JP3663932B2 - Side-heated cathode and cathode ray tube - Google Patents

Side-heated cathode and cathode ray tube Download PDF

Info

Publication number
JP3663932B2
JP3663932B2 JP23978398A JP23978398A JP3663932B2 JP 3663932 B2 JP3663932 B2 JP 3663932B2 JP 23978398 A JP23978398 A JP 23978398A JP 23978398 A JP23978398 A JP 23978398A JP 3663932 B2 JP3663932 B2 JP 3663932B2
Authority
JP
Japan
Prior art keywords
cathode
absorption layer
heat absorption
cylindrical sleeve
ray tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23978398A
Other languages
Japanese (ja)
Other versions
JPH11135001A (en
Inventor
洋二 山本
克之 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP23978398A priority Critical patent/JP3663932B2/en
Publication of JPH11135001A publication Critical patent/JPH11135001A/en
Application granted granted Critical
Publication of JP3663932B2 publication Critical patent/JP3663932B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrodes For Cathode-Ray Tubes (AREA)
  • Solid Thermionic Cathode (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、テレビジョン用受像機、コンピュータディスプレイ等に用いられる陰極線管の傍熱型陰極およびこれを用いた陰極線管に関するものである。
【0002】
【従来の技術】
従来の傍熱型陰極は、加熱用ヒータからの輻射熱を筒状スリーブに効率よく吸収させるために、一端部に電子を放出する熱陰極および内部に加熱用ヒータを有する、モリブデン材料からなる筒状スリーブを備え、筒状スリーブの内面にアルミニュウム層を被覆して、湿潤水素中で加熱処理することで、筒状スリーブの内面に黒化された熱吸収層が形成されたものである(特開昭56−169778号公報)。
【0003】
【発明が解決しようとする課題】
しかしながら、このような傍熱型陰極では、熱吸収層にAl3Moが生成され るため、この傍熱型陰極が陰極線管に組み込まれて動作している際に、傍熱型陰極の熱吸収層からAl3Moが蒸発してしまい、このAl3Moが傍熱型陰極の近傍に配置されている管内電極等に付着して絶縁破壊する問題および、傍熱型陰極の熱吸収層の黒色度が低下して、加熱用ヒータから筒状スリーブへの輻射熱を効率よく吸収することができないという問題があった。
【0004】
本発明は上記事情に基づいてなされたものであり、陰極線管の高温動作時においても、管内電極部等の耐絶縁性および加熱用ヒータから筒状スリーブへの輻射熱効率が向上できる、傍熱型陰極および陰極線管を提供するものである。
【0005】
【課題を解決するための手段】
本発明の傍熱型陰極は、一端部に電子を放出する熱陰極および内部に加熱用ヒータを有する、高融点金属からなる筒状スリーブを備え、前記筒状スリーブの内面に硼化系化合物の熱吸収層が形成されており、前記硼化系化合物の熱吸収層の厚みが1μm〜4μmであることを特徴とするものである。
【0006】
この構成により、熱吸収層である硼化系化合物の蒸発が防止される。また、本発明の陰極線管は、内面に蛍光面を有するフェースプレート部と、前記フェースプレートの後方に封着されたファンネル部と、前記ファンネル部の後方に形成され、電子ビームを放射する電子銃を有するネック部とを具備する陰極線管において、前記電子銃の内部に配置された傍熱型陰極が、一端部に電子を放出する熱陰極および内部に加熱用ヒータを有する、高融点金属からなる筒状スリーブを備え、前記筒状スリーブの内面に硼化系化合物の熱吸収層が形成されており、前記硼化系化合物の熱吸収層の厚みが1μm〜4μmであることを特徴とする。
【0007】
この構成により、管内電極部等への硼化系化合物の付着が防止され、かつ筒状スリーブの熱吸収層における黒色度の低下が防止される。
【0008】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を用いて説明する。
【0009】
図2に示すように、本発明の第1の実施の形態の陰極線管1は、内面に蛍光面2を有するフェースプレート部3と、フェースプレート部3の後方に接着されたファンネル部4と、ファンネル部4の後方に形成され、内部に電子ビーム5を放射する電子銃6を有するネック部7とを具備している。
【0010】
また、電子銃6の一端部に配設された傍熱型陰極8は、図1に示すように、一端部に電子を放出するペレット状の電子放射性エミッタで形成された熱陰極9および内部にコイル状の加熱用ヒータ10を有する、Mo、Ta、Re等の高融点金属からなる筒状スリーブ11を備え、筒状スリーブ11の内面にスパッタリング法によってMoB2、WB、NbB2、SrB2、HfB2、TaB2、TiB2、ZrB、ZrB2、SrB6、WB2、TaB、TiB、MoB、Mo2B等の黒色系硼化系化合物の熱吸収層12が形成されてなるものである。
【0011】
ここで、熱吸収層12は、その厚みが厚いほど黒色度は向上するものの筒状スリーブ11の内面から剥がれ易くなるため、筒状スリーブ11の内面からの熱吸収層12の剥がれおよび熱吸収層12の黒色度の低下を考慮して、0.5μm〜10μmとし、好ましくは1〜4μmの範囲がよい。
【0012】
次に、上記陰極線管1の作用効果について説明する。
本発明第1の実施の形態は、傍熱型陰極8の筒状スリーブ11の内面に黒色系硼化系化合物の熱吸収層12が形成されているので、すなわち、熱陰極9の温度が1000℃〜1300℃である陰極線管1の高温動作中においても、熱吸収層12を形成する硼化系化合物の融点が約1800℃以上と高いため、熱吸収層12を形成する硼化系化合物の蒸発が防止される。その結果、陰極線管1の電子銃6を構成する管内電極部等への硼化系化合物の付着が防止され、耐絶縁性を向上することができる。さらに、筒状スリーブ11の熱吸収層12における黒色度の低下が防止され、長時間動作後において、筒状スリーブ11における加熱用ヒータ10からの輻射熱の吸収効率が低下することを防止できる。
【0013】
また、熱吸収層12の厚みを0.5μm〜10μmとしたので、熱吸収層12の剥がれおよび熱吸収層12の黒色度の低下を防止できるものである。
【0014】
次に、上記陰極線管の実施例について説明する。
図2に示す本発明の傍熱型陰極8は、図3に示すような製造工程によって製作される。
【0015】
まず、スパッタリング工程で、予め温度を200℃〜250℃にした厚さ100μmのMo基板13の片面に、MoB2をスパッタリング法によって厚さ3μmに蒸着して蒸着膜14を形成する。
【0016】
次に、深絞り工程で、プレス加工によりMoB2の蒸着膜14が内側になるよう深絞りして、外径が1.8mm、長さが2.0mmの筒状スリーブ11を複数個製作する。
【0017】
そして、次の熱処理工程で、製作された筒状スリーブ11を約1000℃の水素雰囲気等の還元性雰囲気中で15〜30分間熱処理する。なお、本発明では硼化系化合物として黒色系のものを用いているため、この熱処理工程は従来技術のように黒化を目的とするものでなく、筒状スリーブ11と硼化系化合物とを一層強固に結合するとともに内部の不純物を除去することを主目的とするものである。したがって、かかる熱処理工程を行わなくても実用上問題が生じない場合には、本工程を省略することも可能である。
【0018】
最後に陰極組立工程で、図1に示すように、熱陰極9を構成する電子放射性エミッタが充填されたカップ15を、筒状スリーブ11の一端にレーザー溶接或いは抵抗溶接により固定した後、筒状スリーブ11の内部にコイル状の加熱用ヒータ10を挿入する。
【0019】
この製造方法により、Moからなる筒状スリーブ11とMoB2の蒸着膜14とが強固な結合状態となり、陰極線管1の高温動作中においてもMoB2の蒸発および黒色度の低下が防止された熱吸収層12が得られる。また、スパッタリング法によってMo基板13の片面にMoB2を蒸着しているため、MoB2が蒸着されたMo基板13を深絞りしても、深絞り時にMoB2の蒸着膜14の剥がれを防止することができる。その結果、MoB2が蒸着されたMo基板13から、一度に多数の筒状スリーブ11を形成することができる。
【0020】
そして、この傍熱型陰極8を組み込んだ本発明の陰極線管1と、これと比較するために、筒状スリーブ11内面の熱吸収層12を従来の技術のアルミニュウム層を含むものに代えて形成し、それ以外の仕様を上記本発明と同様とした従来の傍熱型陰極を組み込んだ陰極線管も製作して、効果を確認した。
【0021】
陰極線管の高温動作中、すなわち、熱陰極9の温度が定格1000℃に対し1200℃下で1000時間経過した際の、加熱用ヒータ10と筒状スリーブ11との間における耐圧不良の発生個数を調べたところ、100個中7個の耐圧不良が認められた従来の陰極線管に対し、本発明の陰極線管1は100個中耐圧不良が認められなかった。このことから、本発明の陰極線管1はMoB2の蒸発による管内電極部等への付着が防止され、かつ筒状スリーブ11内面の熱吸収層12の黒色度の低下が防止されることがわかる。
【0022】
なお、上記実施例では、筒状スリーブ11のMoB2の蒸着膜14をスパッタ リング法で形成した場合であるが、スパッタリング法の代わりに真空蒸着法、気相成長法等で形成してもよい。
【0023】
また、上記実施例では硼化系化合物としてMoB2を用いたが、これは筒状スリーブ11の材料として用いたMoとの1000℃での熱膨張係数をなるべく等しくして、熱膨張によるMoB2の蒸着膜14の剥がれを防止するためである。このように、筒状スリーブ11の材料としてMoを用いる場合の熱膨張係数の観点から好適な他の硼化系化合物としては、TaB2等も考えられる。
【0024】
【発明の効果】
以上説明したように、本発明は、筒状スリーブの内面に硼化系化合物の熱吸収層が形成されているので、陰極線管の高温動作中においても、管内電極部等の耐絶縁性および加熱用ヒータから筒状スリーブへの輻射熱効率を向上できるものである。
【図面の簡単な説明】
【図1】本発明の第1の実施形態の傍熱型陰極を示す斜視図
【図2】同傍熱型陰極を組み込んだ陰極線管を示す断面図
【図3】同傍熱型陰極における筒状スリーブの製造方法を示す断面図
【符号の説明】
1 陰極線管
2 蛍光面
3 フェースプレート部
4 ファンネル部
5 電子ビーム
6 電子銃
7 ネック部
8 傍熱型陰極
9 熱陰極
10 加熱用ヒータ
11 筒状スリーブ
12 熱吸収層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an indirectly heated cathode of a cathode ray tube used for a television receiver, a computer display or the like, and a cathode ray tube using the cathode.
[0002]
[Prior art]
A conventional indirectly heated cathode has a cylindrical shape made of molybdenum material, which has a hot cathode that emits electrons at one end and a heater for heating inside in order to efficiently absorb the radiant heat from the heater for heating into the cylindrical sleeve. A sleeve is provided, and the inner surface of the cylindrical sleeve is covered with an aluminum layer, and heat treatment is performed in wet hydrogen, whereby a blackened heat absorption layer is formed on the inner surface of the cylindrical sleeve (Japanese Patent Application Laid-Open (JP-A)). Sho 56-169778).
[0003]
[Problems to be solved by the invention]
However, in such a indirectly heated cathode, Al 3 Mo is generated in the heat absorption layer. Therefore, when the indirectly heated cathode is installed and operated in the cathode ray tube, the heat absorption of the indirectly heated cathode is performed. Al 3 Mo evaporates from the layer, and this Al 3 Mo adheres to the in-tube electrodes and the like disposed in the vicinity of the indirectly heated cathode and causes dielectric breakdown, and the black of the heat absorbing layer of the indirectly heated cathode As a result, there was a problem that the radiant heat from the heater to the cylindrical sleeve could not be efficiently absorbed.
[0004]
The present invention has been made based on the above circumstances, and is an indirectly heated type that can improve the insulation resistance of the tube electrode portion and the like and the radiant heat efficiency from the heater to the cylindrical sleeve even during high temperature operation of the cathode ray tube. A cathode and a cathode ray tube are provided.
[0005]
[Means for Solving the Problems]
The indirectly heated cathode of the present invention includes a cylindrical sleeve made of a refractory metal having a hot cathode that emits electrons at one end and a heater for the inside, and an inner surface of the cylindrical sleeve is made of a boride compound. A heat absorption layer is formed, and the thickness of the heat absorption layer of the borated compound is 1 μm to 4 μm.
[0006]
With this configuration, evaporation of the borated compound as the heat absorption layer is prevented. The cathode ray tube of the present invention includes a face plate portion having a phosphor screen on the inner surface, a funnel portion sealed behind the face plate, and an electron gun that is formed behind the funnel portion and emits an electron beam. The indirectly heated cathode disposed inside the electron gun is made of a refractory metal having a hot cathode that emits electrons at one end and a heater for heating inside the cathode gun. A cylindrical sleeve is provided, and a boric compound heat absorption layer is formed on an inner surface of the cylindrical sleeve, and the boric compound heat absorption layer has a thickness of 1 μm to 4 μm.
[0007]
With this configuration, the boride compound is prevented from adhering to the in-tube electrode portion and the like, and the blackness in the heat absorbing layer of the cylindrical sleeve is prevented from being lowered.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0009]
As shown in FIG. 2, the cathode ray tube 1 according to the first embodiment of the present invention includes a face plate portion 3 having a phosphor screen 2 on the inner surface, a funnel portion 4 bonded to the back of the face plate portion 3, A neck portion 7 having an electron gun 6 that radiates an electron beam 5 is formed behind the funnel portion 4.
[0010]
In addition, as shown in FIG. 1, an indirectly heated cathode 8 disposed at one end of the electron gun 6 includes a hot cathode 9 formed of a pellet-shaped electron emitting emitter that emits electrons at one end, and an inside thereof. having a heater 10 of the coiled, Mo, Ta, comprises a tubular sleeve 11 made of a refractory metal Re, etc., MoB 2, WB by sputtering on the inner surface of the tubular sleeve 11, NbB 2, SrB 2, A heat absorption layer 12 of a black boride compound such as HfB 2 , TaB 2 , TiB 2 , ZrB, ZrB 2 , SrB 6 , WB 2 , TaB, TiB, MoB, Mo 2 B or the like is formed. .
[0011]
Here, although the blackness is improved as the thickness of the heat absorption layer 12 is increased, the heat absorption layer 12 is easily peeled off from the inner surface of the cylindrical sleeve 11. Therefore, the heat absorption layer 12 is peeled off from the inner surface of the cylindrical sleeve 11 and the heat absorption layer. In consideration of the decrease in the blackness of 12, the thickness is set to 0.5 μm to 10 μm, preferably in the range of 1 to 4 μm.
[0012]
Next, the function and effect of the cathode ray tube 1 will be described.
In the first embodiment of the present invention, the heat absorption layer 12 of the black boride compound is formed on the inner surface of the cylindrical sleeve 11 of the indirectly heated cathode 8, that is, the temperature of the hot cathode 9 is 1000. Even during high-temperature operation of the cathode ray tube 1 at a temperature of from 1 ° C. to 1300 ° C., the melting point of the borated compound forming the heat absorbing layer 12 is as high as about 1800 ° C. or higher. Evaporation is prevented. As a result, it is possible to prevent the boride compound from adhering to the in-tube electrode portion constituting the electron gun 6 of the cathode ray tube 1 and to improve the insulation resistance. Furthermore, the blackness in the heat absorption layer 12 of the cylindrical sleeve 11 is prevented from being lowered, and the absorption efficiency of the radiant heat from the heater 10 in the cylindrical sleeve 11 can be prevented from being lowered after long-time operation.
[0013]
Further, since the thickness of the heat absorption layer 12 is set to 0.5 μm to 10 μm, peeling of the heat absorption layer 12 and a decrease in blackness of the heat absorption layer 12 can be prevented.
[0014]
Next, examples of the cathode ray tube will be described.
The indirectly heated cathode 8 of the present invention shown in FIG. 2 is manufactured by a manufacturing process as shown in FIG.
[0015]
First, in a sputtering process, MoB 2 is vapor-deposited to a thickness of 3 μm by a sputtering method on one surface of a 100 μm-thick Mo substrate 13 whose temperature is set to 200 ° C. to 250 ° C. in advance to form a vapor deposition film 14.
[0016]
Next, in the deep drawing process, deep drawing is performed so that the vapor-deposited film 14 of MoB 2 is inside by press working, and a plurality of cylindrical sleeves 11 having an outer diameter of 1.8 mm and a length of 2.0 mm are manufactured. .
[0017]
Then, in the next heat treatment step, the manufactured cylindrical sleeve 11 is heat-treated in a reducing atmosphere such as a hydrogen atmosphere at about 1000 ° C. for 15 to 30 minutes. In the present invention, since a black compound is used as the borated compound, this heat treatment step is not intended to be blackened as in the prior art, and the cylindrical sleeve 11 and the borated compound are combined. The main purpose is to bond more firmly and remove impurities inside. Therefore, this step can be omitted if no practical problem occurs even if this heat treatment step is not performed.
[0018]
Finally, in the cathode assembly step, as shown in FIG. 1, the cup 15 filled with the electron-emitting emitter constituting the hot cathode 9 is fixed to one end of the cylindrical sleeve 11 by laser welding or resistance welding, and then cylindrical. A coiled heater 10 is inserted into the sleeve 11.
[0019]
By this manufacturing method, the cylindrical sleeve 11 made of Mo and the vapor deposited film 14 of MoB 2 are in a strong bonded state, and the heat in which the evaporation of MoB 2 and the decrease in blackness are prevented even during the high temperature operation of the cathode ray tube 1. The absorption layer 12 is obtained. Further, since MoB 2 is vapor-deposited on one side of the Mo substrate 13 by the sputtering method, even when the Mo substrate 13 on which MoB 2 is vapor-deposited is deeply drawn, the MoB 2 vapor deposition film 14 is prevented from peeling off during the deep drawing. be able to. As a result, a large number of cylindrical sleeves 11 can be formed at a time from the Mo substrate 13 on which MoB 2 is deposited.
[0020]
Then, in order to compare with the cathode ray tube 1 of the present invention incorporating the indirectly heated cathode 8, the heat absorption layer 12 on the inner surface of the cylindrical sleeve 11 is formed in place of the conventional one including the aluminum layer. A cathode ray tube incorporating a conventional indirectly heated cathode having the other specifications similar to that of the present invention was also manufactured, and the effect was confirmed.
[0021]
The number of occurrences of defective breakdown voltage between the heater 10 and the cylindrical sleeve 11 during high-temperature operation of the cathode ray tube, that is, when the temperature of the hot cathode 9 is 1200 ° C. with respect to the rated 1000 ° C. for 1000 hours. As a result of the examination, the cathode ray tube 1 of the present invention did not show a breakdown voltage failure in 100 pieces, as compared with the conventional cathode ray tube in which 7 out of 100 breakdown voltages were found. From this, it can be seen that the cathode ray tube 1 of the present invention is prevented from adhering to the in-tube electrode portion or the like due to evaporation of MoB 2 and the blackness of the heat absorption layer 12 on the inner surface of the cylindrical sleeve 11 is prevented. .
[0022]
In the above embodiment, the MoB 2 vapor deposition film 14 of the cylindrical sleeve 11 is formed by a sputtering method, but it may be formed by a vacuum vapor deposition method, a vapor phase growth method or the like instead of the sputtering method. .
[0023]
In the above embodiment, with MoB 2 as boride-based compound, which the thermal expansion coefficient at 1000 ° C. with Mo was used as the material of the cylindrical sleeve 11 and as much as possible equal, MoB due to thermal expansion 2 This is to prevent the vapor deposition film 14 from peeling off. Thus, TaB 2 or the like is also conceivable as another suitable borated compound from the viewpoint of the thermal expansion coefficient when Mo is used as the material of the cylindrical sleeve 11.
[0024]
【The invention's effect】
As described above, according to the present invention, since the heat absorption layer of the boride-based compound is formed on the inner surface of the cylindrical sleeve, the insulation resistance and heating of the in-tube electrode portion and the like can be achieved even during high temperature operation of the cathode ray tube. The radiant heat efficiency from the heater to the cylindrical sleeve can be improved.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a indirectly heated cathode according to a first embodiment of the present invention. FIG. 2 is a cross-sectional view showing a cathode ray tube incorporating the indirectly heated cathode. Sectional view showing the manufacturing method of a cylindrical sleeve 【Explanation of symbols】
DESCRIPTION OF SYMBOLS 1 Cathode ray tube 2 Phosphor screen 3 Faceplate part 4 Funnel part 5 Electron beam 6 Electron gun 7 Neck part 8 Side-heated cathode 9 Hot cathode 10 Heating heater 11 Cylindrical sleeve 12 Heat absorption layer

Claims (3)

一端部に電子を放出する熱陰極および内部に加熱用ヒータを有する、高融点金属からなる筒状スリーブを備え、前記筒状スリーブの内面に硼化系化合物の熱吸収層が形成されており、前記硼化系化合物の熱吸収層の厚みが1μm〜4μmであることを特徴とする傍熱型陰極。A cylindrical sleeve made of a refractory metal having a hot cathode that emits electrons at one end and a heater inside, and a boric compound heat absorption layer is formed on the inner surface of the cylindrical sleeve ; The indirectly heated cathode, wherein the heat absorption layer of the boride-based compound has a thickness of 1 μm to 4 μm . 前記硼化系化合物は、その構成元素としてW、Mo、Nb、Sr、Hf、Ta、Ti、Zrの群から選ばれた少なくとも1つの元素を含有してなることを特徴とする請求項1記載の傍熱型陰極。  The borated compound contains at least one element selected from the group consisting of W, Mo, Nb, Sr, Hf, Ta, Ti, and Zr as a constituent element. Indirectly heated cathode. 内面に蛍光面を有するフェースプレート部と、前記フェースプレートの後方に封着されたファンネル部と、前記ファンネル部の後方に形成され、電子ビームを放射する電子銃を有するネック部とを具備する陰極線管において、前記電子銃の内部に配置された傍熱型陰極が、一端部に電子を放出する熱陰極および内部に加熱用ヒータを有する、高融点金属からなる筒状スリーブを備え、前記筒状スリーブの内面に硼化系化合物の熱吸収層が形成されており、前記硼化系化合物の熱吸収層の厚みが1μm〜4μmであることを特徴とする陰極線管。A cathode ray comprising a face plate portion having a fluorescent surface on the inner surface, a funnel portion sealed behind the face plate, and a neck portion formed behind the funnel portion and having an electron gun for emitting an electron beam. In the tube, the indirectly heated cathode disposed inside the electron gun includes a cylindrical sleeve made of a refractory metal having a hot cathode that emits electrons at one end and a heater for heating inside, and the cylindrical shape A cathode ray tube , wherein a heat absorption layer of a boride compound is formed on an inner surface of the sleeve, and the thickness of the heat absorption layer of the boride compound is 1 μm to 4 μm .
JP23978398A 1997-08-27 1998-08-26 Side-heated cathode and cathode ray tube Expired - Fee Related JP3663932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23978398A JP3663932B2 (en) 1997-08-27 1998-08-26 Side-heated cathode and cathode ray tube

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-230605 1997-08-27
JP23060597 1997-08-27
JP23978398A JP3663932B2 (en) 1997-08-27 1998-08-26 Side-heated cathode and cathode ray tube

Publications (2)

Publication Number Publication Date
JPH11135001A JPH11135001A (en) 1999-05-21
JP3663932B2 true JP3663932B2 (en) 2005-06-22

Family

ID=26529435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23978398A Expired - Fee Related JP3663932B2 (en) 1997-08-27 1998-08-26 Side-heated cathode and cathode ray tube

Country Status (1)

Country Link
JP (1) JP3663932B2 (en)

Also Published As

Publication number Publication date
JPH11135001A (en) 1999-05-21

Similar Documents

Publication Publication Date Title
EP0447832B1 (en) X-ray tube target
KR20010056153A (en) Field emission display device and its fabrication method
JP2004228084A (en) Field emission element
EP0632479A1 (en) Anisotropic pyrolytic graphite heater
JP3663932B2 (en) Side-heated cathode and cathode ray tube
US6300711B1 (en) Indirectly heated cathode with a thermal absorption layer on the sleeve and cathode ray tube
KR890004832B1 (en) Manufacture of cathodes leated indirectly by an electric current
US5729084A (en) Thermionic cathode with continuous bimetallic wall
JPH06101299B2 (en) Method for manufacturing impregnated cathode
JPS58164129A (en) Method of producing borided dispenser cathode
US5422536A (en) Thermionic cathode with continuous bimetallic wall having varying wall thickness and internal blackening
US4954745A (en) Cathode structure
JP3121200B2 (en) Method of manufacturing image display device
JP3727519B2 (en) Sleeve for hot cathode assembly and method for manufacturing the same
US3777209A (en) Non-thermionic electron emissive tube comprising a ceramic heater substrate
JP3353014B2 (en) Cathode assembly
JPH0142930Y2 (en)
KR950013862B1 (en) Cathod manufacture method
JP2605977Y2 (en) Flat stacked cathode
KR920007413B1 (en) Structure of dispenser type cathode
JPH11213859A (en) Negative electrode structure, electron gun structure and electron tube
KR0139639Y1 (en) Cathode ray tube
KR100259421B1 (en) Structure of electrode for crt
KR20010104552A (en) Structure and Manufacturing Method of the Cathode with Impregnated type for Cathode Ray tube
KR20010092908A (en) Indirectly heated cathode assembly

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080408

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees