠隔非破壊検査装置を提案する。
【0010】
本発明は、また、前記識別レールが、長手方向で所定間隔毎に穴を有し、前記走行方向修正手段が、穴の検出信号に基づき識別レールの長手方向の走行距離を補正する手段を含む遠隔非破壊検査装置を提案する。
【0011】
本発明によれば、走行装置に取付けた検出器で識別レールの断面形状を認識し、認識した形状データで走行装置のずれを検出し、識別レールと走行装置とのずれを検出し、ずれ方向とは逆に走行装置の位置を制御し走行方向を修正できる。
【0012】
また、識別レールに開けた穴を検出するので、走行距離を容易に補正できる。
【発明の実施の形態】
【0013】
次に、図1ないし図4を参照しながら、本発明による非破壊検査装置の実施形態を説明する。図1は、本発明による非破壊検査装置の一実施形態の構造を示す側面図であり、図2は、図1の実施形態の構造を示す平面図である。
【0014】
本実施形態の非破壊検査装置は、無限軌道を有し磁力により圧力容器等の壁面(吸着面)10に吸着して壁面10の溶接部と並走する走行装置(無限軌道式磁気吸着走行装置)2a,2bを備え、走行装置2a,2bの車体本体1に、超音波探触子9等の非破壊検査手段を搭載するとともに、走行方向修正手段を設けてある。
【0015】
走行方向修正手段は、圧力容器の溶接部とほぼ平行にかつ圧力容器壁面から離間して敷設される識別レール15と、走行装置2a,2bの車体本体1に搭載され識別レール15を検出する複数の検出器14とを含む。
【0016】
車体本体1の走行方向と直交する両側に、磁気により吸着面10に吸着し吸着面10を走行駆動する走行装置2a,2bを取付けてある。走行装置2a,2bは各々に駆動モータ3a,3bを有しており、走行方向側に超音波探触子9と走査駆動装置8とが配設されている。通常の前進走行では、左右の走行装置2a,2bに取付けられた駆動モータ3a,3bは同じ速度となるように速度制御されている。
【0017】
識別レール15を円筒形状の管または棒で形成し、圧力容器等の壁面10より離間した位置に、吸着面10の図示しない溶接部と平行になるようにサポート11で固定する。
サポート11は、着脱可能のマグネット台11aで吸着面10に固定されている。識別レール15には走行距離補正のため、長手方向に一定間隔で穴16を開けておく。
【0018】
一方、車体本体1の走行方向側に取付けた各検出器14は、識別レール15の断面形状を認識できるイメージセンサである。
【0019】
図3は、図1の検出器で検出した検出画像の一例を示す図である。識別レール15断面の半円と穴16とを検出した状態であり、識別レール15の一方の端部と画面の端面との距離をΔ1とし、同様に他方の端部と端面との距離をΔ2とする。
【0020】
検出器14は、走行中にΔ1およびΔ2を計測する。走行方向修正手段は、(Δ1−Δ2)=0となるように、走行中に(Δ1−Δ2)>0となった場合はΔ1を小さくする方向に、逆の場合はΔ2を小さくする方向に、走行装置2の位置を修正し、走行方向を修正する。
【0021】
走行方向修正手段は、また、識別レール15に開けた穴16を検出するので、走行距離を容易に補正できる。
【0022】
通常の前進走行では、左右の走行装置に取付けられた駆動モータは、同じ速度となるように速度制御されている。
【0023】
図2に示すように、図面上部に向けて走行装置が前進し、前進右方向に走行方向がずれた場合、右側の走行装置の駆動モータに対して、左側の駆動モータよりわずかに走行速度を上げるように指令を発することにより、右側の走行装置がわずかに先行し、車体本体の走行方向が左側に修正される。
【0024】
走行装置に取付けた複数の検出器で識別レールの断面形状を認識し、Δ1およびΔ2を図示しない制御装置の演算器により演算し、かつ、比較器によりΔ1およびΔ2を比較し、Δ1またはΔ2がゼロになった場合、識別レールから走行装置が離脱したことを検出できる。そこで、離脱方向とは逆に各走行装置の位置を制御し、走行方向を修正する。
【0025】
走行中は識別レールを常時監視し、走行方向を修正できるので、識別レールに沿った走行装置の安定走行が可能となる。したがって、識別レールを溶接部に平行に取付けると、溶接部に沿った走行制御が可能となる。
【0026】
また、識別レールの長手方向に一定の間隔で開けた穴を前記走行方向の検出器とは別に設けた検出器で検出し、走行距離のデータを補正すると、走行距離の位置精度が確保できる。
【0027】
超音波探傷検査をする場合は、車体本体を一定のピッチで走行させ、車体本体が停止した状態で走査駆動装置により超音波探触子を図1に示す矢印A方向に走査させて探傷する。超音波探触子の走査終了後、車体本体を再度一定のピッチで走行させる動作を繰り返す。走行装置の走行と超音波探触子の走査とを交互に繰り返すと、圧力容器等の溶接部等を非破壊的に検査できる。
【0028】
図4は、本発明による非破壊検査装置を用いる原子炉圧力容器の遠隔非破壊検査方法を説明する図である。
【0029】
この原子炉圧力容器の遠隔非破壊検査方法は、前記いずれか一つの遠隔非破壊検査を用いるために準備する工程と、建設時等の原子炉運転前に予め走行方向修正手段の識別レール25を放射線量の低い場所である例えば溶接部23aまで延設する工程と、識別レール25を溶接部23a近傍の構造物27にサポート26を用いて据付ける工程と、非破壊検査の際に放射線量の低い溶接部23aの位置(上端部)Bで走行装置を取付けまたは取外す工程と、走行装置を放射線量の高い炉心領域22近傍の溶接部23bへ走行させる工程とを含む。
【0030】
原子炉圧力容器21では、原子炉の運転により炉心領域22の周辺部の放射線量が高くなるので、生体遮蔽体24が設置されている。原子炉圧力容器21の溶接部23は、原子力プラントの定期検査中に検査するが、定期検査中でも炉心領域22の周辺は放射線量が高いため容易に接近できない。
【0031】
そこで、識別レール25を原子炉圧力容器21の設置時等の原子炉運転前の放射線雰囲気のない時期に溶接部23に平行に壁面から離間して設置する。
【0032】
特に、生体遮蔽体24が設置されている高放射線範囲の溶接部23bの部分に設置する。
このとき、識別レール25は生体遮蔽体24の内側にサポート26により構造物27に固定する。
【0033】
溶接部23bを検査する際は、比較的放射線量の低い生体遮蔽体24の上端部Bで走行装置を原子炉圧力容器21の表面に取付け、識別レール25の上端部Bで識別レール25を検出し、溶接部23bまで走行装置を走行させて非破壊検査を実行する。
【0034】
各検査対象部位まで達すると、前記と同様の操作により検査できる。検査終了後は、識別レール25に沿って走行装置を設置した上端部Bまで戻し、走行装置を取外し回収する。
【0035】
この遠隔非破壊検査方法によれば、走行装置の設置から回収まで、走行装置の取扱者は、放射線レベルの低い場所で作業できるので、作業員の被ばく低減が可能である。
【0036】
また、放射線レベルが低い領域にある溶接部を検査する場合、前記仮固定式の識別レールを使用するので、遠隔操作で溶接部を非破壊的に検査でき、作業員の被ばく低減が可能となる。
【0037】
本発明によれば、識別レールと検出器とを組合せて使用するので、無軌道式磁気吸着走行装置の走行を制御可能であり、走行装置の位置精度および位置の再現性を容易に確保できる。したがって、圧力容器等の溶接部の超音波探傷検査を精度良く実現できる。
【0038】
また識別レールは、構造が簡単で着脱も容易であるとともに、持ち運びできる軽量構造なので、原子炉圧力容器を含む圧力容器の溶接部のみならず母材の非破壊検査にも適用可能であり、かつ他の溶接構造物の溶接部または母材等の広い範囲での適用が可能である。
【0039】
さらに、本発明を原子炉圧力容器に適用すると、識別レールを圧力容器の周囲に設置された構造物に予め建設時に取付けておき、検査時に低放射線雰囲気の場所で圧力容器に走行装置を設置し、高放射線領域にある溶接部まで移動させ、作業者が高放射線の炉心領域に接近することなく、高放射線領域にある溶接部を非破壊的に検査できる。
【発明の効果】
【0040】
本発明によれば、溶接部と平行に識別レールを設置し、検出器で検出しながら走行方向を修正するので、走行装置の位置精度および位置の再現性が確保でき、溶接部の非破壊検査精度を高めることができる。
【0041】
また、識別レールに開けた穴を検出するので、走行距離を容易に補正できる。
【0042】
さらに、識別レールを予め原子炉運転前に設置しておき、低放射線雰囲気の場所で原子炉圧力容器に走行装置を取付け、走行装置を移動させて高放射線領域の溶接部の非破壊検査を行うため、作業者の被ばく線量を低減する効果がある。
【図面の簡単な説明】
【0043】
【図1】 本発明による非破壊検査装置の一実施形態の構造を示す側面図である。
【図2】 図1の実施形態の構造を示す平面図である。
【図3】 図1の検出器で検出した検出画像の一例を示す図である。
【図4】 本発明による非破壊検査装置を用いる原子炉圧力容器の遠隔非破壊検査方法を説明する図である。
【符号の説明】
【0044】
1 車体本体
2 走行装置
3 駆動モータ
8 走査駆動装置
9 超音波探触子
11 サポート
11a マグネット台
14 検出器
15 識別レール
16 穴
21 原子炉圧力容器
22 炉心領域
23 溶接部
24 生体遮蔽体
25 識別レール
26 サポート
27 構造物
BACKGROUND OF THE INVENTION
[0001]
The present invention relates to a non-destructive inspection of a welded portion such as a pressure vessel, and in particular, travels by adhering to a steel structure such as a pressure vessel with a permanent magnet, and makes the welded portion nondestructive while running in parallel with the welded portion. The present invention relates to a non-destructive inspection apparatus for inspection.
[Prior art]
[0002]
In a conventional remote nondestructive inspection apparatus, when a flaw detection inspection is performed on a welded part such as a pressure vessel with ultrasonic waves, the positional accuracy of the ultrasonic probe, that is, the position control and reproducibility of the traveling unit with respect to the welded part are important.
[0003]
Generally, a non-destructive inspection device (non-destructive inspection means) such as a pressure vessel has a track installed on the outer periphery of the pressure vessel, and a traveling drive device is attached to the track so as to travel while meshing the rack and pinion to control the position. If the structure is adopted, positional accuracy and reproducibility are ensured.
[0004]
However, in the case of a track-type device, since the travel drive device is attached to the track, it is necessary to secure the track rigidity and firmly fix the track, and prepare a large track as the inspection range increases. There must be.
[0005]
On the other hand, as described in JP-A-47-40635, JP-A-51-79498, JP-A-56-79069, JP-A-60-18464, JP-A-7-322837, etc. As described above, an inspection apparatus using an endless track type magnetic adsorption traveling apparatus (traveling apparatus) has been developed for each purpose. The endless track type magnetic adsorption traveling device does not require a track and can travel anywhere.
[0006]
However, the endless track type magnetic adsorption traveling device is excellent in the traveling stability of the uneven portion on the horizontal surface or the traveling stability of the vertical surface, but for example, a method of traveling accurately in parallel with the welded portion is considered. Absent.
[Problems to be solved by the invention]
[0007]
In conventional remote nondestructive inspection devices, when ultrasonic inspection is performed on welded parts such as pressure vessels, the position accuracy of the ultrasonic probe, that is, position control and reproducibility of the traveling device with respect to the welded part is taken into consideration. Was not.
[0008]
An object of the present invention is to provide a remote nondestructive inspection apparatus that can easily ensure position accuracy and position reproducibility and can accurately perform nondestructive inspection of a welded portion of a pressure vessel.
[Means for Solving the Problems]
[0009]
To achieve the above object, the present invention provides a traveling device that has an endless track and is attracted to a wall surface by a magnetic force and moves in parallel with the welded portion of the wall surface, and the welded portion mounted on the traveling device is inspected nondestructively. In a remote nondestructive inspection device comprising nondestructive inspection means, an identification rail laid substantially parallel to the welded part and spaced apart from the wall surface, and a cross-sectional shape of the identification rail mounted on the traveling device and recognizing the identification rail Proposed is a remote nondestructive inspection apparatus having a plurality of detectors for detecting relative positions and provided with a traveling direction correcting means for controlling the traveling direction with respect to the welded portion of the traveling apparatus based on the detected relative positions.
[0010]
The present invention also includes the identification rail having holes at predetermined intervals in the longitudinal direction, and the travel direction correcting means includes means for correcting the travel distance in the longitudinal direction of the identification rail based on a detection signal of the holes. A remote nondestructive inspection system is proposed.
[0011]
According to the present invention, the detector attached to the traveling device recognizes the cross-sectional shape of the identification rail, detects the deviation of the traveling device from the recognized shape data, detects the deviation between the identification rail and the traveling device, and detects the deviation direction. Conversely, the traveling direction can be corrected by controlling the position of the traveling device .
[0012]
Moreover, since the hole opened in the identification rail is detected, the travel distance can be easily corrected.
DETAILED DESCRIPTION OF THE INVENTION
[0013]
Next, an embodiment of a nondestructive inspection apparatus according to the present invention will be described with reference to FIGS. FIG. 1 is a side view showing a structure of an embodiment of a nondestructive inspection apparatus according to the present invention, and FIG. 2 is a plan view showing a structure of the embodiment of FIG.
[0014]
The nondestructive inspection apparatus of the present embodiment has an endless track, and is a traveling device (an endless track magnetic adsorption traveling device) that adsorbs to a wall surface (adsorption surface) 10 such as a pressure vessel by a magnetic force and runs parallel to a welded portion of the wall surface 10. ) 2a and 2b, and non-destructive inspection means such as an ultrasonic probe 9 are mounted on the vehicle body 1 of the traveling devices 2a and 2b, and traveling direction correcting means are provided.
[0015]
The traveling direction correcting means includes a plurality of identification rails 15 installed substantially parallel to the welded portion of the pressure vessel and spaced apart from the pressure vessel wall surface, and a plurality of rails mounted on the vehicle body 1 of the traveling devices 2a and 2b. Detector 14.
[0016]
On both sides orthogonal to the traveling direction of the vehicle body 1, traveling devices 2 a and 2 b that are attracted to the attracting surface 10 by magnetism to drive the attracting surface 10 are attached. The travel devices 2a and 2b have drive motors 3a and 3b, respectively, and an ultrasonic probe 9 and a scanning drive device 8 are disposed on the travel direction side. In normal forward travel, the drive motors 3a and 3b attached to the left and right travel devices 2a and 2b are speed controlled so as to have the same speed.
[0017]
The identification rail 15 is formed of a cylindrical tube or rod, and is fixed by a support 11 at a position separated from the wall surface 10 such as a pressure vessel so as to be parallel to a welding portion (not shown) of the suction surface 10.
The support 11 is fixed to the attracting surface 10 by a removable magnetic base 11a. Holes 16 are formed in the identification rail 15 at regular intervals in the longitudinal direction for travel distance correction.
[0018]
On the other hand, each detector 14 attached to the traveling direction side of the vehicle body 1 is an image sensor that can recognize the cross-sectional shape of the identification rail 15.
[0019]
FIG. 3 is a diagram illustrating an example of a detection image detected by the detector of FIG. In this state, a semicircle of the cross section of the identification rail 15 and the hole 16 are detected. The distance between one end of the identification rail 15 and the end face of the screen is Δ1, and similarly, the distance between the other end and the end face is Δ2. And
[0020]
The detector 14 measures Δ1 and Δ2 during traveling. The traveling direction correcting means is configured to decrease Δ1 when (Δ1−Δ2)> 0 during traveling so that (Δ1−Δ2) = 0, and to decrease Δ2 when vice versa. Then, the position of the traveling device 2 is corrected, and the traveling direction is corrected.
[0021]
Since the traveling direction correcting means detects the hole 16 formed in the identification rail 15, the traveling distance can be easily corrected.
[0022]
In normal forward travel, the drive motors attached to the left and right travel devices are speed controlled so as to have the same speed.
[0023]
As shown in FIG. 2, when the traveling device moves forward toward the upper part of the drawing and the traveling direction deviates in the forward right direction, the traveling speed is slightly higher than that of the left driving motor with respect to the driving motor of the right traveling device. By issuing a command to raise, the right traveling device slightly precedes, and the traveling direction of the vehicle body is corrected to the left.
[0024]
The cross-sectional shape of the identification rail is recognized by a plurality of detectors attached to the traveling device, Δ1 and Δ2 are calculated by a calculator of a control device (not shown), and Δ1 and Δ2 are compared by a comparator, and Δ1 or Δ2 is When it becomes zero, it can be detected that the traveling device has detached from the identification rail. Therefore, the traveling direction is corrected by controlling the position of each traveling device contrary to the direction of separation.
[0025]
Since the identification rail can be constantly monitored and the traveling direction can be corrected during traveling, the traveling device along the identification rail can stably travel. Therefore, when the identification rail is attached in parallel to the welded portion, traveling control along the welded portion becomes possible.
[0026]
Further, by detecting holes formed at regular intervals in the longitudinal direction of the identification rail with a detector provided separately from the detector in the traveling direction and correcting the traveling distance data, the positional accuracy of the traveling distance can be ensured.
[0027]
When performing ultrasonic flaw detection inspection, the vehicle body is moved at a constant pitch, and the ultrasonic probe is scanned in the direction of arrow A shown in FIG. After the scanning of the ultrasonic probe is completed, the operation of causing the vehicle body to travel again at a constant pitch is repeated. By alternately repeating the traveling of the traveling device and the scanning of the ultrasonic probe, it is possible to nondestructively inspect a welded portion such as a pressure vessel.
[0028]
FIG. 4 is a diagram for explaining a remote nondestructive inspection method for a reactor pressure vessel using the nondestructive inspection apparatus according to the present invention.
[0029]
In this remote nondestructive inspection method for a reactor pressure vessel, the step of preparing to use any one of the above remote nondestructive inspections, and the identification rail 25 of the traveling direction correcting means in advance before the reactor operation at the time of construction, etc. For example, a process of extending to a welded portion 23a, which is a place where the radiation dose is low, a step of installing the identification rail 25 on a structure 27 in the vicinity of the welded portion 23a using a support 26, and a radiation dose during nondestructive inspection. A step of attaching or removing the traveling device at the position (upper end portion) B of the low welded portion 23a and a step of traveling the traveling device to the welded portion 23b in the vicinity of the core region 22 having a high radiation dose are included.
[0030]
In the reactor pressure vessel 21, the radiation shield around the core region 22 is increased by the operation of the reactor, so that the biological shield 24 is installed. The welded portion 23 of the reactor pressure vessel 21 is inspected during the periodic inspection of the nuclear power plant. However, even during the periodic inspection, the area around the core region 22 is not easily accessible due to the high radiation dose.
[0031]
Therefore, the identification rail 25 is installed away from the wall surface in parallel with the welded portion 23 when there is no radiation atmosphere before the reactor operation, such as when the reactor pressure vessel 21 is installed.
[0032]
In particular, it is installed at the portion of the welded portion 23b in the high radiation range where the biological shield 24 is installed.
At this time, the identification rail 25 is fixed to the structure 27 by the support 26 inside the living body shield 24.
[0033]
When inspecting the welded portion 23b, a traveling device is attached to the surface of the reactor pressure vessel 21 at the upper end B of the biological shield 24 having a relatively low radiation dose, and the identification rail 25 is detected at the upper end B of the identification rail 25. Then, the traveling device is traveled to the welded portion 23b to execute the nondestructive inspection.
[0034]
When reaching each inspection site, the inspection can be performed by the same operation as described above. After completion of the inspection, the traveling device is returned along the identification rail 25 to the upper end B where the traveling device is installed, and the traveling device is removed and collected.
[0035]
According to this remote nondestructive inspection method, since the operator of the traveling device can work in a place with a low radiation level from installation to collection of the traveling device, the exposure of workers can be reduced.
[0036]
Further, when inspecting a welded portion in a region where the radiation level is low, the temporary fixed type identification rail is used, so the welded portion can be inspected non-destructively by remote operation, and the exposure of workers can be reduced. .
[0037]
According to the present invention, since the identification rail and the detector are used in combination, the traveling of the trackless magnetic attraction traveling device can be controlled, and the positional accuracy and position reproducibility of the traveling device can be easily ensured. Therefore, ultrasonic flaw detection inspection of a welded part such as a pressure vessel can be realized with high accuracy.
[0038]
In addition, the identification rail is simple in structure and easy to attach and detach, and since it is lightweight and portable, it can be applied not only to welded parts of pressure vessels including reactor pressure vessels but also to nondestructive inspection of base materials, and Application in a wide range of welded parts or base materials of other welded structures is possible.
[0039]
Furthermore, when the present invention is applied to a reactor pressure vessel, an identification rail is previously attached to a structure installed around the pressure vessel at the time of construction, and a traveling device is installed in the pressure vessel in a low radiation atmosphere at the time of inspection. The welded portion in the high radiation region can be non-destructively inspected without moving the welded portion in the high radiation region and allowing the operator to approach the high radiation core region.
【The invention's effect】
[0040]
According to the present invention, the identification rail is installed in parallel with the welded portion, and the traveling direction is corrected while being detected by the detector, so that the position accuracy and reproducibility of the traveling device can be ensured, and the nondestructive inspection of the welded portion. Accuracy can be increased.
[0041]
Moreover, since the hole opened in the identification rail is detected, the travel distance can be easily corrected.
[0042]
In addition, the identification rail is installed in advance before the reactor operation, the traveling device is attached to the reactor pressure vessel in a place with a low radiation atmosphere, and the traveling device is moved to perform nondestructive inspection of the welded portion in the high radiation region. Therefore, there is an effect of reducing the exposure dose of the worker.
[Brief description of the drawings]
[0043]
FIG. 1 is a side view showing the structure of an embodiment of a nondestructive inspection apparatus according to the present invention.
FIG. 2 is a plan view showing the structure of the embodiment of FIG.
FIG. 3 is a diagram illustrating an example of a detection image detected by the detector of FIG. 1;
FIG. 4 is a diagram for explaining a remote nondestructive inspection method for a reactor pressure vessel using the nondestructive inspection apparatus according to the present invention.
[Explanation of symbols]
[0044]
DESCRIPTION OF SYMBOLS 1 Car body 2 Traveling device 3 Drive motor 8 Scanning drive device 9 Ultrasonic probe 11 Support 11a Magnet stand 14 Detector 15 Identification rail 16 Hole 21 Reactor pressure vessel 22 Core region 23 Welding part 24 Biological shield 25 Identification rail 26 Support 27 Structure

Claims (2)

無限軌道を有し磁力により壁面に吸着して前記壁面の溶接部と並走する走行装置と、前記走行装置に搭載され前記溶接部を非破壊的に検査する非破壊検査手段とからなる遠隔非破壊検査装置において、
前記溶接部とほぼ平行にかつ前記壁面から離間して敷設される識別レールと、前記走行装置に搭載され前記識別レールの断面形状を認識し前記識別レールとの相対位置を検出する複数の検出器とを有し、検出された相対位置に基づき前記走行装置の前記溶接部に対する走行方向を制御する走行方向修正手段を備えたことを特徴とする遠隔非破壊検査装置。
A remote device comprising a traveling device having an endless track and adsorbed to a wall surface by a magnetic force and running parallel to the welded portion of the wall surface, and a nondestructive inspection means mounted on the traveling device to inspect the welded portion nondestructively. In destructive inspection equipment,
A plurality of detectors that are installed in the traveling device and that recognize a cross-sectional shape of the identification rail and detect a relative position with the identification rail, the identification rail being laid substantially parallel to the weld and spaced from the wall surface A remote nondestructive inspection apparatus comprising: a traveling direction correcting means for controlling a traveling direction of the traveling device with respect to the welded portion based on the detected relative position.
請求項1に記載の遠隔非破壊検査装置において、
前記識別レールが、長手方向で所定間隔毎に穴を有し、
前記走行方向修正手段が、前記穴の検出信号に基づき前記識別レールの長手方向の走行距離を補正する手段を含むことを特徴とする遠隔非破壊検査装置。
The remote nondestructive inspection device according to claim 1,
The identification rail has holes at predetermined intervals in the longitudinal direction;
The remote nondestructive inspection apparatus, wherein the traveling direction correcting means includes means for correcting a traveling distance in the longitudinal direction of the identification rail based on the detection signal of the hole.
JP00095898A 1998-01-06 1998-01-06 Remote nondestructive inspection equipment Expired - Fee Related JP3665920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00095898A JP3665920B2 (en) 1998-01-06 1998-01-06 Remote nondestructive inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00095898A JP3665920B2 (en) 1998-01-06 1998-01-06 Remote nondestructive inspection equipment

Publications (2)

Publication Number Publication Date
JPH11194119A JPH11194119A (en) 1999-07-21
JP3665920B2 true JP3665920B2 (en) 2005-06-29

Family

ID=11488178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00095898A Expired - Fee Related JP3665920B2 (en) 1998-01-06 1998-01-06 Remote nondestructive inspection equipment

Country Status (1)

Country Link
JP (1) JP3665920B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101196826B1 (en) 2010-11-18 2012-11-01 한국철도기술연구원 A automatic supersonic detection device for railroad rail

Also Published As

Publication number Publication date
JPH11194119A (en) 1999-07-21

Similar Documents

Publication Publication Date Title
JP2006526785A (en) Method and apparatus for inspecting reactor head components
JP2007285772A (en) Pipe inspection method, and pipe inspection device used therefor
JP3665920B2 (en) Remote nondestructive inspection equipment
KR20170040501A (en) A detection device for welding flaw region inside of pipe having overlay welding
JP3567583B2 (en) Underwater mobile robot positioning method
JPH05172798A (en) Plate surface flaw detection device
JP2003269945A (en) Wall surface self-propelled plate thickness measurement device and position identification method using it
JP2742493B2 (en) Flaw detector for self-supporting traveling plate
JP2003057215A (en) Automatic ultrasonic flaw detection method and apparatus of welded section
CN210015081U (en) Welding seam recognition device
CN110108785B (en) Weld joint recognition device and recognition method
JPH11304772A (en) Device for inspecting internal surface of cylindrical barrel
JPS6367137B2 (en)
JPH06160358A (en) Automatic ultrasonic flaw detector
JP3036714B2 (en) Self-propelled flaw detector for thick plates
JP3292577B2 (en) Flaw detector for reactor pressure vessel body flange
JP4719652B2 (en) Rust inspection device for cylindrical member with coated surface
JPS6396551A (en) Ultrasonic flaw detector
JPH1082771A (en) Inspection device for drum section of vessel
JPH0634612A (en) Automatic flaw detecting device for diaphragm welded part and its supporting device
JP3481516B2 (en) Traverser for transporting nuclear fuel
JP3174709B2 (en) On-site installation method of penstock
JPS62269056A (en) Trackless ultrasonic flaw detector
JPH02147952A (en) Automatic ultrasonic flaw detection apparatus
JPH04186156A (en) Inspection device for wall surface of vessel

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees