JP3661752B2 - Pile seismic isolation structure - Google Patents

Pile seismic isolation structure Download PDF

Info

Publication number
JP3661752B2
JP3661752B2 JP02568599A JP2568599A JP3661752B2 JP 3661752 B2 JP3661752 B2 JP 3661752B2 JP 02568599 A JP02568599 A JP 02568599A JP 2568599 A JP2568599 A JP 2568599A JP 3661752 B2 JP3661752 B2 JP 3661752B2
Authority
JP
Japan
Prior art keywords
container
sphere
pile
base
seismic isolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02568599A
Other languages
Japanese (ja)
Other versions
JP2000220151A (en
Inventor
忠男 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP02568599A priority Critical patent/JP3661752B2/en
Publication of JP2000220151A publication Critical patent/JP2000220151A/en
Application granted granted Critical
Publication of JP3661752B2 publication Critical patent/JP3661752B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Foundations (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、杭、特に杭頭での免震構造に関する。
【0002】
【従来の技術】
杭基礎には支持杭形式と摩擦杭形式とがあり、前者は、良質な支持層が地下深くにある場合に該支持層まで打ち込んだ杭の上に上部構造物を構築することによって、構造物重量を支持層で安定支持する形式であり、後者は、良質な支持層がない場合に周辺地盤との摩擦力によって上部構造物を支持する形式の基礎形式である。
【0003】
これらの杭は、その構造特性から水平力に対して比較的弱点を持ちやすく、地震時には、上部構造物からの水平力によって杭頭に大きなせん断力や曲げモーメントが作用する。そのため、杭の設計にあたっては、地震荷重について十分な検討が行われる。
【0004】
【発明が解決しようとする課題】
しかしながら、上部構造物がきわめて大きな地震に遭遇した場合には、杭頭に過大なせん断力や曲げモーメントが作用し、杭の破壊ひいては上部構造物の倒壊といった不測の事態を招くおそれがある。
【0005】
本発明は、上述した事情を考慮してなされたもので、上部構造物からの水平力による杭の破壊、特に杭頭での破壊を防止することが可能な杭の免震構造を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するため、本発明に係る杭の免震構造は請求項1に記載したように、上面開口を有する収容体を杭頭に取り付け、黒鉛、鉄、ステンレス又はセラミックスで構成された球体と潤滑液とからなる流動体を前記収容体内に収容し、上部構造物の基部である基礎版の下面に基礎側滑り部材を取り付け、所定の荷重伝達滑り板を該荷重伝達滑り板が前記球体で挟み込まれた状態となるように前記流動体内に水平に配置し、前記球体のうち、最上層の球体を基礎側滑り部材に、最下層の球体を前記収容体の底部にそれぞれ当接し、前記収容体の天端にシール部材を設けることにより前記潤滑液が外部に漏洩しないように前記収容体内を液密に保持したものである。
【0007】
また、本発明に係る杭の免震構造は、前記荷重伝達滑り板を前記球体を挟み込んだ状態にて複数積層させたものである。
【0008】
また、本発明に係る杭の免震構造は、前記基部と前記収容体との相対水平変位が拘束されないようにして該基部と該収容体を所定の引張抵抗材で接合したものである。
【0009】
本発明に係る杭の免震構造においては、杭頭に取り付けた収容体内に球体及び潤滑液からなる流動体を収容するとともに該流動体内に球体で挟み込まれるようにして所定の荷重伝達滑り板を水平配置し、該球体を基部に当接させてある。
【0010】
このようにすると、通常時においては、上部構造物からの鉛直荷重は、基部、球体及び荷重伝達滑り板を介して杭頭に伝達される。一方、地震時においては、収容体内に収容された流動体の球体と荷重伝達滑り板との間で滑り若しくは転がりが生じ、上部構造物からの水平力は、収容体ひいては杭頭に伝達されない。
【0011】
なお、球体及び潤滑液からなる流動体が収容体内で自由に流動するため、球体自体も収容体内を自由に移動する。そのため、球体が荷重伝達滑り板に沿って転がったり、単独で若しくは荷重伝達滑り板とともに移動したりするときには、かかる球体や荷重伝達滑り板に押し出される格好でそれらの前方にある流動体が側方に逃げ、最終的には後方に回り込む。したがって、地震時において球体の移動や転がりが妨げられるおそれはない。
【0012】
収容体や荷重伝達滑り板の形状は任意であるが、任意方向の地震動に対して流動体がスムーズに流動するよう、例えば収容体を円筒容器状、荷重伝達滑り板を円板状に構成しておくことが考えられる。
【0013】
球体や潤滑液についても任意であり、例えば球体を黒鉛、鉄、ステンレス、セラミックス等で構成し、潤滑液をシリコンオイル、グリース等で構成することが考えられる。なお、球体の転がりや移動が収容体内で拘束されることがないよう、球体の混入量や潤滑液の粘性を適宜設定する。
【0014】
荷重伝達滑り板についてもその材質は問わないが、例えば鉄、ステンレス、セラミックス等で構成することが考えられる。
【0015】
ここで、かかる荷重伝達滑り板を前記球体を挟み込んだ状態にて複数積層させたならば、いずれかの荷重伝達滑り板とそれに当接する球体との間でスムーズな滑りや転がりが生じる確率が高くなる。言い換えれば、特定の荷重伝達滑り板の特定面とそれに当接する球体との間で滑りが転がりが生じなかったとしても、別の荷重伝達滑り板とそれに当接する球体との間で滑りや転がりが生じるのを期待することができるので、上部構造物からの水平力をより確実に遮断することが可能となる。
【0016】
また、前記基部と前記収容体との相対水平変位が拘束されないようにして該基部と該収容体を所定の引張抵抗材で接合したならば、上部構造物のロッキングに伴って基部に引抜き力が作用したとしても、該基部と収容体との離間を防止することが可能となり、収容体内の液密状態はそのまま維持される。
【0017】
【発明の実施の形態】
以下、本発明に係る杭の免震構造の実施の形態について、添付図面を参照して説明する。なお、従来技術と実質的に同一の部品等については同一の符号を付してその説明を省略する。
【0018】
図1は、本実施形態に係る杭の免震構造を示した断面図である。同図でわかるように、本実施形態に係る杭の免震構造は、上面開口を有する収容体1を杭本体2の杭頭3に取り付けて該収容体内に流動体4を収容するとともに該流動体内に荷重伝達滑り板5a〜5cを水平に積層配置し、上部構造物の基部である基礎版6の下面には基礎側滑り部材7を取り付けてある。
【0019】
収容体1は、例えば鉄筋コンクリート構造で円筒容器状に構成しておくのがよい。なお、その内径については、杭径の例えば2倍程度に設定しておくことができる。また、荷重伝達滑り板5a〜5cについては、数mm程度の厚みを持つ円板状の鋼板で構成し、その径を例えば杭径の1.5倍程度に設定することができる。
【0020】
収容体1及び荷重伝達滑り板5a〜5cをこのように構成しておくと、任意方向の地震動に対して流動体4を収容体1内でスムーズに流動させることができる。
【0021】
基礎側滑り部材7についてもやはり円板状の鋼板で構成し、その径を、例えば収容体1の内径の2倍程度に設定することができる。
【0022】
図2は、収容体1内の詳細断面図である。同図でわかるように、流動体4は、黒鉛、鉄、ステンレス、セラミックス等で構成された球体11と、シリコンオイル、グリース等で構成された潤滑液12とからなり、上述した荷重伝達滑り板5a〜5cは、球体11で挟み込まれた状態、言い換えれば、各荷重伝達滑り板5a〜5c相互の間に球体11を一層ずつ挟み込んだ状態で流動体4内に水平に積層配置してある。そして、荷重伝達滑り板5aの上、すなわち最上層の球体11は基礎側滑り部材7に、荷重伝達滑り板5cの下、すなわち最下層の球体11は、収容体1の底部15にそれぞれ当接してある。
【0023】
また、収容体1の円筒状側壁13の天端には環状のシール部材14を設けてあり、流動体4の潤滑液12の外部漏洩を防止して収容体1内を液密に保持している。
【0024】
なお、球体11の混入量や潤滑液12の粘性については、球体11の転がりや移動が収容体1内で拘束されることがないように、すなわち、球体11が多すぎてその転がりや移動ができなくなったり、荷重伝達滑り板5a〜5cの水平移動ができなくなったりすることがないように、また、球体11が少なすぎて荷重伝達滑り板5a〜5c相互、荷重伝達滑り板5aと基礎側滑り部材7あるいは荷重伝達滑り板5cと収容体1の底部15とが直接接触することがないように適宜設定する。なお、球体11の径を例えば数mm以下にすれば、収容体1の高さを例えば数cm程度に抑えることができる。
【0025】
本実施形態に係る杭の免震構造においては、杭頭3に取り付けた収容体1内に球体11及び潤滑液12からなる流動体4を収容するとともに該流動体内に球体11で挟み込まれるようにして荷重伝達滑り板5a〜5cを水平に積層配置し、最上層の荷重伝達滑り板5aの上にある球体11を基礎側滑り部材7に、最下層の荷重伝達滑り板5cの下にある球体11を収容体1の底部15に当接してある。
【0026】
このようにすると、通常時においては、上部構造物の基礎版6からの鉛直荷重は、該基礎版に取り付けられた基礎側滑り部材7、球体11及び荷重伝達滑り板5a〜5cを介して杭頭3に伝達され、上部構造物の鉛直荷重は、杭本体2にてしっかりと支持される。また、基礎側滑り部材7、球体11及び荷重伝達滑り板5a〜5cをそれぞれ鉄、ステンレス等で構成しておけば、鉛直荷重作用時の沈下を実質的になくすか若しくは最小限にとどめることができる。
【0027】
一方、地震時においては、最上層の荷重伝達滑り板5aの上にある球体11が基礎版6の基礎側滑り部材7に当接されているため、該球体と基礎側滑り部材7との間では、図3(a)に示すように滑り若しくは転がりが生じ、上部構造物からの水平力は、収容体1ひいては杭頭3に伝達されない。
【0028】
また、基礎側滑り部材7や球体11の平滑性によっては、それらの間で滑りや転がりがスムーズに行われず、結果的に両者の間に水平方向摩擦力が作用して上部構造物の水平力が下方に伝達する懸念がある。
【0029】
しかしながら、かかる場合であっても、球体11と荷重伝達滑り板5aとの転がり若しくは滑りによって水平力の遮断作用が期待できるし、それらの間で同様な問題が生じたとしても、図3(b)に示すように、荷重伝達滑り板5aとその下の球体11との間の滑り若しくは転がりによって水平力の遮断作用が期待できる。
【0030】
つまり、基礎側滑り部材7、荷重伝達滑り板5a〜5c及び収容体1の底部15の少なくともいずれかと球体11との間で滑り若しくは転がりが生じさえすれば、上部構造物からの水平力は、滑り若しくは転がりが生じた箇所にて遮断され、杭頭3には作用しないこととなる。
【0031】
図3(c)は、荷重伝達滑り板5cと収容体1の底部15との間で滑り若しくは転がりが生じている様子を示した断面図である。
【0032】
なお、流動体4内の球体11は、収容体1内を自由に移動する。そのため、球体11が転がったり、該球体が単独で若しくは荷重伝達滑り板5a〜5cとともに移動したりするときには、図4に示すように、かかる球体11や荷重伝達滑り板5a〜5cに押し出される格好でそれらの前方にある流動体4が側方に逃げ、最終的には後方に回り込む。したがって、地震時において球体11の移動や転がりが妨げられるおそれはない。
【0033】
以上説明したように、本実施形態に係る杭の免震構造によれば、地震時において基礎側滑り部材7、荷重伝達滑り板5a〜5c及び収容体1の底部15のいずれかと球体11との間で滑り若しくは転がりが生じるので、上部構造物からの水平力は、滑り若しくは転がりが生じた箇所にて遮断される。
【0034】
したがって、上部構造物からの水平力がせん断力として杭頭3に作用することがなくなり、杭頭での破壊ひいては上部構造物の損壊を未然に防止することが可能となる。
【0035】
また、本実施形態に係る杭の免震構造によれば、荷重伝達滑り板5a〜5cを球体11を挟み込んだ状態にて3枚積層させたので、基礎側滑り部材7、荷重伝達滑り板5a〜5c及び収容体1の底部15の少なくともいずれかと球体11との間で滑り若しくは転がりが生じさせすれば、その箇所にて上部構造物からの水平力を遮断することが可能となる。
【0036】
したがって、基礎側滑り部材7、荷重伝達滑り板5a〜5c、収容体1の底部15及び球体11の製作精度が悪いことに起因してそれらの平滑性が低下したり、経年変化による腐食で球体11がスムーズに滑ったり転がったりしなくなったとしても、全体としての水平力遮断機能については、これを長期間維持することが可能となる。
【0037】
本実施形態では、収容体1の上面に環状のシール材14を設けることで収容体1内を液密に構成したが、かかる構成にかえて、球体11を鉄等の磁性体とし、収容体1の側壁13天端に磁石を取り付けるようにしてもよい。かかる構成によれば、収容体1の側壁13天端近傍に球体11が引き寄せられ、基礎側滑り部材7との間のクリアランスを塞ぐこととなり、潤滑液12の粘性と相まって液密作用を期待することが可能となる。なお、球体11とは別に磁性体である鉄粉を流動体4内に添加し、該鉄粉が上述のクリアランス部分に引き寄せられることによる流動体4の粘性増加によって液密を行うようにしてもよい。
【0038】
また、本実施形態では、荷重伝達滑り板を3枚としたが、かかる枚数に限定されるものではないことは言うまでもない。また、必ずしも複数である必要はなく、単一配置としてもかまわない。
【0039】
また、本実施形態では、基礎版6に基礎側滑り部材7を設けて球体11との滑り若しくは転がりが生じるようにしたが、かかる基礎側滑り部材7を省略してもかまわないし、収容体1の底部15上を必ずしも球体11が転がったり滑ったりできるように構成しておく必要もない。かかる構成によっても、荷重伝達滑り板の枚数を適宜増やすことで、全体としての水平力遮断機能を十分に確保することが可能となる。
【0040】
図5は、基礎側滑り部材7を省略するとともに、5枚の荷重伝達滑り板5a〜5eを配置した様子を示した図である。なお、かかる変形例では、基礎版6側にも凹部16を設けて該凹部を収容体1内と連通させ、かかる一体の連通空間に5枚の荷重伝達滑り板5a〜5eを配置してある。
【0041】
また、本実施形態では特に言及しなかったが、図6に示すように基礎版6と収容体1aにそれぞれ中空空間21、22を設け、該中空空間内を貫通するようにして引張抵抗材であるPC鋼線23を配置し、その両端を基礎版6と収容体1aとにそれぞれ定着する構造としてもよい。ここで、中空空間21、22は、基礎版6と収容体1aとの相対水平変位に伴ってPC鋼線23が周囲から拘束されることなく自由に斜め変形するための空間として作用する。
【0042】
かかる構成においては、図7に示すように基礎版6と収容体1aとの相対水平変位が拘束されない状態で両者がPC鋼線23を介して接合されることとなり、上部構造物のロッキングに伴って基礎版6に引抜き力が作用したとしても、該基礎版と収容体1aとの離間を防止することが可能となり、かくして収容体1a内の液密状態をそのまま維持することが可能となる。
【0043】
なお、当然ながら上部構造物のロッキング振動自体を抑制することも可能となる。また、同図に示したように、中空空間21、22を収容体1a内部と連通させ、該中空空間にも流動体4を満たすようにしておけば、該流動体をPC鋼線23の防錆にも利用することが可能となる。
【0044】
【発明の効果】
以上述べたように、請求項1に係る本発明の杭の免震構造によれば、地震時において荷重伝達滑り板と球体との間で滑り若しくは転がりが生じるので、上部構造物からの水平力が遮断される。したがって、上部構造物からの水平力がせん断力として杭頭に作用することがなくなり、杭頭での破壊ひいては上部構造物の損壊を未然に防止することが可能となる。
【0045】
また、請求項2に係る本発明の杭の免震構造によれば、いずれかの荷重伝達滑り板とそれに当接する球体との間でスムーズな滑りや転がりが生じる確率が高くなる。言い換えれば、特定の荷重伝達滑り板の特定面とそれに当接する球体との間で滑りが転がりが生じなかったとしても、別の荷重伝達滑り板とそれに当接する球体との間で滑りや転がりが生じるのを期待することができるので、上部構造物からの水平力をより確実に遮断することが可能となるという効果も奏する。
【0046】
また、請求項3に係る本発明の杭の免震構造によれば、上部構造物のロッキングに伴って基部に引抜き力が作用したとしても、該基部と収容体との離間を防止することが可能となり、収容体内の液密状態をそのまま維持することが可能となるという効果も奏する。
【0047】
【図面の簡単な説明】
【図1】本実施形態に係る杭の免震構造の断面図。
【図2】同じく本実施形態に係る杭の免震構造の詳細断面図。
【図3】本実施形態に係る杭の免震構造の作用を示した詳細断面図。
【図4】同じく本実施形態に係る杭の免震構造の作用を示した平面図。
【図5】変形例に係る杭の免震構造を示した断面図。
【図6】別の変形例に係る杭の免震構造を示した断面図。
【図7】同じく別の変形例に係る杭の免震構造の作用を示した詳細断面図。
【符号の説明】
1、1a 収容体
2 杭本体
3 杭頭
4 流動体
5a〜5e 荷重伝達滑り板
6 基礎版(基部)
11 球体
12 潤滑液
23 PC鋼線(引張抵抗部材)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a seismic isolation structure in a pile, particularly a pile head.
[0002]
[Prior art]
There are two types of pile foundations: a support pile type and a friction pile type. When the good quality support layer is deep underground, the former is constructed by constructing an upper structure on the pile driven to the support layer. This is a form in which the weight is stably supported by the support layer, and the latter is a basic form in which the superstructure is supported by the frictional force with the surrounding ground when there is no good quality support layer.
[0003]
These piles tend to have a relatively weak point against horizontal force due to their structural characteristics, and during an earthquake, a large shearing force or bending moment acts on the pile head due to the horizontal force from the superstructure. Therefore, when designing piles, sufficient consideration is given to seismic loads.
[0004]
[Problems to be solved by the invention]
However, when the superstructure encounters an extremely large earthquake, an excessive shearing force or bending moment acts on the pile head, which may lead to an unforeseen situation such as the destruction of the pile and the collapse of the superstructure.
[0005]
The present invention has been made in consideration of the above-described circumstances, and provides a pile-based seismic isolation structure that can prevent pile breakage caused by a horizontal force from an upper structure, in particular, breakage at a pile head. With the goal.
[0006]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the pile seismic isolation structure according to the present invention is a sphere composed of graphite, iron, stainless steel or ceramics, with a container having a top opening attached to the pile head as described in claim 1. And a fluid comprising a lubricating liquid is contained in the container, and a foundation-side sliding member is attached to the lower surface of the foundation plate, which is the base of the upper structure, and a predetermined load transmission sliding plate is attached to the spherical body. Horizontally arranged in the fluid so as to be sandwiched between, the uppermost sphere of the spheres abut the base side sliding member, the lowermost sphere abuts the bottom of the container, By providing a sealing member at the top end of the container, the container is liquid-tight so that the lubricating liquid does not leak to the outside.
[0007]
Moreover, the seismic isolation structure of the pile which concerns on this invention laminates | stacks the said load transmission sliding board in the state which pinched | interposed the said spherical body.
[0008]
Moreover, the base isolation structure of the pile which concerns on this invention joins this base part and this container with a predetermined | prescribed tensile resistance material so that the relative horizontal displacement of the said base and the said container may not be restrained.
[0009]
In the seismic isolation structure of a pile according to the present invention, a fluid consisting of a sphere and a lubricating liquid is accommodated in a container attached to the pile head, and a predetermined load transmission sliding plate is provided so as to be sandwiched between the spheres. Horizontally arranged, the sphere is in contact with the base.
[0010]
If it does in this way, at the normal time, the vertical load from a superstructure will be transmitted to a pile head via a base, a sphere, and a load transmission sliding board. On the other hand, during an earthquake, sliding or rolling occurs between the sphere of the fluid housed in the container and the load transmitting sliding plate, and the horizontal force from the upper structure is not transmitted to the container and thus the pile head.
[0011]
In addition, since the fluid including the sphere and the lubricating liquid freely flows in the container, the sphere itself can freely move in the container. Therefore, when the sphere rolls along the load transmission sliding plate, or moves alone or with the load transmission sliding plate, the fluid in front of the sphere and the load transmission sliding plate is laterally moved. Escape to the end and eventually wrap around backwards. Therefore, there is no possibility that the movement and rolling of the sphere will be hindered during an earthquake.
[0012]
The shape of the container and load transmission sliding plate is arbitrary, but for example, the container is configured in a cylindrical container shape and the load transmission sliding plate is configured in a disk shape so that the fluid can smoothly flow in response to seismic motion in any direction. It is possible to keep it.
[0013]
The spheres and the lubricating liquid are also arbitrary. For example, it is conceivable that the spheres are made of graphite, iron, stainless steel, ceramics, etc., and the lubricating liquid is made of silicon oil, grease, or the like. It should be noted that the mixing amount of the sphere and the viscosity of the lubricating liquid are appropriately set so that the rolling and movement of the sphere are not restricted in the container.
[0014]
The material of the load transmission sliding plate is not limited, but it may be composed of, for example, iron, stainless steel, ceramics, or the like.
[0015]
Here, if a plurality of such load transmission sliding plates are stacked with the sphere sandwiched between them, there is a high probability that smooth sliding or rolling will occur between any load transmission sliding plate and the sphere abutting on it. Become. In other words, even if slip does not roll between a specific surface of a specific load transmission sliding plate and a sphere abutting on it, there is no sliding or rolling between another load transmission sliding plate and a sphere abutting on it. Since it can be expected to occur, the horizontal force from the superstructure can be blocked more reliably.
[0016]
Further, if the base and the container are joined with a predetermined tensile resistance material so that the relative horizontal displacement between the base and the container is not constrained, a pulling force is applied to the base along with the locking of the upper structure. Even if it acts, it becomes possible to prevent the base and the container from being separated, and the liquid-tight state in the container is maintained as it is.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of a seismic isolation structure for a pile according to the present invention will be described with reference to the accompanying drawings. Note that components that are substantially the same as those of the prior art are assigned the same reference numerals, and descriptions thereof are omitted.
[0018]
FIG. 1 is a cross-sectional view showing a seismic isolation structure for a pile according to the present embodiment. As can be seen from the figure, the pile seismic isolation structure according to the present embodiment accommodates the fluid 4 in the accommodation body by attaching the accommodation body 1 having the upper surface opening to the pile head 3 of the pile body 2 and the flow. Load transmission sliding plates 5a to 5c are horizontally stacked in the body, and a base side sliding member 7 is attached to the lower surface of the base plate 6 which is the base of the upper structure.
[0019]
The container 1 is preferably configured in a cylindrical container shape with a reinforced concrete structure, for example. In addition, about the internal diameter, it can set to about 2 times the pile diameter, for example. Moreover, about the load transmission sliding plates 5a-5c, it comprises with the disk-shaped steel plate with a thickness of about several mm, and the diameter can be set to about 1.5 times the pile diameter, for example.
[0020]
If the container 1 and the load transmission sliding plates 5a to 5c are configured in this manner, the fluid 4 can smoothly flow in the container 1 against seismic motion in an arbitrary direction.
[0021]
The foundation-side sliding member 7 is also made of a disk-shaped steel plate, and the diameter thereof can be set to about twice the inner diameter of the container 1, for example.
[0022]
FIG. 2 is a detailed cross-sectional view inside the container 1. As can be seen in the figure, the fluid 4 comprises a sphere 11 made of graphite, iron, stainless steel, ceramics, etc., and a lubricating liquid 12 made of silicon oil, grease, etc. 5a to 5c are horizontally stacked in the fluid 4 in a state of being sandwiched between the spheres 11, in other words, with the spheres 11 being sandwiched one by one between the load transmitting sliding plates 5a to 5c. The uppermost sphere 11 on the load transmission sliding plate 5a, that is, the uppermost sphere 11 abuts on the base side sliding member 7, and the lowermost sphere 11 on the load transmission sliding plate 5c, that is, the lowermost sphere 11 abuts on the bottom 15 of the container 1. It is.
[0023]
An annular seal member 14 is provided at the top end of the cylindrical side wall 13 of the container 1 to prevent external leakage of the lubricating liquid 12 of the fluid 4 and keep the inside of the container 1 liquid-tight. Yes.
[0024]
In addition, about the mixing amount of the spherical body 11 and the viscosity of the lubricating liquid 12, so that rolling and movement of the spherical body 11 are not restrained within the container 1, that is, there are too many spherical bodies 11 and the rolling and movement are not performed. In order to prevent the load transfer sliding plates 5a to 5c from moving horizontally, and the sphere 11 is too small so that the load transfer slide plates 5a to 5c can be connected to each other, the load transfer slide plate 5a and the base side. The sliding member 7 or the load transmitting sliding plate 5c and the bottom portion 15 of the container 1 are appropriately set so as not to be in direct contact with each other. If the diameter of the sphere 11 is set to, for example, several mm or less, the height of the container 1 can be suppressed to, for example, about several cm.
[0025]
In the seismic isolation structure of the pile according to the present embodiment, the fluid 4 composed of the sphere 11 and the lubricating liquid 12 is accommodated in the accommodating body 1 attached to the pile head 3 and is sandwiched by the sphere 11 in the fluid. The load transmission sliding plates 5a to 5c are horizontally stacked, and the sphere 11 on the uppermost load transmission sliding plate 5a is placed on the foundation side sliding member 7 and the sphere below the lowermost load transmission sliding plate 5c. 11 is in contact with the bottom 15 of the container 1.
[0026]
If it does in this way, at the normal time, the vertical load from the foundation slab 6 of an upper structure will be piled via the foundation side sliding member 7, the spherical body 11, and the load transmission sliding plates 5a-5c attached to this foundation slab. Transmitted to the head 3, the vertical load of the superstructure is firmly supported by the pile body 2. Further, if the foundation side sliding member 7, the sphere 11 and the load transmission sliding plates 5a to 5c are respectively made of iron, stainless steel or the like, the subsidence during the action of the vertical load can be substantially eliminated or minimized. it can.
[0027]
On the other hand, in the event of an earthquake, the sphere 11 on the uppermost load transmission sliding plate 5 a is in contact with the foundation-side sliding member 7 of the foundation plate 6. Then, as shown to Fig.3 (a), a slip or rolling arises and the horizontal force from a superstructure is not transmitted to the container 1 and by extension, the pile head 3. FIG.
[0028]
Further, depending on the smoothness of the foundation-side sliding member 7 and the sphere 11, the sliding and rolling may not be performed smoothly between them, and as a result, a horizontal frictional force acts between them, resulting in the horizontal force of the upper structure. There is a concern of transmitting down.
[0029]
However, even in such a case, a horizontal force blocking action can be expected by rolling or sliding between the sphere 11 and the load transmission sliding plate 5a, and even if a similar problem occurs between them, FIG. As shown in FIG. 4B, a horizontal force blocking action can be expected by sliding or rolling between the load transmitting sliding plate 5a and the sphere 11 below the load transmitting sliding plate 5a.
[0030]
That is, as long as sliding or rolling occurs between at least one of the base-side sliding member 7, the load transmitting sliding plates 5 a to 5 c and the bottom 15 of the container 1 and the sphere 11, the horizontal force from the upper structure is It will be cut off at the place where slipping or rolling occurs and will not act on the pile head 3.
[0031]
FIG. 3C is a cross-sectional view showing a state in which slipping or rolling occurs between the load transmission sliding plate 5 c and the bottom portion 15 of the container 1.
[0032]
In addition, the sphere 11 in the fluid 4 moves freely in the container 1. Therefore, when the sphere 11 rolls or when the sphere moves alone or together with the load transmission sliding plates 5a to 5c, as shown in FIG. 4, it is pushed out to the sphere 11 and the load transmission sliding plates 5a to 5c. Then, the fluid 4 in front of them escapes to the side and finally turns back. Therefore, there is no possibility that the movement and rolling of the sphere 11 will be prevented during an earthquake.
[0033]
As described above, according to the seismic isolation structure of a pile according to the present embodiment, any one of the base side sliding member 7, the load transmitting sliding plates 5a to 5c, and the bottom 15 of the container 1 and the sphere 11 at the time of the earthquake. Since the sliding or rolling occurs between them, the horizontal force from the superstructure is interrupted at the location where the sliding or rolling occurs.
[0034]
Therefore, the horizontal force from the upper structure does not act on the pile head 3 as a shearing force, and it is possible to prevent the destruction at the pile head and the damage to the upper structure.
[0035]
Moreover, according to the seismic isolation structure of the pile which concerns on this embodiment, since the three load transmission sliding plates 5a-5c were laminated | stacked in the state which pinched | interposed the spherical body 11, the foundation side sliding member 7, the load transmission sliding plate 5a If slipping or rolling occurs between at least one of ˜5c and the bottom 15 of the container 1 and the sphere 11, the horizontal force from the upper structure can be blocked at that point.
[0036]
Accordingly, the smoothness of the foundation-side sliding member 7, the load transmitting sliding plates 5a to 5c, the bottom 15 of the container 1 and the sphere 11 is deteriorated due to poor manufacturing accuracy, or the sphere due to corrosion due to secular change. Even if 11 does not slide or roll smoothly, the horizontal force blocking function as a whole can be maintained for a long time.
[0037]
In this embodiment, the inside of the container 1 is liquid-tightly provided by providing the annular sealing material 14 on the upper surface of the container 1. However, instead of such a structure, the sphere 11 is made of a magnetic material such as iron, and the container is used. You may make it attach a magnet to the side wall 13 top end of one. According to such a configuration, the sphere 11 is attracted to the vicinity of the top end of the side wall 13 of the container 1, and the clearance between the base side sliding member 7 is closed, and a liquid-tight action is expected in combination with the viscosity of the lubricating liquid 12. It becomes possible. Note that iron powder, which is a magnetic material, is added to the fluid 4 separately from the sphere 11, and liquid-tightness is achieved by increasing the viscosity of the fluid 4 due to the iron powder being attracted to the clearance portion. Good.
[0038]
Moreover, in this embodiment, although the load transmission sliding plate was made into 3 sheets, it cannot be overemphasized that it is not limited to this number. Further, it is not always necessary to provide a plurality of units, and a single arrangement may be used.
[0039]
In the present embodiment, the foundation side sliding member 7 is provided on the foundation plate 6 so as to slide or roll with the sphere 11. However, the foundation side sliding member 7 may be omitted, and the container 1 may be omitted. It is not always necessary to configure the sphere 11 so that the sphere 11 can roll or slide on the bottom 15 thereof. Even with such a configuration, it is possible to sufficiently ensure the horizontal force blocking function as a whole by appropriately increasing the number of load transmitting sliding plates.
[0040]
FIG. 5 is a diagram showing a state in which the base side sliding member 7 is omitted and five load transmission sliding plates 5a to 5e are arranged. In this modification, a recess 16 is also provided on the base plate 6 side so that the recess communicates with the inside of the container 1, and five load transmission sliding plates 5 a to 5 e are arranged in the integral communication space. .
[0041]
Although not particularly mentioned in the present embodiment, as shown in FIG. 6, the hollow space 21 and 22 are provided in the base plate 6 and the container 1a, respectively, and a tensile resistance material is used so as to penetrate through the hollow space. It is good also as a structure which arrange | positions the certain PC steel wire 23 and fixes the both ends to the base plate 6 and the container 1a, respectively. Here, the hollow spaces 21 and 22 act as spaces for freely deforming the PC steel wire 23 without being constrained from the surroundings in accordance with the relative horizontal displacement between the base plate 6 and the container 1a.
[0042]
In such a configuration, as shown in FIG. 7, both the base plate 6 and the container 1a are joined together via the PC steel wire 23 in a state where the relative horizontal displacement is not constrained, and accompanying the locking of the upper structure. Even if a drawing force is applied to the base plate 6, it is possible to prevent the base plate and the container 1a from being separated from each other, and thus it is possible to maintain the liquid-tight state in the container 1a as it is.
[0043]
Of course, it is possible to suppress the rocking vibration of the upper structure itself. Further, as shown in the figure, if the hollow spaces 21 and 22 are communicated with the inside of the container 1a and the fluid 4 is filled in the hollow space, the fluid is protected from the PC steel wire 23. It can also be used for rust.
[0044]
【The invention's effect】
As described above, according to the pile seismic isolation structure of the present invention according to claim 1, since a slip or rolling occurs between the load transmitting sliding plate and the sphere at the time of the earthquake, the horizontal force from the upper structure is generated. Is cut off. Therefore, the horizontal force from the upper structure does not act on the pile head as a shearing force, and it is possible to prevent the destruction at the pile head and the damage to the upper structure.
[0045]
Moreover, according to the seismic isolation structure of the pile of this invention which concerns on Claim 2, the probability that a smooth slip and rolling will arise between one of the load transmission slip boards and the spherical body contact | abutted to it becomes high. In other words, even if slip does not roll between a specific surface of a specific load transmission sliding plate and a sphere abutting on it, there is no slip or rolling between another load transmission sliding plate and a sphere abutting on it. Since it can be expected to occur, the horizontal force from the superstructure can be blocked more reliably.
[0046]
Moreover, according to the seismic isolation structure of the pile of this invention which concerns on Claim 3, even if drawing-out force acted on the base part with the locking of the upper structure, it can prevent separation | spacing with this base part and a container. It becomes possible, and there also exists an effect that it becomes possible to maintain the liquid-tight state in a container as it is.
[0047]
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a seismic isolation structure for a pile according to the present embodiment.
FIG. 2 is a detailed cross-sectional view of a pile seismic isolation structure according to the present embodiment.
FIG. 3 is a detailed sectional view showing the operation of the seismic isolation structure for a pile according to the present embodiment.
FIG. 4 is a plan view showing the operation of the pile seismic isolation structure according to the present embodiment.
FIG. 5 is a cross-sectional view showing a pile seismic isolation structure according to a modification.
FIG. 6 is a cross-sectional view showing a seismic isolation structure for a pile according to another modification.
FIG. 7 is a detailed cross-sectional view showing the action of a seismic isolation structure for a pile according to another modification.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 1a Container 2 Pile main body 3 Pile head 4 Fluid 5a-5e Load transmission sliding board 6 Base version (base)
11 Sphere 12 Lubricant 23 PC Steel Wire (Tensile Resistance Member)

Claims (3)

上面開口を有する収容体を杭頭に取り付け、黒鉛、鉄、ステンレス又はセラミックスで構成された球体と潤滑液とからなる流動体を前記収容体内に収容し、上部構造物の基部である基礎版の下面に基礎側滑り部材を取り付け、所定の荷重伝達滑り板を該荷重伝達滑り板が前記球体で挟み込まれた状態となるように前記流動体内に水平に配置し、前記球体のうち、最上層の球体を基礎側滑り部材に、最下層の球体を前記収容体の底部にそれぞれ当接し、前記収容体の天端にシール部材を設けることにより前記潤滑液が外部に漏洩しないように前記収容体内を液密に保持したことを特徴とする杭の免震構造。  A container having an upper surface opening is attached to the pile head, a fluid composed of a sphere made of graphite, iron, stainless steel, or ceramics and a lubricating liquid is housed in the container, and the foundation plate that is the base of the upper structure A base-side sliding member is attached to the lower surface, and a predetermined load transmission sliding plate is horizontally disposed in the fluid body so that the load transmission sliding plate is sandwiched between the spheres. The sphere is brought into contact with the base side sliding member, the lowermost sphere is brought into contact with the bottom of the container, and a sealing member is provided at the top of the container so that the lubricating liquid does not leak to the outside. Pile seismic isolation structure characterized by being kept liquid-tight. 前記荷重伝達滑り板を前記球体を挟み込んだ状態にて複数積層させた請求項1記載の杭の免震構造。  The seismic isolation structure for a pile according to claim 1, wherein a plurality of the load transmitting sliding plates are stacked in a state of sandwiching the sphere. 前記基部と前記収容体との相対水平変位が拘束されないようにして該基部と該収容体を所定の引張抵抗材で接合した請求項1記載の杭の免震構造。  The seismic isolation structure for a pile according to claim 1, wherein the base and the container are joined with a predetermined tensile resistance material so that relative horizontal displacement between the base and the container is not restricted.
JP02568599A 1999-02-03 1999-02-03 Pile seismic isolation structure Expired - Fee Related JP3661752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02568599A JP3661752B2 (en) 1999-02-03 1999-02-03 Pile seismic isolation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02568599A JP3661752B2 (en) 1999-02-03 1999-02-03 Pile seismic isolation structure

Publications (2)

Publication Number Publication Date
JP2000220151A JP2000220151A (en) 2000-08-08
JP3661752B2 true JP3661752B2 (en) 2005-06-22

Family

ID=12172655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02568599A Expired - Fee Related JP3661752B2 (en) 1999-02-03 1999-02-03 Pile seismic isolation structure

Country Status (1)

Country Link
JP (1) JP3661752B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105735367A (en) * 2016-03-07 2016-07-06 山东大学 Multi-dimensional damping control device for pile foundation
CN107604935A (en) * 2017-09-15 2018-01-19 赵云年 The building method of building pile foundation

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101916740B1 (en) * 2017-06-09 2018-11-08 (주)메가이엔지 Protecting pipe of underground cable comprising lubricant
JP6967476B2 (en) * 2018-03-15 2021-11-17 鹿島建設株式会社 Joining structure, how to build a joining structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105735367A (en) * 2016-03-07 2016-07-06 山东大学 Multi-dimensional damping control device for pile foundation
CN107604935A (en) * 2017-09-15 2018-01-19 赵云年 The building method of building pile foundation
CN107604935B (en) * 2017-09-15 2019-08-16 南昌市凯华建筑工程有限公司 The building method of building pile foundation

Also Published As

Publication number Publication date
JP2000220151A (en) 2000-08-08

Similar Documents

Publication Publication Date Title
EP1003948B9 (en) Earthquake protection consisting of vibration-isolated mounting of buildings and objects using virtual pendulums with long cycles
JP6013167B2 (en) Rail sliding type seismic isolation device
JPH09242819A (en) Base isolation device
JP3661752B2 (en) Pile seismic isolation structure
US8789320B1 (en) Large displacement isolation bearing
WO1996029477A1 (en) Foundation
JP6007092B2 (en) Ground liquefaction countermeasure structure using structural load
JPS62146371A (en) Earthquakeproof device
RU2535567C2 (en) Quakeproof building
JPS6233926A (en) Pile foundation of pile-up structure
JP5071852B2 (en) Structure subsidence suppression structure
JP2000120079A (en) Base isolation structure of pile
JP7055984B2 (en) Lifting suppression structure
JP2020125597A (en) Base-isolated building
JP2017043988A (en) Vibration control building
JP3575733B2 (en) Seismic isolation structure of pile
JP6691751B2 (en) Liquefaction seismic isolation structure
JPH0988089A (en) Earthquake-damping footing structure
JP4030447B2 (en) Unit type building with seismic isolation device
JPH09196116A (en) Base isolator of structure
JP7097183B2 (en) Anti-vibration foundation
JP2006097878A (en) Laminated rubber bearing device
JP5233824B2 (en) 3D seismic isolation device
JP4622031B2 (en) Seismic isolation structure
JP2006241841A (en) Base-isolating device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees