JP3665421B2 - Continuous fiber reinforcement for concrete walls to be cut - Google Patents

Continuous fiber reinforcement for concrete walls to be cut Download PDF

Info

Publication number
JP3665421B2
JP3665421B2 JP14850796A JP14850796A JP3665421B2 JP 3665421 B2 JP3665421 B2 JP 3665421B2 JP 14850796 A JP14850796 A JP 14850796A JP 14850796 A JP14850796 A JP 14850796A JP 3665421 B2 JP3665421 B2 JP 3665421B2
Authority
JP
Japan
Prior art keywords
continuous fiber
cut
fiber
shield machine
reinforcing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14850796A
Other languages
Japanese (ja)
Other versions
JPH09310577A (en
Inventor
亮一 那珂
俊彦 吉住
道弥 林田
宏則 毎熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP14850796A priority Critical patent/JP3665421B2/en
Publication of JPH09310577A publication Critical patent/JPH09310577A/en
Application granted granted Critical
Publication of JP3665421B2 publication Critical patent/JP3665421B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、シールド掘進機により切削できるトンネル掘進用立坑におけるシールド掘進機発進到達部の土留めコンクリート壁に使用するための連続繊維補強部材に関する。
【0002】
【従来の技術】
図18には、鉄筋44やH形鋼45で補強された土留壁46において、人力作業により切削形成された開口部47をシールド掘進機2が推進している状態が示されている。図19には、CFRPの連続繊維補強部材からなる引張補強材48を予めプレキャストコンクリート51内に配置して、これを切削可能な土留壁49とした従来の例が示されている。
図18の一般例では、シールド掘進機2が鉄筋44もしくはH形鋼44を直接切削できないため、土留壁46の背後に地盤改良50を施した後に、一旦構築した土留壁46のはつり作業を人力で行なってから、その開口部47に掘進機2を据えるという手間のかかる方法をとらざるを得なかった。
図19の例では、プレキャストコンクリート内に連続繊維補強部材48が配置されてなる切削可能な土留壁49であり、条件によって地山側に配置された連続繊維の引張補強材48が、シールド掘進機2のカッタービットで切断されたとき、被り部分の残されたプレキャストコンクリート51が大きな塊に割れて、周囲の脆弱な場所打ちモルタル(又はコンクリート)52と共に、背面地山側に食い込んでしまう等の可能性が残っていた。
図17によって従来例をさらに説明すると、同図には、トンネル掘削工事の基地となる位置に立坑1を築造し、この立坑1の底部にシールド掘進機2を据付けた状態が示されている。
【0003】
同図に示されるように、この立坑1の構築に際しては、環状の掘削溝を掘削した後、この掘削溝の下床や側壁面に鉄筋を配し、その部分にコンクリートを打設して、周囲の土圧に耐え得るコンクリート壁体3を築造している。
【0004】
シールド掘進機3は、この立坑1内に設けられた受け台上で組立てられて、所定の位置に据付けられるように設けられる。前記コンクリート壁体3には、シールド掘進機3が推進する部位4は、このシールド掘進機2により取壊わされ易い構造に構成されており、例えば、この部位4におけるコンクリート壁体3の筋材として、鉄筋とほぼ同等の強度を有し、シールド掘進機2の掘削能力で容易に切削破壊できるカーボン繊維,ガラス繊維またはアラミド繊維のいずれかを樹脂に含浸してなる連続繊維補強部材などが用いられる。
【0005】
前述のようなシールド掘進機のカッタービットで直接切削可能な土留壁体を提供する手段として、すでに特公平6−37830号公報,特開平5−302490号公報等に記載されているものが知られている。さらに、地下埋設物の輻輳化や周辺構造物との干渉の問題から、路下でこの土留壁体を組み立てることが必要な場合が増えてきており、その対策として、路下施工場所に搬入可能な短いコンクリート壁体を順次つなぐ方法、およびそのための構造体を提供するものとして、特開平6−81576号公報,特開平6−108779号公報,特開平6−137065号公報,特開平6−137066号公報等に記載されている構造体および、これらを連結する方法が発明され、その一部はすでに実用化されている。
【0006】
【発明が解決しようとする課題】
前記の土留壁体では、そのコンクリートを補強するための筋材が使用されるが前述のとおり、シールド掘進機2の推進部位4における筋材はカッタービットで直接切削が可能なよう軸方向の補強繊維に主として炭素繊維を用いた繊維強化樹脂(CFRP)等の連続繊維補強部材でできた筋材がコンクリート補強筋材として使用されることがある。
【0007】
炭素繊維は鉄筋に匹敵する高弾性率のCFRPを得やすく、かつ切削性にすぐれ、またガラス繊維のようにコンクリートのアルカリに侵される危険もないため、かかる目的に用いる繊維としては最も適したものである。
【0008】
ただし、軸方向以外の繊維配向や、軸方向であっても補助的な機能を与える目的には、ガラス繊維,アラミド繊維を併用することが許容される。このように、たとえガラス繊維,アラミド繊維その他を併用していても、軸方向、すなわち引張方向の補強材の主構成が炭素繊維であるかぎり、CFRPである。
【0009】
CFRPでできた板状,管状,棒状,撚線等の引張補強材をつなぎあわせたり、端部を他の材料に接続して応力伝達を行うためには、これらの引張補強材の定着が必要である。しかも、この定着に用いる全ての材料は、シールド掘進機のカッタービットで切削可能で、且つCFRPの卓越した引張強度に見合う強度を有するもので構成されなければならない。加えて、立坑築造時の路下施工に適用する場合、当然複雑で熟練を要する作業工程を回避しなければ実用性にすぐれた施工方法になり得ない。
【0010】
従来、これらの引張補強材の継手施工には、流動性材料を用いて行うもの、FRP製のボルトで行うもの等がすでに開発され、それらの一部は実用化されているが、現場施工の際、前者においては充填の確認と養生時間内の仮止め工程等の、後者においてはボルトの締めつけトルク管理等の、煩雑で特段の注意を要する作業が伴っていた。さらには定着部の構造的ならびに施工上の制約から引張補強材の強度を十分発揮できないことが起こり易かった。
【0011】
また、従来コンクリート壁の切削可能な補強材としてH形断面の連続繊維補強部材が使用される。従来、このH形断面の連続繊維補強部材を製造するには、未硬化の樹脂を含浸した連続繊維を所定の断面形状のダイスに通して成形した後、樹脂を硬化する方法で製造する、プルトルージョンと呼ばれる方法がとられている。しかし、この方法ではH形断面のウェブとフランジの接合部の強度が著しく弱く実用化が極めて困難であった。
【0012】
一方、ウェブとフランジの接合部において、H形断面に平行な繊維配向を実現するには、プリプレグを手作業で貼り合わせて積層していく方法しかなく、著しく生産性が低いために実用性の極めて乏しいものであった。
【0013】
本発明は、前記の諸問題を解決した被切削コンクリート壁用の連続繊維補強部材を提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明を適用した被切削コンクリート壁用の連続繊維補強部材は、断面が中空で、炭素繊維を主とした繊維強化樹脂からなる中空筒状部材を縦方向に2分割した分割部材の背中部同士を、繊維強化樹脂製ボルトと接着剤の切断可能接合手段を用いて接合して形成したことを特徴とする。
【0015】
本発明によると、施工内空の限られた場所でも、限られた長さの連続繊維補強部材を、その引張強度を継手部で損なうことなしに順次つなぎながら、これによって補強されたコンクリート壁体を構築できる。
【0016】
【発明の実施の形態】
以下、本発明を図を参照して説明する。図1〜図9は本発明の第1例を示し、図10〜図16は本発明の第2例を示す。この第1例と第2例では、炭素繊維を主とした繊維強化樹脂から構成された中空筒状部材を縦方向に2分割し、この分割部材の背中部(ウェブ)同士を繊維強化ボルトと添接板または接着剤等からなる切断可能接合手段を用いて接合して連続繊維補強部材を構成する。
【0017】
図1〜図9によって、第1例を説明すると、第1例では図4に示すように断面が中空,多角形であり、かつ隅角部に丸みを付した形状の炭素繊維を主とした繊維強化樹脂からなる連続繊維補強部材としての中空筒状部材26をフィラメントワインディング(以下FWと称す)で製作する。図4において、中空筒状部材26における炭素繊維の配向は矢印で示されている。
【0018】
次に、前記中空筒状部材26を図5に示すように縦に2分割して、コ字形の2つの分割部材26aを構成する。つぎに、図6に示すようにコ字形の分割部材26aをウェブ(背中部)27を合わせ、この背中合わせ部を貫通する繊維強化樹脂製ボルト28とナット29で再結合することで、左右対称の断面を有する炭素繊維を主とした連続繊維補強部材30を構成する。なお、前記分割部材26aのウェブ27を結合する手段としては、前記繊維強化樹脂製ボルト28とナット29のほか、接着剤でもよいし、あるいは、これらボルト,ナットと接着剤との併用でもよい。
【0019】
前記の炭素繊維を主とした連続繊維補強部材30が十分に長尺であれば、この補強部材単体を補強筋体として被切削コンクリート壁体8用に使用できるが、前記連続繊維補強部材30が短尺の場合は、これを図1に示すように長手方向に結合して長尺補強筋体31を構成する。また、この結合手段は、長尺補強筋体31の上下端部と上下の鋼製立坑構成部材7,7aとの結合にも用いられる。
【0020】
その結合手段の例が図8,図9に示されている。同図の場合は上位と下位の連続繊維補強部材30の端縁部32同士を突き合わせ、この端縁部32をまたがって伸びる添接板33を各補強部材30のウェブ27とフランジ部34を両側から挟むように当てがい、このウェブ27及びフランジ部34と添接板33の各ボルト孔35に繊維強化樹脂製ボルト28を挿通し、ナット29を締結することで、上位と下位の連続繊維補強部材30が結合されている。
【0021】
第1例の各連続繊維補強部材30は、図1に示すように被切削コンクリート壁体8内に長尺補強筋体31として埋設され、かつ図2,図3に示すようにシールド掘進機2のカッタービット2aで切削されることで、このコンクリート壁体8にシールド掘進機2が通過できる開口が切削形成される。
【0022】
次に図6〜図12に示す第2例を説明する。この第2例では、図13に示すように中空筒状部材36の断面形状が、第1例のそれと異なっており、その他の構成及び製作工程は第1例と同じであるので、それと同一要素には同一符号を付して重複説明を省略し、相違する点のみを説明する。
【0023】
第2例では、中空筒状部材36の先端部が円弧状部37となった略矩形断面形状である構成が、第1例の中空筒状部材26の先端部が平面状の矩形断面形状である構成と相違している。したがって、第2例の中空筒状部材36を縦方向に2分割してできる分割部材36aのウェブ38同士を突き合わせボルト孔35に繊維強化樹脂製ボルト28を挿通しナット29を締結し、再結合して構成される連続繊維補強部材40の断面形状が第1例に係る連続繊維補強部材30と若干相違する。
【0024】
第2例の連続繊維補強部材40も、図10に示すように被切削コンクリート壁体8内に長尺補強筋体41として埋設され、かつ図11,図12に示すようにシールド掘進機2のカッタービット2aで切削される。このとき、ある程度強度をもった被切削コンクリート壁体8のカッタービット2aによる切削完了に近づいたときの連続繊維補強部材40の残存部分の形状が、第2例では、第1例と異なっている。
【0025】
すなわち、図3に示されるように、フラットなフランジ34を有する第1例よりも図12に示されるように円弧状のフランジ39を有する第2例の場合の方が連続繊維補強部材の残存部分が少ないので、シールド掘進機2によりコンクリート壁体8の開口が開削されたとき、前記残存部分がコンクリート壁体を構成するモルタルやコンクリート等の固化体から剥離して、大きな塊のまま脱落する危険性が少ない。しかし、第1例の構成によっても、従来例に比べて格段の効果を達成できることは明らかである。
【0026】
本発明が、第1例、第2例のように連続繊維補強部材30,40を構成する理由は次のとおりである。
【0027】
シールド掘進機の発進・到達用立坑の土留壁では、従来補強筋としてH形鋼が使用される場合が多く、これとの関係で、シールド掘進機が発進・到達する際、そのカッタービットで切削される範囲、つまり、前記のカッタービットで切削される範囲の土留壁の補強筋体も、土留壁として十分な耐力を有し、かつ切削可能な材料のみで構成されるものであればH形鋼と同一の断面構造のものが、添接板で容易に接合できることから好ましい。
【0028】
このことから、被切削コンクリート壁体の補強筋として、従来、H形断面の連続繊維補強部材が使用されることがあるが、前に述べたように、従来のH形断面の連続繊維補強部材では製法上の問題からH形断面を形成するウェブとフランジ部との接合部の強度が著るしく弱くて実用化が困難であり、または、プリプレグの手作業によるウェブとフランジ部との接合部の貼り合わせによる著るしく生産性が低くて実用化が困難であった。
【0029】
本発明では、中空筒状部材26,36と製作する際に、繊維強化樹脂における炭素繊維の配向を所期通りに行なうことができる。したがって、この中空筒状部材26,36を縦方向に2分割して形成される分割部材26a,36aを、そのウェブ27,38同士を接合して構成される連続繊維補強部材30,40の断面形状は従来と同じH形断面であり、しかも、ウェブ27,38とフランジ34,39とは一体であり、かつ両方に伸長した炭素繊維の配向がなされているから、従来のような接合部の強度低下が生じないのである。
【0030】
第2例の連続繊維補強部材40では、前記の利点に加え前述のように円弧状のフランジ39を有することで、コンクリート壁体8の最終切削段階で、前記補強部材40の小片化に好都合な構成を有している。
【0031】
また、CFRP製の長尺補強筋体31,41のウェブ27,38やフランジ34,39部分には、開口部や突起または表面に凹凸を設けることでコンクリートとの合成梁(補強筋)を構成できることは自明である。
【0032】
図4および図13に示す中空筒体を製作する場合には、図4に矢印で炭素繊維を主とする連続繊維の配置方向を示すように、筒体の長手方向(図4の矢印X方向)と、筒体の周方向(矢印Y方向)と、筒体の長手方向に対して傾斜して交差する方向(矢印Z方向)に、炭素繊維を主とする連続繊維を適宜組合せて配置すればよい。また中空筒体の周方向に、炭素繊維等の連続繊維を多数回捲回または螺旋状に捲回して樹脂により埋込むかまたは樹脂を含浸させてもよい。
【0033】
【発明の効果】
以上説明したように本発明によると、施工内空の限られた場所でも、限られた長さの連続繊維補強部材を、その引張強度を継手部で損なうことなしに順次つなぎながら、これによって補強されたコンクリート壁体を構築できる。このようにして構築したコンクリート壁体は、連続繊維補強部材およびその継手はすべてCFRPを中心とした切削可能な材料で構成されているため、シールド掘進機のカッタービットで容易に切削可能である。さらに、こうして構築したコンクリート壁体の両端で、シールド掘進機の発進到達範囲から外れたところは、鋼構造物または鉄筋コンクリート構造になるが、本発明によるコンクリート壁体と鋼構造物または鉄筋コンクリート構造との接合も、鋼構造物に設けられた支承部材や係合部材または、添接板やボルト,ナット等により、容易かつ強固に行なうことができる。
【図面の簡単な説明】
【図1】 立坑におけるシールド掘進機推進部のコンクリート壁に本発明の第1例を実施した例を示す正面説明図である。
【図2】 第1例に係る中空筒状部材の分割部材からなる繊維補強筋体のシールド掘進機による切断前の状態を示す横断面図である。
【図3】 同じく図2の繊維補強筋体のシールド掘進機による切断終了時の状態を示す横断面図である。
【図4】 第1例に係る中空筒状部材の斜視図である。
【図5】 図4の中空筒状部材の2分割状態の斜視図である。
【図6】 図5の分割部材をウェブを介して再接合してなる繊維補強筋体の斜視図である。
【図7】 図6の断面図である。
【図8】 図6の繊維補強筋体の長手方向の連結部を示す正面図である。
【図9】 図8の連結部の断面図である。
【図10】 立坑におけるシールド掘進機推進部のコンクリート壁に本発明の第2例を実施した例を示す正面説明図である。
【図11】 本発明の第2例に係る繊維補強筋体のシールド掘進機による切断前の状態を示す横断面図である。
【図12】 同じく繊維補強筋体のシールド掘進機による切断終了時の状態を示す横断面図である。
【図13】 第2例に係る中空筒状部材の斜視図である。
【図14】 図13の中空筒状部材の2分割状態の斜視図である。
【図15】 図14の分割部材を背中合わせに再接合してなる繊維補強筋体の斜視図である。
【図16】 図15の断面図である。
【図17】 第1従来例として立坑におけるシールド掘進機と、その推進部におけるコンクリート壁を示す側面説明図である。
【図18】 第2従来例として、シールド掘進機が人力によりはつり作業で開削された開口を推進している状態を示す断面説明図である。
【図19】 第3従来例として、立坑におけるシールド掘進機が繊維補強土留壁を切削して推進している状態を示す側面説明図である。
【符号の説明】
1 立坑
2 シールド掘進機
3 コンクリート壁体
4 推進部位
7,7a 鋼製立坑構成部材
8 切削用コンクリート壁体
12 範囲
26 中空筒状部材
26a 分割部材
27 ウェブ
28 繊維強化樹脂製ボルト
29 ナット
30 連続繊維補強部材
31 長尺補強筋体
32 端縁部
33 添接板
34 フランジ部
35 ボルト孔
36 中空筒状部材
36a 分割部材
37 円弧状部
38 ウェブ
39 フランジ
40 連続繊維補強部材
41 長尺補強筋体
42 モルタルまたはコンクリート
44 鉄筋
45 H形鋼
46 土留壁
47 開口部
48 引張補強材
49 土留壁
50 地盤改良
51 プレキャストコンクリート
52 場所打ちモルタル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a continuous fiber reinforcing member for use in a retaining concrete wall of a shield machine start reach in a tunnel digging shaft that can be cut by a shield machine.
[0002]
[Prior art]
FIG. 18 shows a state in which the shield machine 2 is propelling the opening 47 cut and formed by manual work on the retaining wall 46 reinforced by the reinforcing bars 44 and the H-shaped steel 45. FIG. 19 shows a conventional example in which a tensile reinforcing material 48 made of a CFRP continuous fiber reinforcing member is arranged in advance in a precast concrete 51 and used as a cut retaining wall 49.
In the general example of FIG. 18, since the shield machine 2 cannot directly cut the reinforcing bar 44 or the H-shaped steel 44, after the ground improvement 50 is applied behind the retaining wall 46, the suspended work of the retaining wall 46 once constructed is manually performed. After that, the laborious method of setting the excavator 2 in the opening 47 was unavoidable.
In the example of FIG. 19, it is the cutable retaining wall 49 in which the continuous fiber reinforcing member 48 is arranged in the precast concrete, and the continuous fiber tensile reinforcing material 48 arranged on the natural ground side depending on the condition is used for the shield machine 2 When the pre-cast concrete 51 with the covering portion left is broken into large chunks and cut into the back ground side with the surrounding weak cast-in mortar (or concrete) 52, etc. Was left.
The conventional example will be further described with reference to FIG. 17. FIG. 17 shows a state in which a shaft 1 is built at a position to be a base for tunnel excavation work, and a shield machine 2 is installed at the bottom of the shaft 1.
[0003]
As shown in the figure, when this shaft 1 is constructed, after excavating an annular excavation groove, reinforcing bars are placed on the lower floor and side walls of the excavation groove, and concrete is placed in that part, A concrete wall 3 that can withstand the earth pressure is constructed.
[0004]
The shield machine 3 is assembled on a cradle provided in the shaft 1 so as to be installed at a predetermined position. In the concrete wall 3, the part 4 that the shield machine 3 propels is configured to be easily demolished by the shield machine 2, for example, the streaks of the concrete wall 3 in this part 4. For example, a continuous fiber reinforcing member formed by impregnating a resin with carbon fiber, glass fiber, or aramid fiber, which has almost the same strength as a reinforcing bar and can be easily cut and broken by the excavating ability of the shield machine 2 is used. It is done.
[0005]
As means for providing a retaining wall body that can be directly cut with the cutter bit of the shield machine as described above, those already described in Japanese Patent Publication No. 6-37830, Japanese Patent Laid-Open No. 5-302490, etc. are known. ing. In addition, due to the congestion of underground buried objects and interference with surrounding structures, it is increasingly necessary to assemble this retaining wall under the road, and as a countermeasure, it can be carried into the road construction site. Japanese Patent Application Laid-Open No. 6-81576, Japanese Patent Application Laid-Open No. 6-107779, Japanese Patent Application Laid-Open No. 6-133706, Japanese Patent Application Laid-Open No. 6-137066, and the like. The structures described in the publications and the like and methods for connecting them have been invented, and some of them have already been put into practical use.
[0006]
[Problems to be solved by the invention]
In the above-mentioned earth retaining wall body, a reinforcing material for reinforcing the concrete is used. As described above, the reinforcing material in the propulsion part 4 of the shield machine 2 is reinforced in the axial direction so that it can be directly cut with a cutter bit. In some cases, a reinforcing material made of a continuous fiber reinforcing member such as a fiber reinforced resin (CFRP) using mainly carbon fiber as a fiber is used as a concrete reinforcing reinforcing material.
[0007]
Carbon fiber is most suitable as a fiber for such purposes because it is easy to obtain CFRP with a high modulus of elasticity comparable to that of reinforcing steel, has excellent machinability, and has no danger of being attacked by concrete alkali like glass fiber. It is.
[0008]
However, it is allowed to use glass fibers and aramid fibers in combination for the purpose of providing an auxiliary function even in the fiber orientation other than the axial direction and in the axial direction. Thus, even if glass fiber, aramid fiber, or the like is used in combination, CFRP is used as long as the main component of the reinforcing material in the axial direction, that is, in the tensile direction is carbon fiber.
[0009]
It is necessary to fix these tensile reinforcement materials in order to connect plate reinforcements made of CFRP such as plates, tubes, rods, and stranded wires, or to transfer stress by connecting the ends to other materials. It is. In addition, all materials used for this fixing must be made of materials that can be cut with a cutter bit of a shield machine and have a strength that matches the outstanding tensile strength of CFRP. In addition, when applied to road construction at the time of shaft construction, the construction method cannot be excellent in practicality unless a complicated and skilled work process is avoided.
[0010]
Conventionally, joints of these tensile reinforcements have been developed using fluid materials and those made of FRP bolts, and some of them have been put into practical use. On the other hand, the former involved complicated work requiring special attention, such as confirmation of filling and a temporary fixing process within the curing time, and the latter, such as bolt tightening torque management. Furthermore, it was easy to happen that the strength of the tensile reinforcement material could not be fully exhibited due to structural and construction restrictions of the anchorage.
[0011]
Moreover, the continuous fiber reinforcement member of a H-shaped cross section is used as a reinforcing material which can cut a concrete wall conventionally. Conventionally, a continuous fiber reinforcing member having an H-shaped cross section is manufactured by forming a continuous fiber impregnated with an uncured resin through a die having a predetermined cross-sectional shape and then curing the resin. A method called “rouge” is used. However, in this method, the strength of the joint between the web having a H-shaped cross section and the flange is remarkably weak, and it is very difficult to put it to practical use.
[0012]
On the other hand, in order to realize the fiber orientation parallel to the H-shaped cross section at the joint between the web and the flange, there is only a method of laminating the prepregs by hand, and the practicality is low because the productivity is remarkably low. It was extremely scarce.
[0013]
An object of the present invention is to provide a continuous fiber reinforcing member for a concrete wall to be cut, which has solved the above problems.
[0014]
[Means for Solving the Problems]
The continuous fiber reinforcing member for a concrete wall to be cut to which the present invention is applied has a hollow cross section, and the back portions of the divided members obtained by dividing a hollow cylindrical member made of a fiber reinforced resin mainly composed of carbon fibers into two in the longitudinal direction. Is formed by bonding using a fiber-reinforced resin bolt and an adhesive severable joining means.
[0015]
According to the present invention, a continuous wall reinforcing member having a limited length is connected even in a limited space in the construction space, and is continuously reinforced without damaging the tensile strength of the joint portion. Can be built.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described below with reference to the drawings. 1 to 9 show a first example of the present invention, and FIGS. 10 to 16 show a second example of the present invention. In the first example and the second example, a hollow cylindrical member composed of a fiber reinforced resin mainly composed of carbon fibers is divided into two in the longitudinal direction, and the back portions (webs) of the divided members are defined as fiber reinforced bolts. The continuous fiber reinforcing member is constructed by joining using a cutable joining means made of an attachment plate or an adhesive.
[0017]
The first example will be described with reference to FIGS. 1 to 9. In the first example, as shown in FIG. 4, a carbon fiber having a hollow cross section, a polygonal shape, and rounded corners is mainly used. A hollow cylindrical member 26 as a continuous fiber reinforcing member made of fiber reinforced resin is manufactured by filament winding (hereinafter referred to as FW). In FIG. 4, the orientation of the carbon fibers in the hollow cylindrical member 26 is indicated by an arrow.
[0018]
Next, as shown in FIG. 5, the hollow cylindrical member 26 is vertically divided into two to form two U-shaped divided members 26a. Next, as shown in FIG. 6, the U-shaped split member 26 a is aligned with the web (back portion) 27, and is recombined with a fiber reinforced resin bolt 28 and a nut 29 that penetrates the back-to-back portion, so A continuous fiber reinforcing member 30 mainly composed of carbon fibers having a cross section is configured. In addition, as means for connecting the web 27 of the divided member 26a, an adhesive may be used in addition to the fiber reinforced resin bolt 28 and the nut 29, or a combination of these bolt, nut and adhesive may be used.
[0019]
If the continuous fiber reinforcing member 30 mainly composed of the carbon fiber is sufficiently long, the reinforcing member alone can be used as a reinforcing reinforcing body for the concrete wall 8 to be cut. In the case of a short length, this is coupled in the longitudinal direction as shown in FIG. This coupling means is also used for coupling the upper and lower ends of the long reinforcing bar 31 and the upper and lower steel shaft components 7 and 7a.
[0020]
Examples of the coupling means are shown in FIGS. In the case of the figure, the end edges 32 of the upper and lower continuous fiber reinforcing members 30 are butted together, and the attachment plate 33 extending across the end edges 32 is attached to the web 27 and the flange 34 of each reinforcing member 30 on both sides. The upper and lower continuous fiber reinforcements are made by inserting fiber reinforced resin bolts 28 into the bolt holes 35 of the web 27 and flange part 34 and the attachment plate 33 and fastening the nuts 29. Member 30 is coupled.
[0021]
Each continuous fiber reinforcing member 30 of the first example is embedded as a long reinforcing bar 31 in the concrete wall 8 to be cut as shown in FIG. 1, and the shield machine 2 as shown in FIGS. By cutting with the cutter bit 2a, an opening through which the shield machine 2 can pass is formed in the concrete wall 8 by cutting.
[0022]
Next, a second example shown in FIGS. 6 to 12 will be described. In the second example, as shown in FIG. 13, the cross-sectional shape of the hollow cylindrical member 36 is different from that of the first example, and other configurations and manufacturing processes are the same as those of the first example. The same reference numerals are assigned to the components, and duplicate description is omitted, and only the differences are described.
[0023]
In the second example, the configuration having a substantially rectangular cross-sectional shape in which the distal end portion of the hollow cylindrical member 36 is an arc-shaped portion 37, the distal end portion of the hollow cylindrical member 26 of the first example is a planar rectangular cross-sectional shape. It is different from a certain configuration. Accordingly, the webs 38 of the divided member 36a formed by dividing the hollow cylindrical member 36 of the second example into two in the vertical direction are brought into contact with each other, the fiber reinforced resin bolt 28 is inserted into the bolt hole 35, the nut 29 is fastened, and the recombination is performed. The cross-sectional shape of the continuous fiber reinforcing member 40 configured as described above is slightly different from the continuous fiber reinforcing member 30 according to the first example.
[0024]
The continuous fiber reinforcing member 40 of the second example is also embedded as a long reinforcing bar 41 in the concrete wall 8 to be cut as shown in FIG. 10, and the shield machine 2 as shown in FIGS. It is cut with the cutter bit 2a. At this time, the shape of the remaining portion of the continuous fiber reinforcing member 40 when the cutting of the concrete wall 8 to be cut with a certain degree of strength approaches the completion of cutting by the cutter bit 2a is different from the first example in the second example. .
[0025]
That is, as shown in FIG. 3, the remaining portion of the continuous fiber reinforcing member is more in the case of the second example having the arc-shaped flange 39 as shown in FIG. 12 than in the first example having the flat flange 34. Therefore, when the opening of the concrete wall 8 is cut by the shield machine 2, there is a risk that the remaining part will be peeled off from the solidified body such as mortar or concrete constituting the concrete wall and fall off as a large lump. There is little nature. However, it is obvious that the configuration of the first example can achieve a remarkable effect as compared with the conventional example.
[0026]
The reason why the present invention constitutes the continuous fiber reinforcing members 30 and 40 as in the first example and the second example is as follows.
[0027]
In the retaining wall of the shaft for starting and reaching the shield machine, H-shaped steel is often used as a reinforcing bar in the past, and in this connection, when the shield machine is started and reached, cutting is performed with the cutter bit. If the reinforcing bar body of the retaining wall in the range to be cut, that is, the range to be cut by the cutter bit, has sufficient strength as the retaining wall and is composed only of a material that can be cut, it is H-shaped. A steel having the same cross-sectional structure as that of steel is preferable because it can be easily joined with an attachment plate.
[0028]
For this reason, a continuous fiber reinforcing member having an H-shaped cross section is conventionally used as a reinforcing bar for a concrete wall to be cut. However, as described above, a conventional continuous fiber reinforcing member having an H-shaped cross section is used. However, the strength of the joint between the web forming the H-shaped cross section and the flange is so weak that it is difficult to put into practical use due to problems in the manufacturing method, or the joint between the web and the flange by manual operation of the prepreg. It was difficult to put it to practical use because of its markedly low productivity due to the bonding.
[0029]
In the present invention, when the hollow cylindrical members 26 and 36 are manufactured, the carbon fibers in the fiber reinforced resin can be oriented as expected. Therefore, the cross sections of the continuous fiber reinforcing members 30 and 40 configured by joining the webs 27 and 38 to the divided members 26a and 36a formed by dividing the hollow cylindrical members 26 and 36 into two in the vertical direction. The shape is the same H-shaped cross section as in the prior art, and the webs 27 and 38 and the flanges 34 and 39 are integral with each other, and the carbon fibers are oriented in both directions. There is no reduction in strength.
[0030]
In the continuous fiber reinforcing member 40 of the second example, in addition to the above-described advantages, the arc-shaped flange 39 is provided as described above, which is advantageous for making the reinforcing member 40 smaller at the final cutting stage of the concrete wall 8. It has a configuration.
[0031]
In addition, the webs 27 and 38 and the flanges 34 and 39 of the long reinforcing bars 31 and 41 made of CFRP constitute synthetic beams (reinforcing bars) with concrete by providing irregularities on the openings, protrusions or surfaces. It's obvious what you can do.
[0032]
When the hollow cylinder shown in FIGS. 4 and 13 is manufactured, the longitudinal direction of the cylinder (in the direction indicated by the arrow X in FIG. 4) is shown in FIG. ), A circumferential direction of the cylindrical body (arrow Y direction), and a direction (arrow Z direction) that is inclined with respect to the longitudinal direction of the cylindrical body (arrow Z direction) and appropriately combined with continuous fibers. That's fine. Further, continuous fibers such as carbon fibers may be wound many times or spirally in the circumferential direction of the hollow cylinder and embedded with resin or impregnated with resin.
[0033]
【The invention's effect】
As described above, according to the present invention, a continuous fiber reinforcing member having a limited length can be reinforced even in a limited space in the construction space, without damaging the tensile strength of the joint portion. Can be constructed concrete wall. The concrete wall constructed in this way can be easily cut with a cutter bit of a shield machine because the continuous fiber reinforcing member and its joint are all made of a material that can be cut with CFRP as the center. Furthermore, at the both ends of the concrete wall constructed in this way, the place deviated from the start reach of the shield machine is a steel structure or a reinforced concrete structure, but the concrete wall according to the present invention and the steel structure or the reinforced concrete structure Joining can also be easily and firmly performed by a support member, an engaging member, an attachment plate, a bolt, a nut, or the like provided in the steel structure.
[Brief description of the drawings]
FIG. 1 is a front explanatory view showing an example in which a first example of the present invention is applied to a concrete wall of a shield machine propulsion unit in a vertical shaft.
FIG. 2 is a cross-sectional view showing a state before cutting by a shield machine of a fiber reinforced reinforcement body formed of a split member of a hollow cylindrical member according to a first example.
3 is a cross-sectional view showing a state at the end of cutting by the shield machine of the fiber reinforcing bar of FIG.
FIG. 4 is a perspective view of a hollow cylindrical member according to a first example.
5 is a perspective view of the hollow cylindrical member of FIG. 4 in a two-divided state. FIG.
6 is a perspective view of a fiber reinforced reinforcing member formed by rejoining the divided members of FIG. 5 via a web. FIG.
FIG. 7 is a cross-sectional view of FIG.
8 is a front view showing a connecting portion in a longitudinal direction of the fiber reinforced reinforcing member shown in FIG. 6;
9 is a cross-sectional view of the connecting portion of FIG.
FIG. 10 is a front explanatory view showing an example in which a second example of the present invention is applied to a concrete wall of a shield machine propulsion unit in a vertical shaft.
FIG. 11 is a cross-sectional view showing a state before cutting by a shield machine of a fiber reinforced reinforcement body according to a second example of the present invention.
FIG. 12 is a cross-sectional view showing a state at the end of cutting of the fiber reinforced reinforcement body by the shield machine.
FIG. 13 is a perspective view of a hollow cylindrical member according to a second example.
14 is a perspective view of the hollow cylindrical member of FIG. 13 in a two-divided state.
FIG. 15 is a perspective view of a fiber reinforced muscle body formed by rejoining the divided members of FIG. 14 back to back.
16 is a cross-sectional view of FIG.
FIG. 17 is an explanatory side view showing a shield machine in a vertical shaft and a concrete wall in its propulsion unit as a first conventional example.
FIG. 18 is a cross-sectional explanatory view showing a state in which the shield machine is propelling an opening cut by a lifting work by human power as a second conventional example.
FIG. 19 is a side explanatory view showing a state where a shield machine in a vertical shaft is cutting and pushing a fiber-reinforced retaining wall as a third conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Shaft 2 Shield machine 3 Concrete wall body 4 Propulsion part 7,7a Steel shaft member 8 Cutting concrete wall body 12 Range 26 Hollow cylindrical member 26a Dividing member 27 Web 28 Fiber reinforced resin bolt 29 Nut 30 Continuous fiber Reinforcing member 31 Long reinforcing bar body 32 End edge part 33 Connecting plate 34 Flange part 35 Bolt hole 36 Hollow cylindrical member 36a Split member 37 Arc shaped part 38 Web 39 Flange 40 Continuous fiber reinforcing member 41 Long reinforcing bar body 42 Mortar or concrete 44 Reinforcing bars 45 H-section steel 46 Retaining wall 47 Opening 48 Tension reinforcement 49 Retaining wall 50 Ground improvement 51 Precast concrete 52 Cast-in-place mortar

Claims (2)

断面が中空で、炭素繊維を主とした繊維強化樹脂からなる中空筒状部材を縦方向に2分割した分割部材の背中部同士を、繊維強化樹脂製ボルトと接着剤の切断可能接合手段を用いて接合して形成したことを特徴とする被切削コンクリート壁用の連続繊維補強部材。  Using a fiber-reinforced resin bolt and adhesive severable joining means between the back parts of the split member that is hollow in cross section and divided into two in the longitudinal direction of a hollow cylindrical member made of fiber reinforced resin mainly composed of carbon fiber A continuous fiber reinforcing member for a concrete wall to be cut, which is formed by joining together. 請求項1に記載の連続繊維補強部材は、繊維強化樹脂製添接板を用いて長手方向に連結して、長尺連続繊維補強筋体が形成されるものであることを特徴とする被切削コンクリート壁用の連続繊維補強部材。  The continuous fiber reinforcing member according to claim 1, wherein the continuous fiber reinforcing member is connected in the longitudinal direction by using a fiber reinforced resin attachment plate to form a long continuous fiber reinforced reinforcing body. Continuous fiber reinforced member for concrete walls.
JP14850796A 1996-05-21 1996-05-21 Continuous fiber reinforcement for concrete walls to be cut Expired - Fee Related JP3665421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14850796A JP3665421B2 (en) 1996-05-21 1996-05-21 Continuous fiber reinforcement for concrete walls to be cut

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14850796A JP3665421B2 (en) 1996-05-21 1996-05-21 Continuous fiber reinforcement for concrete walls to be cut

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004336837A Division JP3798414B2 (en) 2004-11-22 2004-11-22 Continuous fiber reinforced member for concrete wall to be cut and construction method of concrete wall to be cut using the same

Publications (2)

Publication Number Publication Date
JPH09310577A JPH09310577A (en) 1997-12-02
JP3665421B2 true JP3665421B2 (en) 2005-06-29

Family

ID=15454314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14850796A Expired - Fee Related JP3665421B2 (en) 1996-05-21 1996-05-21 Continuous fiber reinforcement for concrete walls to be cut

Country Status (1)

Country Link
JP (1) JP3665421B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4563275B2 (en) * 2005-07-22 2010-10-13 鹿島建設株式会社 Cutable parts and cutable piles

Also Published As

Publication number Publication date
JPH09310577A (en) 1997-12-02

Similar Documents

Publication Publication Date Title
JP3876278B2 (en) Easy-cut tunnel segment structure
JP2003314197A (en) Conduit repairing method and conduit interior repairing structure
JP4939803B2 (en) Cutable fiber reinforced resin segments and shield tunnel walls
JP3665421B2 (en) Continuous fiber reinforcement for concrete walls to be cut
JPH07292783A (en) Connective structure of prestressed concrete members
JP3798414B2 (en) Continuous fiber reinforced member for concrete wall to be cut and construction method of concrete wall to be cut using the same
JP3011169B2 (en) Shield tunnel and lining method
JP6866980B2 (en) Joining cap and pile head joining structure
JP2000073686A (en) Construction of tunnel in large-sized section
JP2000002095A (en) Segment
JP3257502B2 (en) Construction method of steel segment and tunnel lining
JPH08199989A (en) Construction of large section tunnel
JP3665412B2 (en) Concrete wall reinforcement
JPH0941884A (en) Segment and lining method using the segment
JP2001140592A (en) Tunnel lining segment and its construction method
JP4287542B2 (en) Segment structure
JP2627707B2 (en) Joint structure between underground continuous wall and underground skeleton
JP3011170B2 (en) Segment joint structure
JP3678463B2 (en) Starting and reaching shaft for shield machine
JP3845297B2 (en) Structure of joint between column and beam
JP3046241B2 (en) Joint structure and joining method of steel segments
KR20010009979A (en) A Retaining Wall Structure for using Pipes and It's Construction Method
JP2001254353A (en) Earth retaining wall/rc composite structure and its construction method
JP2000080892A (en) Joint structure of steel segment and joining method
JP3725005B2 (en) Flat panel and its construction method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050401

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080408

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080408

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees