JP3664201B2 - Exhaust gas purification catalyst - Google Patents

Exhaust gas purification catalyst Download PDF

Info

Publication number
JP3664201B2
JP3664201B2 JP33947096A JP33947096A JP3664201B2 JP 3664201 B2 JP3664201 B2 JP 3664201B2 JP 33947096 A JP33947096 A JP 33947096A JP 33947096 A JP33947096 A JP 33947096A JP 3664201 B2 JP3664201 B2 JP 3664201B2
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
carrier
nox
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33947096A
Other languages
Japanese (ja)
Other versions
JPH10174868A (en
Inventor
理恵美 村本
宏昌 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP33947096A priority Critical patent/JP3664201B2/en
Publication of JPH10174868A publication Critical patent/JPH10174868A/en
Application granted granted Critical
Publication of JP3664201B2 publication Critical patent/JP3664201B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、自動車等の内燃機関から排出される排気ガスを浄化する排気ガス浄化用触媒に関し、詳しくは、排気ガス中に含まれる一酸化炭素(CO)や炭化水素(HC)等の還元性成分を完全に酸化するのに必要な酸素量より過剰の酸素を含む排気ガス中の、窒素酸化物(NOx)を効率良く還元浄化できる排気ガス浄化用触媒に関する。
【0002】
【従来の技術】
従来より自動車の排気ガス浄化用触媒として、排気ガス中のCO及びHCの酸化とNOxの還元とを同時に行って浄化する三元触媒が用いられている。このような触媒としては、例えばコージェライト等の耐熱性担体にγ−アルミナからなる担持層を形成し、その担持層にPt,Pd,Rh等の触媒貴金属を担持させたものが広く知られている。
【0003】
一方、近年、地球環境保護の観点から、自動車等の内燃機関から排出される排気ガス中の二酸化炭素(CO2 )が問題とされ、その解決策として酸素過剰雰囲気において希薄燃焼させるいわゆるリーンバーンエンジンが有望視されている。このリーンバーンエンジンにおいては、CO2 の発生が抑制できるとともに、燃料の使用量を低減することができる。
【0004】
ところで、従来の三元触媒は、空燃比が理論空燃比(ストイキ)において排気ガス中のCO,HC,NOxを同時に酸化・還元し浄化するものであって、希薄燃焼時のような排気ガスの酸素過剰雰囲気下においては、NOxの反応の相手であるCOやHCが先に酸素と反応するため、NOxの還元除去に対しては十分な浄化性能を示さない。よって、酸素過剰雰囲気下においてもNOxを浄化しうる触媒及び浄化システムの開発が望まれていた。
【0005】
そこでリーンバーンエンジンにおいて、常時は酸素過剰の希薄条件で燃焼させ、一時的にストイキ〜リッチ条件とすることにより排気ガスを還元雰囲気として、NOxを還元浄化するシステムが開発された。そしてこのシステムに最適な、リーン雰囲気でNOxを吸蔵し、ストイキ〜リッチ雰囲気で吸蔵されたNOxを放出するNOx吸蔵材を用いた吸蔵還元型の排気ガス浄化用触媒が開発されている。
【0006】
例えば、特開平5−317652号公報には、Ba等のNOx吸蔵材とPt等の触媒貴金属をアルミナ等の多孔質担体に担持した排気ガス浄化用触媒が開示されている。この排気ガス浄化用触媒を用い、空燃比をリーン側からパルス状にストイキ〜リッチ側になるように制御することにより、リーン側ではNOxがNOx吸蔵材であるBaに吸蔵され、それがストイキ又はリッチ側で放出されてHCやCO等の還元性成分と反応し還元浄化される。従ってこのような吸蔵還元型の排気ガス浄化用触媒を用いれば、リーンバーンエンジンからの排気ガスであってもNOxを効率良く還元除去することが可能となる。
【0007】
ところが、従来の触媒担体に使用されているアルミナ等の多孔質担体には、燃料中に含まれる微量の硫黄に起因するSOxを吸収しやすい性質があるため、SOxによるNOx吸蔵材の被毒(硫酸塩の生成によるNOx吸蔵能の低下)が促進され、耐久後の触媒機能が低下してしまう。
【0008】
【発明が解決しようとする課題】
このSOx被毒を抑制する手段として、担持層を構成する担体を酸性質側に調整しておく方法が既に知られている。これは、担体を酸性質側にしておくことで、やはり酸性質であるSOxの担体への吸着を抑制しようとするものである。例えば、担体を酸性質であるチタニア,シリカ及びジルコニアから選ばれる少なくとも1種で構成したり、また、アルミナとチタニア,シリカ及びジルコニアから選ばれる少なくとも1種との複合酸化物で構成したりする方法が考えられる。
しかしながら、チタニア,シリカ及びジルコニアは、触媒貴金属の担持の面から見た場合、次のような問題点がある。触媒貴金属は、表面に担持層を被覆した担体基材を、触媒貴金属を含む水溶液中に浸漬させることで担持させるが、これは、水溶液中において正に帯電した触媒貴金属が、担持層上にある水酸基に引き寄せられるために生じる現象であると思われる。アルミナに比べてチタニア,シリカ及びジルコニアは水溶液中において表面上に水酸基が少なく、触媒貴金属の担持効率が低下してしまう。また、チタニア,シリカ及びジルコニアはアルミナに比べて耐熱性が低く、耐久後に隣接する触媒貴金属がシンタリングを起こし、結果として、耐久後の触媒機能が低下してしまうことになる。
【0009】
本発明はこのような事情に鑑みてなされたものであり、アルミナの持つ機能、即ち、高担持効率を損なわずに、SOx被毒を抑制し、かつ耐久後の触媒機能を従来よりも向上させる排気ガス浄化用触媒を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記課題を解決する請求項1に記載の排気ガス浄化用触媒は、担体基材と、該担体基材の表面に被覆された担持層と、該担持層に担持されたアルカリ金属,アルカリ土類金属及び希土類金属の中から選ばれる少なくとも1種のNOx吸蔵材と、前記担持層に担持された触媒貴金属と、からなる排気ガス浄化用触媒において、前記担持層が、チタニア,シリカ及びジルコニアから選ばれる少なくとも1種の粉末とアルミナ粉末を混合し、800〜1000℃で1〜5時間焼成して得られた一部が複合酸化物を形成した担体で構成されることを特徴とする。
【0011】
この排気ガス浄化用触媒は、担持層が、チタニア,シリカ及びジルコニアから選ばれる少なくとも1種とアルミナの一部が複合酸化物を形成した担体で構成されているため、触媒貴金属は表面上に水酸基を多く有するアルミナ上に優先的に担持される。よって、担持効率が向上し、耐久後のシンタリングの発生を抑制することができる。また、上述したように、アルミナはSOx被毒しやすい性質を有するが、酸性質である複合酸化物によりSOxの吸着は抑制される。以上により、耐久後の触媒機能は従来に比べて向上する。
【0012】
【発明の実施の形態】
チタニア,シリカ及びジルコニアから選ばれる少なくとも1種の粉末とアルミナ粉末を混合し、適度な温度,適当な時間で焼成することにより、図1に示すような構造の酸化物多孔質担体を得る。混合は湿式,乾式を特に問わないが、十分に混合するためにボールミルやホモジナイザー等を用いることが望ましい。また、混合した粉末を焼成する前に圧縮しておいても良い。焼成温度は800°C〜1000°C,焼成時間は1時間〜5時間が望ましい。焼成温度が800°C以下だと、チタニア,シリカ及びジルコニアから選ばれる少なくとも1種の粉末とアルミナ粉末との間に複合化が生じず、単なる混合物となる。また、焼成温度が1000°C以上だと全体が複合酸化物となり、上述した問題点が発生する。焼成時間は、1時間以下だと単なる混合物のままとなり、5時間以上だと全体が複合化される。
【0013】
NOx吸蔵材としては、アルカリ金属,アルカリ土類金属及び希土類金属から選ばれる少なくとも1種の元素を用いることができる。アルカリ金属としてはリチウム(Li),ナトリウム(Na),カリウム(K),ルビジウム(Rb),セシウム(Cs),フランシウム(Fr)が挙げられる。中でもNOx吸蔵能が高いK,Rb,Csが好ましい。LiやNaはNOx吸蔵能が低いがK,Cs等を併用すればこの欠点を回避することができる。また、アルカリ土類金属とは周期表2A族元素をいい、バリウム(Ba),ベリリウム(Be),マグネシウム(Mg),カルシウム(Ca),ストロンチウム(Sr),が挙げられる。
また希土類金属としては、スカンジウム(Sc),イットリウム(Y),ランタン(La),セリウム(Ce),プラセオジム(Pr),ネオジム(Nd),ジスプロシウム(Dy),イッテルビウム(Yb)等が挙げられる。
NOx吸蔵材の担持量は、酸化物多孔質担体100g当たり0.01〜5モルの範囲が望ましい。NOx吸蔵材の担持量が0.01モル未満ではNOxの吸蔵能の発現が困難でNOxの還元が困難であり、5モルを越えて担持すると耐熱性が低下するようになる。
触媒貴金属の担持量としては、酸化物多孔質担体100g当たり0.05〜10gの範囲が望ましい。触媒貴金属の範囲が0.05g未満ではNOxの還元が困難であり、10gを越えて担持しても還元作用が飽和するとともにコストの増大を招く。触媒貴金属としては、Pt,Rh,Pdから選ばれる少なくとも1種の元素を用いることができる。またFe,Mn,Cu等の卑金属を用いてもよい。
【0014】
【実施例】
以下、実施例により具体的に説明する。
(実施例1)
チタニア粉末とγ−アルミナ粉末を重量比で1:1となるように調合し、ボールミルで5時間混合した後、800°Cで3時間焼成して、チタニアとアルミナの一部が複合酸化物を形成した担体粉末を調製した。
この担体に蒸留水を適量混合してスラリーを調整した。
【0015】
次に直径100mm,長さ160mmの円柱状のコージェライト製ハニカム担体基材を上記スラリーに浸漬し、引き上げて余分なスラリーをブロアで吸引除去した後、室温から徐々に120°Cまで加熱して2時間乾燥した。この操作を所定のコート量となるまで繰り返し行い、その後、窒素ガス雰囲気下500°Cで1時間焼成して担持層を形成した。担持層はハニカム担体基材1リットル当たり200g形成した。
【0016】
次いで担持層を形成したハニカム担体基材を所定濃度の酢酸バリウム水溶液に浸漬し、引き上げて余分な液滴を吹き払った後、120°Cで2時間乾燥し、500°Cで1時間焼成してBaを担持した。さらに所定濃度の酢酸リチウム水溶液に浸漬し、前述の方法と同様にLiを担持した。それぞれの担持量は、TiO2−Al2O3 200g(担体基材1L)に対してBaが0.3モル,Liが0.1モルである。
【0017】
Ba,Liが担持されたハニカム担体を、所定濃度のジニトロジアンミン白金水溶液に浸漬し、引き上げて余分な水分を拭き払い、250°Cで乾燥してPtを担持した。次いで所定濃度の硝酸ロジウム水溶液に浸漬し、同様にしてRhを担持した。それぞれの担持量は、TiO2−Al2O3 200g(担体基材1L)に対してPtが2g,Rhが0.1gである。
【0018】
<試験及び評価>
リーンバーンエンジン搭載車両の排気通路に上記触媒を配置した。そして、10・15モードで走行してNOx浄化率を測定し、初期浄化率として結果を表1に示す。
また、上記と同様にリーンバーンエンジン搭載車両の排気通路に上記触媒を配置した。そして、空燃比A/F=18,入りガス温度650°Cで50時間運転してNOx浄化率を測定し、耐久後浄化率として結果を表1に示す。
また、初期及び耐久後のPt分散性を、COパルス吸着法により測定し、結果を表1に示す。
【0019】
(実施例2)
チタニア粉末とγ−アルミナ粉末を重量比で1:1となるように調合し、ボールミルで5時間混合し、1000°Cで3時間焼成して担体粉末を調製した。
この担体粉末を用いたこと以外は実施例1と同様に、初期及び耐久後のNOx浄化率,Pt分散性を測定した。結果を表1に示す。
(比較例1)
γ−アルミナ粉末とチタニア粉末を重量比で1:1となるように調合し、ボールミルで5時間混合し、600°Cで3時間焼成して担体粉末を調製した。
この担体粉末を用いたこと以外は実施例1と同様に、初期及び耐久後のNOx浄化率,Pt分散性を測定した。結果を表1に示す。
(比較例2)
γ−アルミナ粉末とチタニア粉末を重量比で1:1となるように調合し、ボールミルで5時間混合し、1200°Cで3時間焼成して担体粉末を調製した。
この担体粉末を用いたこと以外は実施例1と同様に、初期及び耐久後のNOx浄化率,Pt分散性を測定した。結果を表1に示す。
(比較例3)
γ−アルミナ粉末とチタニア粉末を重量比で1:1となるように調合し、ボールミルで5時間混合し、その後、焼成せずに担体粉末を調製した。
この担体粉末を用いたこと以外は実施例1と同様に、初期及び耐久後のNOx浄化率,Pt分散性を測定した。結果を表1に示す。
【0020】
【表1】

Figure 0003664201
【0021】
表1より、実施例1,2の排気ガス浄化用触媒の耐久後のNOx浄化率を見ると比較例1,2よりも約10%高い浄化率を示していることが分かる。これは、耐久後の触媒貴金属のシンタリングが抑制されていることに起因していると思われる。このことは、耐久後のPt分散性が比較例に比べて高いことからも証明される。比較例3は、アルミナ上に担持されたNOx吸蔵材がSOx被毒しやすいため、実施例1,2に比べて耐久後のNOx浄化率が劣ると考えられる。
【0022】
本実施の形態では、触媒貴金属がNOx吸蔵材で覆われて活性が低下するのを防止する理由から先にNOx吸蔵材を担持し、次いで触媒貴金属を担持しているが、これに限るものではない。
【発明の効果】
すなわち請求項1の排気ガス浄化用触媒によれば、担持層が、チタニア,シリカ及びジルコニアから選ばれる少なくとも1種とアルミナの一部が複合酸化物を形成した担体で構成されているため、触媒貴金属は表面上に水酸基を多く有するアルミナ上に優先的に担持される。よって、担持効率が向上し、耐久後のシンタリングの発生を抑制することができる。また、上述したように、アルミナはSOx被毒しやすい性質を有するが、酸性質である複合酸化物によりSOxの吸着は抑制される。以上により、耐久後の触媒機能は従来に比べて向上する。
【図面の簡単な説明】
【図1】本発明の実施の形態である適度な温度,適度な時間で焼成して得られるTiO2−Al2O3 担体粉末の拡大イメージ図である。
【符号の説明】
2…Al2O3 4…TiO2 6…TiO2-Al2O3複合担体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas purifying catalyst that purifies exhaust gas discharged from an internal combustion engine such as an automobile. More specifically, the present invention relates to reducing properties such as carbon monoxide (CO) and hydrocarbon (HC) contained in the exhaust gas. The present invention relates to an exhaust gas purifying catalyst capable of efficiently reducing and purifying nitrogen oxides (NOx) in exhaust gas containing oxygen in excess of the amount of oxygen necessary to completely oxidize components.
[0002]
[Prior art]
Conventionally, a three-way catalyst that purifies by simultaneously oxidizing CO and HC in exhaust gas and reducing NOx has been used as an exhaust gas purifying catalyst for automobiles. As such a catalyst, a catalyst in which a support layer made of γ-alumina is formed on a heat-resistant carrier such as cordierite and a catalyst noble metal such as Pt, Pd, Rh is supported on the support layer is widely known. Yes.
[0003]
On the other hand, in recent years, from the viewpoint of protecting the global environment, carbon dioxide (CO 2 ) in exhaust gas discharged from internal combustion engines such as automobiles has become a problem. Is promising. In this lean burn engine, the generation of CO 2 can be suppressed and the amount of fuel used can be reduced.
[0004]
By the way, the conventional three-way catalyst is one that simultaneously oxidizes, reduces, and purifies CO, HC, NOx in the exhaust gas when the air-fuel ratio is the stoichiometric air-fuel ratio (stoichiometric). In an oxygen-excessive atmosphere, CO and HC, which are NOx reaction partners, react with oxygen first, and thus do not exhibit sufficient purification performance for NOx reduction and removal. Therefore, development of a catalyst and a purification system capable of purifying NOx even in an oxygen-excess atmosphere has been desired.
[0005]
In view of this, a lean burn engine has been developed in which NOx is reduced and purified by always combusting under lean oxygen-rich conditions and temporarily changing to stoichiometric to rich conditions using exhaust gas as a reducing atmosphere. A storage reduction type exhaust gas purification catalyst using a NOx occlusion material that occludes NOx in a lean atmosphere and releases NOx occluded in a stoichiometric to rich atmosphere has been developed.
[0006]
For example, JP-A-5-317652 discloses an exhaust gas purification catalyst in which a NOx storage material such as Ba and a catalyst noble metal such as Pt are supported on a porous carrier such as alumina. By using this exhaust gas purifying catalyst and controlling the air-fuel ratio from the lean side to the stoichiometric to rich side from the lean side, NOx is occluded in the NOx occlusion material Ba on the lean side. It is released on the rich side and reacts with reducing components such as HC and CO to be reduced and purified. Therefore, by using such an occlusion reduction type exhaust gas purification catalyst, it is possible to efficiently reduce and remove NOx even with the exhaust gas from the lean burn engine.
[0007]
However, the porous support such as alumina used in the conventional catalyst support has a property of easily absorbing SOx caused by a small amount of sulfur contained in the fuel. Therefore, poisoning of the NOx storage material by SOx ( Decrease in NOx occlusion ability due to sulfate formation) is promoted, and the catalyst function after endurance is reduced.
[0008]
[Problems to be solved by the invention]
As means for suppressing this SOx poisoning, a method of adjusting the carrier constituting the support layer to the acid property side is already known. This is intended to suppress adsorption of SOx, which is also of acid nature, to the carrier by keeping the carrier on the acid nature side. For example, a method in which the support is composed of at least one selected from titania, silica, and zirconia, which are acidic, or is composed of a composite oxide of alumina and at least one selected from titania, silica, and zirconia. Can be considered.
However, titania, silica and zirconia have the following problems when viewed from the viewpoint of supporting the catalyst noble metal. The catalyst noble metal is supported by immersing the support base material coated with the support layer on the surface in an aqueous solution containing the catalyst noble metal. This is because the catalyst noble metal positively charged in the aqueous solution is on the support layer. It seems to be a phenomenon that occurs because it is attracted to a hydroxyl group. Compared to alumina, titania, silica, and zirconia have fewer hydroxyl groups on the surface in the aqueous solution, and the catalyst precious metal supporting efficiency is reduced. Further, titania, silica, and zirconia have lower heat resistance than alumina, and the adjacent catalyst noble metal undergoes sintering after durability, resulting in a decrease in the catalyst function after durability.
[0009]
The present invention has been made in view of such circumstances, and suppresses SOx poisoning without impairing the function of alumina, that is, high loading efficiency, and improves the catalytic function after durability. An object of the present invention is to provide an exhaust gas purifying catalyst.
[0010]
[Means for Solving the Problems]
The exhaust gas purifying catalyst according to claim 1, which solves the above problem, comprises a carrier substrate, a carrier layer coated on a surface of the carrier substrate, an alkali metal and an alkaline earth supported on the carrier layer. In an exhaust gas purification catalyst comprising at least one NOx storage material selected from metals and rare earth metals, and a catalyst noble metal supported on the support layer, the support layer is selected from titania, silica and zirconia. A part obtained by mixing at least one kind of powder and alumina powder and calcining at 800 to 1000 ° C. for 1 to 5 hours is composed of a support in which a complex oxide is formed.
[0011]
In this exhaust gas purifying catalyst, since the support layer is composed of a support in which at least one selected from titania, silica and zirconia and a part of alumina forms a composite oxide, the catalyst noble metal has a hydroxyl group on the surface. Is preferentially supported on alumina. Therefore, the carrying efficiency is improved and the occurrence of sintering after durability can be suppressed. Further, as described above, alumina has the property of being easily poisoned by SOx, but adsorption of SOx is suppressed by the complex oxide having an acid property. As described above, the catalyst function after durability is improved as compared with the conventional one.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
At least one powder selected from titania, silica and zirconia and alumina powder are mixed and fired at an appropriate temperature for an appropriate time to obtain an oxide porous carrier having a structure as shown in FIG. The mixing is not particularly limited to a wet type or a dry type, but it is desirable to use a ball mill, a homogenizer, or the like for sufficient mixing. Further, the mixed powder may be compressed before firing. The firing temperature is desirably 800 ° C. to 1000 ° C., and the firing time is desirably 1 hour to 5 hours. When the firing temperature is 800 ° C. or lower, no complexation occurs between at least one powder selected from titania, silica and zirconia and alumina powder, and a simple mixture is obtained. On the other hand, when the firing temperature is 1000 ° C. or higher, the whole becomes a composite oxide, and the above-described problems occur. If the firing time is 1 hour or less, the mixture remains a simple mixture, and if it is 5 hours or more, the whole is combined.
[0013]
As the NOx storage material, at least one element selected from alkali metals, alkaline earth metals, and rare earth metals can be used. Examples of the alkali metal include lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), and francium (Fr). Among these, K, Rb, and Cs having a high NOx storage capacity are preferable. Li and Na have a low NOx occlusion ability, but this disadvantage can be avoided if K, Cs, or the like is used in combination. The alkaline earth metal refers to a Group 2A element of the periodic table, and examples thereof include barium (Ba), beryllium (Be), magnesium (Mg), calcium (Ca), and strontium (Sr).
Examples of rare earth metals include scandium (Sc), yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), dysprosium (Dy), ytterbium (Yb), and the like.
The amount of the NOx occlusion material supported is desirably in the range of 0.01 to 5 mol per 100 g of the oxide porous carrier. If the amount of NOx occlusion material supported is less than 0.01 mol, it is difficult to express NOx occlusion and it is difficult to reduce NOx, and if it exceeds 5 mol, the heat resistance will decrease.
The supported amount of the catalyst noble metal is desirably in the range of 0.05 to 10 g per 100 g of the oxide porous support. If the range of the catalyst noble metal is less than 0.05 g, it is difficult to reduce NOx, and even if the amount exceeds 10 g, the reduction action is saturated and the cost is increased. As the catalyst noble metal, at least one element selected from Pt, Rh, and Pd can be used. Moreover, you may use base metals, such as Fe, Mn, and Cu.
[0014]
【Example】
Hereinafter, specific examples will be described.
(Example 1)
Titania powder and γ-alumina powder were prepared so as to have a weight ratio of 1: 1, mixed for 5 hours by a ball mill, and then fired at 800 ° C. for 3 hours. A formed carrier powder was prepared.
An appropriate amount of distilled water was mixed with this carrier to prepare a slurry.
[0015]
Next, a cylindrical cordierite honeycomb carrier base material having a diameter of 100 mm and a length of 160 mm is immersed in the slurry, pulled up, and the excess slurry is removed by suction with a blower, and then gradually heated from room temperature to 120 ° C. Dried for 2 hours. This operation was repeated until a predetermined coating amount was reached, and then fired at 500 ° C. for 1 hour in a nitrogen gas atmosphere to form a support layer. The supporting layer was formed in an amount of 200 g per liter of honeycomb carrier base material.
[0016]
Next, the honeycomb carrier base material on which the support layer is formed is immersed in an aqueous barium acetate solution having a predetermined concentration, pulled up to blow off excess droplets, dried at 120 ° C. for 2 hours, and fired at 500 ° C. for 1 hour. Ba was supported. Further, it was immersed in a lithium acetate aqueous solution having a predetermined concentration, and Li was supported in the same manner as described above. The amount of each supported is 0.3 mol of Ba and 0.1 mol of Li with respect to 200 g of TiO 2 —Al 2 O 3 (carrier substrate 1 L).
[0017]
The honeycomb carrier on which Ba and Li were supported was immersed in a dinitrodiammine platinum aqueous solution having a predetermined concentration, pulled up to wipe off excess moisture, and dried at 250 ° C. to support Pt. Subsequently, it was immersed in an aqueous rhodium nitrate solution having a predetermined concentration, and Rh was supported in the same manner. The amount of each supported is 2 g of Pt and 0.1 g of Rh with respect to 200 g of TiO 2 —Al 2 O 3 (carrier substrate 1 L).
[0018]
<Test and evaluation>
The catalyst is arranged in the exhaust passage of a vehicle equipped with a lean burn engine. Then, the NOx purification rate was measured by running in 10.15 mode, and the results are shown in Table 1 as the initial purification rate.
In the same manner as described above, the catalyst is disposed in the exhaust passage of a vehicle equipped with a lean burn engine. Then, the NOx purification rate was measured by operating at an air-fuel ratio A / F = 18 and an inlet gas temperature of 650 ° C. for 50 hours, and the results are shown in Table 1 as post-endurance purification rates.
In addition, Pt dispersibility at the initial stage and after durability was measured by a CO pulse adsorption method, and the results are shown in Table 1.
[0019]
(Example 2)
A titania powder and a γ-alumina powder were mixed at a weight ratio of 1: 1, mixed for 5 hours by a ball mill, and fired at 1000 ° C. for 3 hours to prepare a carrier powder.
Except that this carrier powder was used, the NOx purification rate and the Pt dispersibility after initial and after endurance were measured in the same manner as in Example 1. The results are shown in Table 1.
(Comparative Example 1)
γ-alumina powder and titania powder were prepared so as to have a weight ratio of 1: 1, mixed for 5 hours by a ball mill, and fired at 600 ° C. for 3 hours to prepare a carrier powder.
Except that this carrier powder was used, the NOx purification rate and the Pt dispersibility after initial and after endurance were measured in the same manner as in Example 1. The results are shown in Table 1.
(Comparative Example 2)
γ-alumina powder and titania powder were prepared so as to have a weight ratio of 1: 1, mixed for 5 hours by a ball mill, and fired at 1200 ° C. for 3 hours to prepare a carrier powder.
Except that this carrier powder was used, the NOx purification rate and the Pt dispersibility after initial and after endurance were measured in the same manner as in Example 1. The results are shown in Table 1.
(Comparative Example 3)
The γ-alumina powder and the titania powder were prepared so as to have a weight ratio of 1: 1, mixed for 5 hours by a ball mill, and then a carrier powder was prepared without firing.
Except that this carrier powder was used, the NOx purification rate and the Pt dispersibility after initial and after endurance were measured in the same manner as in Example 1. The results are shown in Table 1.
[0020]
[Table 1]
Figure 0003664201
[0021]
From Table 1, it can be seen that the NOx purification rate after endurance of the exhaust gas purification catalysts of Examples 1 and 2 shows a purification rate about 10% higher than that of Comparative Examples 1 and 2. This seems to be due to the fact that sintering of the precious metal after the durability is suppressed. This is proved from the fact that the Pt dispersibility after endurance is higher than that of the comparative example. In Comparative Example 3, the NOx occlusion material supported on alumina is likely to be SOx poisoned, so that it is considered that the NOx purification rate after endurance is inferior to those in Examples 1 and 2.
[0022]
In the present embodiment, the NOx occlusion material is first supported and then the catalyst noble metal is supported for the purpose of preventing the catalytic noble metal from being covered with the NOx occlusion material to reduce the activity. However, the present invention is not limited to this. Absent.
【The invention's effect】
That is, according to the exhaust gas purifying catalyst of claim 1, since the supporting layer is composed of a support in which at least one selected from titania, silica and zirconia and a part of alumina forms a composite oxide, the catalyst The noble metal is preferentially supported on alumina having many hydroxyl groups on the surface. Therefore, the carrying efficiency is improved and the occurrence of sintering after durability can be suppressed. Further, as described above, alumina has the property of being easily poisoned by SOx, but adsorption of SOx is suppressed by the complex oxide having an acid property. As described above, the catalyst function after durability is improved as compared with the conventional one.
[Brief description of the drawings]
FIG. 1 is an enlarged image view of a TiO 2 —Al 2 O 3 carrier powder obtained by firing at an appropriate temperature and an appropriate time according to an embodiment of the present invention.
[Explanation of symbols]
2 ... Al 2 O 3 4 ... TiO 2 6 ... TiO 2 -Al 2 O 3 composite carrier

Claims (1)

担体基材と、
該担体基材の表面に被覆された担持層と、
該担持層に担持されたアルカリ金属,アルカリ土類金属及び希土類金属の中から選ばれる少なくとも1種のNOx吸蔵材と、
前記担持層に担持された触媒貴金属と、からなる排気ガス浄化用触媒において、
前記担持層が、チタニア,シリカ及びジルコニアから選ばれる少なくとも1種の粉末とアルミナ粉末を混合し、800〜1000℃で1〜5時間焼成して得られた一部が複合酸化物を形成した担体で構成されることを特徴とする排気ガス浄化用触媒。
A carrier substrate;
A carrier layer coated on the surface of the carrier substrate;
At least one NOx occlusion material selected from alkali metal, alkaline earth metal and rare earth metal supported on the support layer;
In an exhaust gas purifying catalyst comprising a catalyst noble metal supported on the support layer,
A carrier in which the support layer is a mixture of at least one powder selected from titania, silica and zirconia and alumina powder and calcined at 800 to 1000 ° C. for 1 to 5 hours to form a composite oxide. An exhaust gas purifying catalyst characterized by comprising:
JP33947096A 1996-12-19 1996-12-19 Exhaust gas purification catalyst Expired - Lifetime JP3664201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33947096A JP3664201B2 (en) 1996-12-19 1996-12-19 Exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33947096A JP3664201B2 (en) 1996-12-19 1996-12-19 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JPH10174868A JPH10174868A (en) 1998-06-30
JP3664201B2 true JP3664201B2 (en) 2005-06-22

Family

ID=18327779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33947096A Expired - Lifetime JP3664201B2 (en) 1996-12-19 1996-12-19 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP3664201B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000342966A (en) * 1999-06-08 2000-12-12 Toyota Motor Corp Catalyst for purifying exhaust gas and method for purifying exhaust gas
JP4588183B2 (en) * 1999-09-06 2010-11-24 株式会社日本触媒 Ceramic body, catalyst carrier, production method thereof, ethylene oxide production catalyst using the carrier, production method thereof, and ethylene oxide production method
JP2003305363A (en) * 2002-02-15 2003-10-28 Toyota Central Res & Dev Lab Inc Catalyst carrier and catalyst for exhaust gas treatment
JP4171977B2 (en) * 2003-04-21 2008-10-29 株式会社豊田中央研究所 Catalyst carrier, production method thereof, catalyst, and exhaust gas purification method
JP5082558B2 (en) * 2007-04-13 2012-11-28 トヨタ自動車株式会社 Method for producing exhaust gas purification catalyst

Also Published As

Publication number Publication date
JPH10174868A (en) 1998-06-30

Similar Documents

Publication Publication Date Title
JP3358766B2 (en) Exhaust gas purification catalyst
JP3741303B2 (en) Exhaust gas purification catalyst
JP3494147B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method
JP4228278B2 (en) Exhaust gas purification catalyst
JPH09215922A (en) Catalyst for purifying exhaust gas
JP3821343B2 (en) Exhaust gas purification device
JP3798727B2 (en) Exhaust gas purification catalyst
JP3685463B2 (en) Exhaust gas purification catalyst
JP3640130B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH08117600A (en) Catalyst for purifying exhaust gas and preparation of catalyst
JP3789231B2 (en) Exhaust gas purification catalyst
JP3589383B2 (en) Exhaust gas purification catalyst
JP3430823B2 (en) Exhaust gas purification catalyst
JP3664201B2 (en) Exhaust gas purification catalyst
JP3835436B2 (en) Exhaust gas purification method and exhaust gas purification catalyst
WO2002020155A1 (en) Absorption/reduction type catalyst for nox removal
JP3835659B2 (en) Exhaust gas purification catalyst
JP3748202B2 (en) Exhaust gas purification catalyst
JP3775080B2 (en) Exhaust gas purification catalyst
JP2004216224A (en) Nox occlusion reduction type catalyst
JPH08281116A (en) Catalyst for purifying exhaust gas
JPH10165817A (en) Catalyst for cleaning of exhaust gas
JP3551346B2 (en) Exhaust gas purification equipment
JP3622893B2 (en) NOx absorbent and exhaust gas purification catalyst using the same
JP3659028B2 (en) Exhaust gas purification device and method of using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050322

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110408

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 9

EXPY Cancellation because of completion of term