JP3662053B2 - Metal foil laminate - Google Patents

Metal foil laminate Download PDF

Info

Publication number
JP3662053B2
JP3662053B2 JP24715695A JP24715695A JP3662053B2 JP 3662053 B2 JP3662053 B2 JP 3662053B2 JP 24715695 A JP24715695 A JP 24715695A JP 24715695 A JP24715695 A JP 24715695A JP 3662053 B2 JP3662053 B2 JP 3662053B2
Authority
JP
Japan
Prior art keywords
metal foil
resin
substrate
clad laminate
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24715695A
Other languages
Japanese (ja)
Other versions
JPH0985884A (en
Inventor
美久 須川
泰郎 東林
佳伸 丸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP24715695A priority Critical patent/JP3662053B2/en
Publication of JPH0985884A publication Critical patent/JPH0985884A/en
Application granted granted Critical
Publication of JP3662053B2 publication Critical patent/JP3662053B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、具体的には電気・電子機器等に使われる含浸から成形まで連続的に生産する金属箔張り積層板に関するものである。
【0002】
【従来の技術】
従来、電子機器に使用される金属箔張り積層板は、基材に樹脂ワニスを含浸した樹脂含浸基材を所用枚数重ね、必要に応じてその上面又は下面に金属箔を積層し、加熱加圧成形してバッチ方式で製造されているが、近年含浸から成形まで連続に生産する方式が検討され実施されるようになっている。この方法の場合、樹脂含浸基材と金属箔との積層物を水平状態で動かしながらラミネートロールで接着し、次いで加熱硬化させて得られるため、従来のバッチ方式の製造方法と比較して成形時の圧力を高くすることが困難であった。そのため、樹脂含浸基材を接着するときに、樹脂含浸基材と金属箔の間に挟まれた部分に残る空気、及び樹脂含浸基材と樹脂含浸基材の間に挟まれた部分に残る空気が除かれにくく、成形後の金属箔張り積層板の内部に気泡が残り、電気特性を低下させる問題が発生しやすかった。そのため、図2に示したように、樹脂含浸基材を積層するときに、樹脂含浸基材と金属箔の間に挟まれた部分に残る空気、及び樹脂含浸基材と樹脂含浸基材の間に挟まれた部分に残る空気を除くために、樹脂を大量に付着させた樹脂含浸基材を所用枚数重ね、その重ねた樹脂含浸基材をロール間隔を固定した2本のスクイズロール3、3の間を通過させ、厚みを調整し平滑にするとともに、過剰な樹脂を流し出しながら樹脂含浸基材と樹脂含浸基材の間に挟まれた部分に残る空気を流し出し、次いで、ラミネートロール4、4で金属箔を接着して製造していた。この製造方法で得られる金属箔張り積層板は、金属箔張り積層板の内部に気泡が残ることを防ぐために、樹脂を大量に付着させた樹脂含浸基材を使用しており、金属箔張り積層板の断面を見ると基材と金属箔の間、及び基材と基材の間に10〜40μmの樹脂層が存在していた。
【0003】
この金属箔張り積層板を用いてプリント配線板を加工すると、プリント配線板に反りを発生するという問題があった。また、金属箔張り積層板の樹脂量が多いため、金属箔張り積層板の熱膨張率が大きくなり、上記プリント配線板のスルホール信頼性を低下させる場合があった。
【0004】
【発明が解決しようとする課題】
本発明は、上記問題点を改善するために成されたもので、その目的とするところは、含浸から成形まで連続に生産する金属箔張り積層板であって、この金属箔張り積層板を用いてプリント配線板を加工した際に、反りが小さいプリント配線板が得られる金属箔張り積層板を提供することにある。
【0005】
【課題を解決するための手段】
本発明の請求項1に係る金属箔張り積層板は、連続的に供給される基材にラジカル重合型熱硬化性樹脂を含んでなる樹脂ワニスを含浸した基材を複数枚積層し、その複数枚積層した積層物の少なくとも一方の表層に金属箔を配し、次いで加熱硬化させてなる金属箔張り積層板において、基材と金属箔の間の樹脂層の厚み及び基材と基材の間の樹脂層の厚みが1〜10μmであることを特徴とする。
【0006】
本発明の請求項2に係る金属箔張り積層板は、連続的に供給される1枚の基材にラジカル重合型熱硬化性樹脂を含んでなる樹脂ワニスを含浸し、その樹脂ワニスを含浸した基材の少なくとも一方の表層に金属箔を配し、次いで加熱硬化させてなる金属箔張り積層板において、基材と金属箔の間の樹脂層の厚みが1〜10μmであることを特徴とする。
【0007】
上記金属箔張り積層板は、基材がガラスクロスであることを特徴とする。
【0008】
【発明の実施の形態】
前記課題を解決するため、発明者らは種々検討を重ねた結果、反りと、金属箔張り積層板の基材と金属箔の間の樹脂層の厚み及び基材と基材の間の樹脂層の厚みとの間に関係があり、樹脂層の厚みを制御することにより、反りを低減させることが可能であることを見いだした。
【0009】
本発明の金属箔張り積層板は、基材枚数が複数の場合は、基材と金属箔の間の樹脂層の厚み及び基材と基材の間の樹脂層の厚みが1〜10μmであることが重要であり、基材枚数が1枚の場合は、基材と金属箔の間の樹脂層の厚みが1〜10μmであることが重要である。樹脂層の厚みが1μm未満の金属箔張り積層板を製造する場合、樹脂含浸基材の樹脂量を大きく低下させる必要があり、その結果樹脂含浸基材を積層するときに、樹脂含浸基材と金属箔の間に挟まれた部分及び樹脂含浸基材と樹脂含浸基材の間に挟まれた部分に残る空気を除くことが困難となり、成形後の金属箔張り積層板の内部に気泡が残るため、電気性能及び吸湿耐熱性が低下するという問題が発生する。また樹脂層の厚みが10μmを越える場合は積層板の反りが大きくなるという問題が発生する。なお、本発明の金属箔張り積層板は、金属箔張り積層板の樹脂量が従来と比較して少なくなるため、金属箔張り積層板の熱膨張率が小さくなり、金属箔張り積層板を加工して生産したプリント配線板のスルホール信頼性が向上するという効果も同時に得られる。
【0010】
なお、本発明の樹脂層の厚みは、基材がクロス(布)又は不織布の場合はクロス又は不織布の凸部と凸部の各頂点を結ぶ接線から測定する値であり、金属箔の場合は金属箔の処理足の凹凸の中心を結ぶ線から測定する値である。これらの線と線の間隔を樹脂層の厚みという。樹脂層の厚みは、例えば電子顕微鏡で金属箔張り積層板の断面を観察することにより測定する。
【0011】
本発明に係る金属箔張り積層板の製造方法を図面に基づいて説明する。
図1は本発明の金属箔張り積層板に係る製造方法を示す工程図である。本発明に係る金属箔張り積層板は、図1に示すように、連続的に供給される基材1に樹脂ワニス2を含浸した樹脂含浸基材を1枚ないしは複数枚積層し、その1枚ないしは複数枚積層した積層物の少なくとも一方の表層に金属箔5を配し、ラミネートロール4、4にて連続的に接着した後、加熱硬化炉6にて連続的に加熱硬化させることにより製造される。
【0012】
上記基材1としては、特には限定しないが、ガラス繊維、アラミド繊維、ポリエステル繊維、ナイロン繊維等の繊維を使用したクロス、マットもしくは不織布が挙げられる。なお、基材1がガラスクロスの場合、耐熱性、耐湿性及び寸法安定性に優れており好ましい。
【0013】
また、上記樹脂ワニス2としては、ラジカル重合型熱硬化性樹脂であり、例えば、不飽和ポリエステル樹脂、ビニルエステル樹脂等の樹脂の単独、変性物、混合物等が挙げられる。なお樹脂ワニス2には、ラジカル重合型熱硬化性樹脂とともに、必要に応じて、スチレン、ジアリルフタレート等のラジカル重合性モノマー、無機、有機の充填剤や、充填材の沈降防止剤等を適宜に配合しても良い。この樹脂ワニスは減圧脱泡されていると、樹脂含浸基材の樹脂量を減らした場合であっても、金属箔張り積層板中に残る気泡が発生しにくくなる。また、この樹脂ワニス2の粘度が、B型粘度計で30℃で測定した場合100〜400センチポイズの範囲であると、樹脂含浸基材に含浸する樹脂ワニス2の量を減らした場合であっても、金属箔張り積層板中に残る気泡が発生しにくくなり好ましい。
【0014】
また、上記金属箔5としては、特には限定しないが、銅箔、ニッケル箔等が挙げられる。また、金属箔5に代えて離形フィルムを使用してもよい。
【0015】
【実施例】
(実施例1)
図1に示す、連続的に供給される基材1に樹脂ワニス2を含浸した樹脂含浸基材を積層し、その積層した積層物の両面に金属箔5を配し、ラミネートロール4、4にて連続的に接着した後、加熱硬化炉6にて連続的に加熱硬化させる装置を用いて金属箔張り積層板を製造した。
【0016】
樹脂ワニス2として、
・ビニルエステル樹脂[昭和高分子株式会社製、品名 S510]を100重量部、
・ラジカル開始剤[日本油脂株式会社製、品名 パーブチルO]を1重量部、及び
・スチレンモノマーを6重量部
配合し、混合した後、0.1気圧で30分減圧脱泡した樹脂ワニス2を用いた。この樹脂ワニス2の粘度をB型粘度計で30℃で測定した結果210センチポイズであった。
【0017】
基材1として厚さ0.19mmのガラスクロス[旭シュエーベル株式会社製、品名 7628]を用いて、連続的に2m/分の速度で含浸装置に供給した。この基材1に片側接触含浸法で樹脂ワニス2を含浸して樹脂含浸基材を得た。
【0018】
得られた樹脂含浸基材を2枚重ね、その両外側に金属箔5として厚み35μmの銅箔を配し、ラミネートロール4、4にて接着し、次いで加熱硬化炉6にて105℃20分加熱硬化させた後、170℃で30分再度加熱硬化させて銅張り積層板を得た。なお、このときラミネートロール4、4の上下のロールの間隔は0.46mmに設定して接着した。
【0019】
得られた銅張り積層板の断面を電子顕微鏡で観察することにより基材1と基材1の間の樹脂層の厚み及び基材1と金属箔5の間の樹脂層の厚みを測定した。その結果、基材と基材の間の樹脂層の厚み、基材と上側の金属箔の間の樹脂層の厚み及び基材と下側の金属箔の間の樹脂層の厚みとも7μmであることを確認した。
【0020】
(比較例1)
樹脂ワニス2として、
・ビニルエステル樹脂[昭和高分子株式会社製、品名 S510]を100重量部、
・ラジカル開始剤[日本油脂株式会社製、品名 パーブチルO]を1重量部、及び
・スチレンモノマーを2重量部
配合し、混合した後、0.1気圧で30分減圧脱泡した樹脂ワニス2を用いたこと以外は実施例1と同様に製造し、銅張り積層板を得た。
【0021】
この樹脂ワニス2の粘度をB型粘度計で30℃で測定した結果は、600センチポイズであった。また、このときラミネートロール4、4の上下のロールの間隔は0.49mmに設定して接着した。
【0022】
得られた銅張り積層板の断面を実施例1と同様に観察し、基材と基材の間の樹脂層の厚み及び基材と金属箔の間の樹脂層の厚みを測定した。その結果、基材と基材の間の樹脂層の厚みが20μm、基材と上側の金属箔の間の樹脂層の厚みが20μm、基材と下側の金属箔の間の樹脂層の厚みが10μmであることを確認した。
【0023】
(実施例2)
連続的に供給される1枚の基材1に樹脂ワニス2を含浸し、連続的に接着したこと、及びラミネートロール4、4の上下のロールの間隔を0.28mmに設定して接着したこと以外は実施例1と同様に製造し、銅張り積層板を得た。
【0024】
得られた銅張り積層板の断面を実施例1と同様に観察し、基材1と金属箔5の間の樹脂層の厚みを測定した。その結果、基材と上側の金属箔の間の樹脂層の厚み及び基材と下側の金属箔の間の樹脂層の厚みとも7μmであることを確認した。
【0025】
(比較例2)
連続的に供給される1枚の基材1に樹脂ワニス2を含浸し、連続的に接着したこと、及びラミネートロール4、4の上下のロールの間隔を0.31mmに設定して接着したこと以外は比較例1と同様に製造し、銅張り積層板を得た。
【0026】
得られた銅張り積層板の断面を実施例1と同様に観察し、基材1と金属箔5の間の樹脂層の厚みを測定した。その結果、基材と上側の金属箔の間の樹脂層の厚みが10μm、基材と下側の金属箔の間の樹脂層の厚が20μmであることを確認した。
【0027】
実施例1、2及び比較例1、2で得られた銅張積層板を250×250mmに切断し、銅箔を全面エッチングした後、定盤の上に置き、4隅で持ち上がり量の一番大きい所の定盤と積層板の間隔を反り量として測定した。その結果、比較例1で得られた銅張積層板の反り量は6mmであったのに対し、実施例1で得られた積層板の反り量は1mmであった。また比較例2で得られた銅張積層板の反り量は5mmであったのに対し、実施例2で得られた積層板の反り量は1mmであり、実施例は比較例と比べて反りが小さいことが確認された。また、実施例1と比較例1で得られた銅張積層板の銅箔を全面エッチングした後、熱機械分析(TMA)法により基材縦方向の熱膨張率と横方向の熱膨張率を40〜150℃の範囲で測定した。結果は、比較例1で得られた銅張積層板の基材縦方向の熱膨張率は14ppm/℃であったのに対し、実施例1で得られた銅張積層板の基材縦方向の熱膨張率は12ppm/℃であり、比較例1で得られた銅張積層板の基材横方向の熱膨張率は18ppm/℃であったのに対し、実施例1で得られた銅張積層板の基材横方向の熱膨張率は15ppm/℃であり実施例は比較例と比べて、縦横とも熱膨張率が小さいことが確認された。
【0028】
【発明の効果】
本発明の請求項1に係る金属箔張り積層板は、複数枚の基材を用いて、含浸から成形まで連続に生産する金属箔張り積層板であって、基材と基材の間の樹脂層の厚み及び基材と金属箔の間の樹脂層の厚みが1〜10μmであるから、この金属箔張り積層板を用いてプリント配線板を加工すると反りが小さいプリント配線板を得ることができる。
【0029】
本発明の請求項2に係る金属箔張り積層板は、1枚の基材を用いて、含浸から成形まで連続に生産する金属箔張り積層板であって、基材と金属箔の間の樹脂層の厚みが1〜10μmであるから、この金属箔張り積層板を用いてプリント配線板を加工すると反りが小さいプリント配線板を得ることができる。
【0030】
上記金属箔張り積層板は、上記のいずれかの効果に加え、さらに耐熱性、耐湿性及び寸法安定性に優れる金属箔張り積層板を得ることができる。
【図面の簡単な説明】
【図1】本発明の金属箔張り積層板の製造方法を示す工程図である。
【図2】従来の金属箔張り積層板の製造方法を示す工程図である。
【符号の説明】
1 基材
2 樹脂ワニス
3 スクイズロール
4 ラミネートロール
5 金属箔
6 加熱硬化炉
[0001]
BACKGROUND OF THE INVENTION
More specifically, the present invention relates to a metal foil-clad laminate that is continuously produced from impregnation to molding used in electrical and electronic equipment.
[0002]
[Prior art]
Conventionally, metal foil-clad laminates used in electronic devices are laminated with a desired number of resin-impregnated base materials impregnated with resin varnish on the base material, and if necessary, metal foil is laminated on the upper or lower surface and heated and pressed. Although it is molded and manufactured in a batch system, in recent years, a system for continuously producing from impregnation to molding has been studied and implemented. In the case of this method, the laminate of the resin-impregnated base material and metal foil is obtained by adhering with a laminating roll while moving in a horizontal state and then heat-curing, so when compared with the conventional batch method manufacturing method It was difficult to increase the pressure. Therefore, when the resin-impregnated substrate is bonded, the air remaining in the portion sandwiched between the resin-impregnated substrate and the metal foil and the air remaining in the portion sandwiched between the resin-impregnated substrate and the resin-impregnated substrate Is difficult to remove, and air bubbles remain in the metal foil-clad laminate after molding, which tends to cause a problem of deteriorating electrical characteristics. Therefore, as shown in FIG. 2, when the resin-impregnated base material is laminated, the air remaining in the portion sandwiched between the resin-impregnated base material and the metal foil, and between the resin-impregnated base material and the resin-impregnated base material. In order to remove the air remaining in the portion sandwiched between the two resin squeeze rolls 3, 3, each having a predetermined number of resin-impregnated substrates with a large amount of resin adhered thereto, and the stacked resin-impregnated substrates being fixed at a roll interval. Between the resin-impregnated base material and the resin-impregnated base material, and the air remaining in the portion sandwiched between the resin-impregnated base material and the laminate roll 4. 4 was produced by bonding metal foil. The metal foil-clad laminate obtained by this manufacturing method uses a resin-impregnated base material to which a large amount of resin is adhered in order to prevent bubbles from remaining inside the metal foil-clad laminate. Looking at the cross section of the plate, a 10 to 40 μm resin layer was present between the substrate and the metal foil and between the substrate and the substrate.
[0003]
When a printed wiring board is processed using this metal foil-clad laminate, there is a problem that the printed wiring board is warped. In addition, since the amount of resin in the metal foil-clad laminate is large, the coefficient of thermal expansion of the metal foil-clad laminate increases, and the through-hole reliability of the printed wiring board may be reduced.
[0004]
[Problems to be solved by the invention]
The present invention was made in order to improve the above-mentioned problems, and the object of the present invention is a metal foil-clad laminate produced continuously from impregnation to molding, and this metal foil-clad laminate is used. An object of the present invention is to provide a metal foil-clad laminate in which a printed wiring board with small warpage can be obtained when the printed wiring board is processed.
[0005]
[Means for Solving the Problems]
A metal foil-clad laminate according to claim 1 of the present invention is a laminate of a plurality of base materials impregnated with a resin varnish containing a radical polymerization type thermosetting resin on a continuously supplied base material. In a metal foil-clad laminate in which a metal foil is arranged on at least one surface layer of a laminated product and then heat-cured, the thickness of the resin layer between the substrate and the metal foil and between the substrate and the substrate The thickness of the resin layer is 1 to 10 μm.
[0006]
The metal foil-clad laminate according to claim 2 of the present invention is impregnated with a resin varnish containing a radical polymerization type thermosetting resin on one continuously supplied base material and impregnated with the resin varnish. In a metal foil-clad laminate in which a metal foil is disposed on at least one surface layer of a base material and then cured by heating, the thickness of the resin layer between the base material and the metal foil is 1 to 10 μm. .
[0007]
The metal foil-clad laminate is characterized in that the substrate is a glass cloth.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In order to solve the above problems, the inventors have made various studies, and as a result, warpage, the thickness of the resin layer between the base material and the metal foil of the metal foil-clad laminate, and the resin layer between the base material and the base material. It was found that the warpage can be reduced by controlling the thickness of the resin layer.
[0009]
In the metal foil-clad laminate of the present invention, when the number of substrates is plural, the thickness of the resin layer between the substrate and the metal foil and the thickness of the resin layer between the substrate and the substrate are 1 to 10 μm. It is important that when the number of base materials is one, the thickness of the resin layer between the base material and the metal foil is 1 to 10 μm. When producing a metal foil-clad laminate with a resin layer thickness of less than 1 μm, it is necessary to greatly reduce the amount of resin in the resin-impregnated substrate. As a result, when the resin-impregnated substrate is laminated, It becomes difficult to remove the air remaining in the portion sandwiched between the metal foil and the portion sandwiched between the resin-impregnated base material and the resin-impregnated base material, and bubbles remain in the metal foil-clad laminate after molding. Therefore, the problem that electrical performance and moisture absorption heat resistance fall arises. Further, when the thickness of the resin layer exceeds 10 μm, there arises a problem that the warpage of the laminated plate becomes large. In the metal foil-clad laminate of the present invention, the amount of resin in the metal foil-clad laminate is less than in the conventional case, so the coefficient of thermal expansion of the metal foil-clad laminate is reduced, and the metal foil-clad laminate is processed. Thus, the effect of improving the through hole reliability of the printed wiring board produced at the same time can be obtained.
[0010]
In addition, the thickness of the resin layer of the present invention is a value measured from a tangent line connecting the convex portions of the cloth or the nonwoven fabric with each vertex when the substrate is a cloth (nonwoven fabric) or a nonwoven fabric. This is a value measured from a line connecting the centers of the irregularities of the processing foot of the metal foil. The distance between these lines is called the thickness of the resin layer. The thickness of the resin layer is measured, for example, by observing the cross section of the metal foil-clad laminate with an electron microscope.
[0011]
A method for producing a metal foil-clad laminate according to the present invention will be described with reference to the drawings.
FIG. 1 is a process diagram showing a production method according to a metal foil-clad laminate of the present invention. As shown in FIG. 1, a metal foil-clad laminate according to the present invention is obtained by laminating one or a plurality of resin-impregnated base materials impregnated with a resin varnish 2 on a continuously supplied base material 1. Or, a metal foil 5 is disposed on at least one surface layer of a laminate obtained by laminating a plurality of sheets, and after continuously bonding with laminate rolls 4 and 4, it is manufactured by continuously heating and curing in a heating and curing furnace 6. The
[0012]
Although it does not specifically limit as the said base material 1, The cloth | cross, mat | matte, or nonwoven fabric which uses fibers, such as glass fiber, an aramid fiber, a polyester fiber, and a nylon fiber, is mentioned. In addition, when the base material 1 is a glass cloth, it is excellent in heat resistance, moisture resistance, and dimensional stability, and is preferable.
[0013]
The resin varnish 2 is a radical polymerization type thermosetting resin, and examples thereof include resins such as unsaturated polyester resins and vinyl ester resins alone, modified products, and mixtures. The resin varnish 2 may contain a radical polymerizable thermosetting resin, a radical polymerizable monomer such as styrene or diallyl phthalate, an inorganic or organic filler, an anti-settling agent for the filler, etc. as necessary. You may mix. If this resin varnish is degassed under reduced pressure, even if the resin amount of the resin-impregnated base material is reduced, bubbles remaining in the metal foil-clad laminate are less likely to be generated. Further, when the viscosity of the resin varnish 2 is in the range of 100 to 400 centipoise when measured at 30 ° C. with a B-type viscometer, the amount of the resin varnish 2 impregnated in the resin-impregnated base material is reduced. However, bubbles remaining in the metal foil-clad laminate are less likely to occur, which is preferable.
[0014]
The metal foil 5 is not particularly limited, and examples thereof include copper foil and nickel foil. Further, a release film may be used in place of the metal foil 5.
[0015]
【Example】
(Example 1)
As shown in FIG. 1, a continuously supplied base material 1 is laminated with a resin-impregnated base material impregnated with a resin varnish 2, and metal foils 5 are arranged on both sides of the laminated laminate. Then, a metal foil-clad laminate was manufactured using a device that was continuously heat-cured in the heat-curing furnace 6.
[0016]
As resin varnish 2,
-100 parts by weight of vinyl ester resin [made by Showa Polymer Co., Ltd., product name S510]
-1 part by weight of radical initiator [manufactured by Nippon Oil & Fats Co., Ltd., product name Perbutyl O], and 6 parts by weight of styrene monomer were mixed and mixed, and then the resin varnish 2 was degassed under reduced pressure at 0.1 atm for 30 minutes. Using. As a result of measuring the viscosity of this resin varnish 2 at 30 ° C. with a B-type viscometer, it was 210 centipoise.
[0017]
A glass cloth having a thickness of 0.19 mm (product name: 7628, manufactured by Asahi Schavel Co., Ltd.) was used as the substrate 1 and was continuously supplied to the impregnation apparatus at a speed of 2 m / min. The base material 1 was impregnated with the resin varnish 2 by a one-side contact impregnation method to obtain a resin-impregnated base material.
[0018]
Two obtained resin-impregnated base materials are stacked, and a copper foil having a thickness of 35 μm is disposed on both outer sides thereof as a metal foil 5, bonded with laminate rolls 4 and 4, and then heated at 105 ° C. for 20 minutes in a heating and curing furnace 6. After heat-curing, it was heat-cured again at 170 ° C. for 30 minutes to obtain a copper-clad laminate. At this time, the gap between the upper and lower rolls of the laminate rolls 4 and 4 was set to 0.46 mm and bonded.
[0019]
By observing the cross section of the obtained copper-clad laminate with an electron microscope, the thickness of the resin layer between the substrate 1 and the substrate 1 and the thickness of the resin layer between the substrate 1 and the metal foil 5 were measured. As a result, the thickness of the resin layer between the base material, the thickness of the resin layer between the base material and the upper metal foil, and the thickness of the resin layer between the base material and the lower metal foil are both 7 μm. It was confirmed.
[0020]
(Comparative Example 1)
As resin varnish 2,
-100 parts by weight of vinyl ester resin [made by Showa Polymer Co., Ltd., product name S510]
-1 part by weight of radical initiator [manufactured by Nippon Oil & Fats Co., Ltd., product name: Perbutyl O] and 2 parts by weight of styrene monomer were mixed and mixed, and then the resin varnish 2 was degassed under reduced pressure at 0.1 atm for 30 minutes. Except having used, it manufactured similarly to Example 1 and obtained the copper clad laminated board.
[0021]
The viscosity of this resin varnish 2 was measured with a B-type viscometer at 30 ° C., and the result was 600 centipoise. At this time, the gap between the upper and lower rolls of the laminate rolls 4 and 4 was set to 0.49 mm and bonded.
[0022]
The cross section of the obtained copper-clad laminate was observed in the same manner as in Example 1, and the thickness of the resin layer between the substrate and the substrate and the thickness of the resin layer between the substrate and the metal foil were measured. As a result, the thickness of the resin layer between the substrate and the substrate is 20 μm, the thickness of the resin layer between the substrate and the upper metal foil is 20 μm, and the thickness of the resin layer between the substrate and the lower metal foil. Was 10 μm.
[0023]
(Example 2)
One substrate 1 that is continuously supplied was impregnated with the resin varnish 2 and continuously bonded, and the gap between the upper and lower rolls of the laminate rolls 4 and 4 was set to 0.28 mm and bonded. Except for the above, production was conducted in the same manner as in Example 1 to obtain a copper-clad laminate.
[0024]
The cross section of the obtained copper-clad laminate was observed in the same manner as in Example 1, and the thickness of the resin layer between the substrate 1 and the metal foil 5 was measured. As a result, it was confirmed that both the thickness of the resin layer between the base material and the upper metal foil and the thickness of the resin layer between the base material and the lower metal foil were 7 μm.
[0025]
(Comparative Example 2)
One substrate 1 continuously fed was impregnated with the resin varnish 2 and continuously bonded, and the laminate rolls 4 and 4 were bonded with the upper and lower rolls set at a distance of 0.31 mm. Except for this, the same procedure as in Comparative Example 1 was conducted to obtain a copper-clad laminate.
[0026]
The cross section of the obtained copper-clad laminate was observed in the same manner as in Example 1, and the thickness of the resin layer between the substrate 1 and the metal foil 5 was measured. As a result, it was confirmed that the thickness of the resin layer between the base material and the upper metal foil was 10 μm, and the thickness of the resin layer between the base material and the lower metal foil was 20 μm.
[0027]
The copper clad laminates obtained in Examples 1 and 2 and Comparative Examples 1 and 2 were cut into 250 × 250 mm, the copper foil was etched on the entire surface, then placed on a surface plate, and the highest lifted amount at the four corners. The distance between the large surface plate and the laminate was measured as the amount of warpage. As a result, the warpage amount of the copper clad laminate obtained in Comparative Example 1 was 6 mm, whereas the warpage amount of the laminate obtained in Example 1 was 1 mm. The warpage amount of the copper-clad laminate obtained in Comparative Example 2 was 5 mm, whereas the warpage amount of the laminate obtained in Example 2 was 1 mm. The example warps compared to the comparative example. Was confirmed to be small. Moreover, after etching the copper foil of the copper clad laminated board obtained in Example 1 and Comparative Example 1 over the entire surface, the thermal expansion coefficient in the vertical direction of the substrate and the thermal expansion coefficient in the horizontal direction were determined by a thermomechanical analysis (TMA) method. It measured in the range of 40-150 degreeC. As a result, the thermal expansion coefficient in the base material longitudinal direction of the copper clad laminate obtained in Comparative Example 1 was 14 ppm / ° C., whereas the base material longitudinal direction of the copper clad laminate obtained in Example 1 was The thermal expansion coefficient of the copper-clad laminate obtained in Comparative Example 1 was 12 ppm / ° C., while the lateral coefficient of thermal expansion of the copper-clad laminate obtained in Comparative Example 1 was 18 ppm / ° C., whereas the copper obtained in Example 1 The thermal expansion coefficient in the transverse direction of the substrate of the stretched laminate was 15 ppm / ° C., and it was confirmed that the thermal expansion coefficient in both the vertical and horizontal directions was smaller in the examples than in the comparative example.
[0028]
【The invention's effect】
A metal foil-clad laminate according to claim 1 of the present invention is a metal foil-clad laminate produced continuously from impregnation to molding using a plurality of substrates, and a resin between the substrate and the substrate Since the thickness of the layer and the thickness of the resin layer between the base material and the metal foil are 1 to 10 μm, when the printed wiring board is processed using this metal foil-clad laminate, a printed wiring board with small warpage can be obtained. .
[0029]
A metal foil-clad laminate according to claim 2 of the present invention is a metal foil-clad laminate produced continuously from impregnation to molding using a single substrate, and a resin between the substrate and the metal foil. Since the thickness of the layer is 1 to 10 μm, when a printed wiring board is processed using this metal foil-clad laminate, a printed wiring board with small warpage can be obtained.
[0030]
In addition to any of the above effects, the metal foil-clad laminate can provide a metal foil-clad laminate that is further excellent in heat resistance, moisture resistance, and dimensional stability.
[Brief description of the drawings]
FIG. 1 is a process diagram showing a method for producing a metal foil-clad laminate of the present invention.
FIG. 2 is a process diagram showing a conventional method for producing a metal foil-clad laminate.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Base material 2 Resin varnish 3 Squeeze roll 4 Laminate roll 5 Metal foil 6 Heat-hardening furnace

Claims (2)

連続的に供給される基材にラジカル重合型熱硬化性樹脂を含んでなる樹脂ワニスを含浸した基材を複数枚積層し、その複数枚積層した積層物の少なくとも一方の表層に金属箔を配し、次いで加熱硬化させてなる金属箔張り積層板において、基材がガラスクロスであり、且つ、基材と金属箔の間の樹脂層の厚み及び基材と基材の間の樹脂層の厚みが1〜10μmであることを特徴とする金属箔張り積層板。A plurality of substrates impregnated with a resin varnish containing a radical polymerization type thermosetting resin are laminated on a continuously supplied substrate, and a metal foil is disposed on at least one surface layer of the laminated laminate. Then, in the metal foil-clad laminate obtained by heat curing, the substrate is a glass cloth, and the thickness of the resin layer between the substrate and the metal foil and the thickness of the resin layer between the substrate and the substrate 1 to 10 μm, a metal foil-clad laminate. 連続的に供給される1枚の基材にラジカル重合型熱硬化性樹脂を含んでなる樹脂ワニスを含浸し、その樹脂ワニスを含浸した基材の少なくとも一方の表層に金属箔を配し、次いで加熱硬化させてなる金属箔張り積層板において、基材がガラスクロスであり、且つ、基材と金属箔の間の樹脂層の厚みが1〜10μmであることを特徴とする金属箔張り積層板。One substrate that is continuously supplied is impregnated with a resin varnish comprising a radical polymerization type thermosetting resin, and a metal foil is disposed on at least one surface layer of the substrate impregnated with the resin varnish, A metal foil-clad laminate obtained by heat-curing, wherein the substrate is a glass cloth, and the thickness of the resin layer between the substrate and the metal foil is 1 to 10 μm .
JP24715695A 1995-09-26 1995-09-26 Metal foil laminate Expired - Fee Related JP3662053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24715695A JP3662053B2 (en) 1995-09-26 1995-09-26 Metal foil laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24715695A JP3662053B2 (en) 1995-09-26 1995-09-26 Metal foil laminate

Publications (2)

Publication Number Publication Date
JPH0985884A JPH0985884A (en) 1997-03-31
JP3662053B2 true JP3662053B2 (en) 2005-06-22

Family

ID=17159276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24715695A Expired - Fee Related JP3662053B2 (en) 1995-09-26 1995-09-26 Metal foil laminate

Country Status (1)

Country Link
JP (1) JP3662053B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3239716B2 (en) * 1995-10-23 2001-12-17 松下電工株式会社 Manufacturing method of laminated board
JP5285887B2 (en) * 2007-09-21 2013-09-11 パナソニック株式会社 Epoxy resin composition, method for continuously producing metal-clad laminate, and metal-clad laminate

Also Published As

Publication number Publication date
JPH0985884A (en) 1997-03-31

Similar Documents

Publication Publication Date Title
JP4162321B2 (en) Method for producing metal foil laminate
JP3029487B2 (en) Manufacturing method of copper clad laminate
JP3662053B2 (en) Metal foil laminate
JP3239716B2 (en) Manufacturing method of laminated board
JP2004216784A (en) Method for manufacturing prepreg, prepreg, laminate with built-in inner layer circuit and metal foil-clad laminate
EP0472177B1 (en) Matt film
JP3159061B2 (en) Method of manufacturing metal foil-laminated laminate
JPS6042567B2 (en) Manufacturing method for electrical laminates
JP3058045B2 (en) Manufacturing method of multilayer printed wiring board
JPH0966567A (en) Manufacture of laminated board
JP2500398B2 (en) Metal foil-clad laminate and method for manufacturing the same
JPH0722731A (en) Manufacture of laminated sheet copper-clad on both-sides
JPH0771839B2 (en) Laminated board manufacturing method
JP2001170953A (en) Method for manufacturing laminated sheet
JPH11277676A (en) Manufacture of laminated plate
JP3275496B2 (en) Manufacturing method of metal foil-clad laminate
JP2000127294A (en) Laminated board covered with metal foil and manufacture thereof
JP2000238185A (en) Production of composite laminated sheet
JPH01215516A (en) Manufacture of metallic foil plated laminated sheet
JPH09314738A (en) Manufacture of laminated sheet
JPH07290633A (en) Single-sided copper clad laminated sheet
JPH0775269B2 (en) Electric laminate
JPH08197680A (en) Continuous production of metal foil clad laminated sheet
JPH11334020A (en) Manufacture of laminated sheet
JPH0489253A (en) Manufacture of laminated plate

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20001226

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050322

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080401

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees