JP3661419B2 - Ferritic stainless steel with good surface properties and excellent corrosion resistance, molding processability and ridging resistance - Google Patents

Ferritic stainless steel with good surface properties and excellent corrosion resistance, molding processability and ridging resistance Download PDF

Info

Publication number
JP3661419B2
JP3661419B2 JP17187998A JP17187998A JP3661419B2 JP 3661419 B2 JP3661419 B2 JP 3661419B2 JP 17187998 A JP17187998 A JP 17187998A JP 17187998 A JP17187998 A JP 17187998A JP 3661419 B2 JP3661419 B2 JP 3661419B2
Authority
JP
Japan
Prior art keywords
less
oxide
ridging
corrosion resistance
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17187998A
Other languages
Japanese (ja)
Other versions
JP2000001757A (en
Inventor
康 加藤
工 宇城
佐藤  進
康夫 岸本
祐司 三木
健一 反町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP17187998A priority Critical patent/JP3661419B2/en
Publication of JP2000001757A publication Critical patent/JP2000001757A/en
Application granted granted Critical
Publication of JP3661419B2 publication Critical patent/JP3661419B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、鋼板表面性状が良好で、耐食性と成形加工性および耐リジング性に優れたフェライト系ステンレス鋼に関し、とくに鋼中に含まれる酸化物系介在物の組成を改質することによって諸特性の有利な改善を図ったものである。
【0002】
【従来の技術】
フェライト系ステンレス鋼板は、主要合金元素としてNiを含まず、安価であるため、自動車用部品や電機・厨房機器関連分野をはじめとして幅広く使用されている。
【0003】
例えば、特開昭61−276955号公報には、C,Nの低減とTi添加によって深絞り成形加工性の指標であるr値を向上させ、さらにB添加によって深絞り加工後の2次加工脆性を改善する技術が開示されている。この技術では、Alを積極的に添加することによって、TiO2の生成を抑制し、鋼板表面に欠陥が発生することを防止している。
しかしながら、この技術では、得られる表面品質が十分満足するまでには至らないだけでなく、製造時の連続鋳造時に、浸漬ノズルの内壁に Al2O3−TiO2系の高融点介在物が付着堆積し、ノズル閉塞が生じるいう問題があった。
【0004】
また、特開平8−144021号公報や特開平8−260106号公報には、Alを含有したTi添加フェライト系ステンレス鋼において、上述した連続鋳造時におけるノズル閉塞対策として、酸化物系介在物を Al2O3−TiO2−CaO 系とし、低融点化することによって、ノズル詰まりを防止する技術が開示されている。
しかしながら、この技術では、介在物としてCaSが生成し易く、このCaSが起点となって錆が発生し易いため、耐食性が劣化するという問題があり、低S化が必要となる。
しかも、基本的にAl脱酸技術であるため、冷延板において、 Al2O3が凝集、クラスター化して発生するヘゲ状の表面欠陥が免れ得ないという根本的な問題を残していた。
【0005】
一方、フェライト系ステンレス鋼は、加工時に圧延方向に沿ってリジングと呼ばれる「しわ」が表面に発生し易く、ステンレス鋼板本来の美観を損なうばかりか、リジングを除去するために、加工後に研磨工程が必要になるという問題がある。
この問題の改善策としては、従来、熱間圧延時の粗圧延1パスあたりの圧下量を増やしたり、あるいは仕上げ圧延スケジュールを最適化することが行われてきたが、このような方法では、熱延時に表面に疵が入り易いだけでなく、大量生産を安定して実施することが難しいという問題があった。
【0006】
【発明が解決しようとする課題】
この発明は、上記の実情に鑑み開発されたもので、上述したような従来の問題を全て解決した、表面性状が良好で耐食性、成形加工性および耐リジング性に優れたフェライト系ステンレス鋼を提案することを目的とする。
すなわち、この発明における課題は次のとおりである。
(1) 製造時の連続鋳造時にノズル詰まりが無く、製造性がよいこと。
(2) ヘゲ状表面欠陥がなく表面性状に優れること。
(3) 耐食性に優れること。
(4) 成型加工性に優れること。具体的には、r値が 1.7以上でΔr値が 0.2以下であること。
(5) 成形加工部でリジング発生程度が軽微であること。
【0007】
【課題を解決するための手段】
さて、発明者らは、上記の目的を達成すべく、鋭意研究を重ねた結果、鋼材の成分調整もさることながら、鋼中に含まれる酸化物系介在物の組成を適正に改質することが、所期した目的の達成に関し極めて有効であること、また酸化物系介在物を所望組成に安定して改質するには、鋼成分のうち脱酸剤として作用する成分の添加順序が極めて重要であることの知見を得た。
この発明は、上記の知見に立脚するものである。
【0008】
すなわち、この発明の要旨構成は次のとおりである。
1.C:0.02wt%以下、 Si:1.0 wt%以下、 Mn:1.0 wt%以下、
Cr:5〜32wt%、 P:0.05wt%以下、 S:0.015 wt%以下、
N:0.02wt%以下、 Al:0.005 wt%以下、 O:0.01wt%以下、
Ti:0.08wt%以上かつ6×(C+N)以上、0.5 wt%以下、
(V+Nb):0.04〜0.1 wt%でかつV/Nb=2.0 〜5.0 、
Ca:0.0005〜0.0050wt%
を含有し、残部はFe および不可避的不純物の組成になり、鋼中の脱酸生成物に起因した酸化物系介在物の組成が、Ti酸化物:20〜90wt%、 Al2O3:50wt%以下およびCaO:5〜50wt%の範囲を満足することを特徴とする表面性状が良好で耐食性、成形加工性および耐リジング性に優れたフェライト系ステンレス鋼
【0009】
2.上記1において、鋼組成が、さらに
Mo:0.05〜4.0 wt%
を含有する組成になることを特徴とする表面性状が良好で耐食性、成形加工性および耐リジング性に優れたフェライト系ステンレス鋼
【0010】
3.上記1または2において、鋼組成が、さらに
B:0.0002〜0.0030wt%
を含有する組成になることを特徴とする表面性状が良好で耐食性、成形加工性および耐リジング性に優れたフェライト系ステンレス鋼
【0011】
【発明の実施の形態】
以下、この発明の基礎となった実験結果について説明する。
実験1
C:0.006 〜0.011 wt%、Si:0.22〜0.41wt%、Mn:0.27〜0.48wt%、Cr:10.9〜11.3wt%、P:0.021 〜0.041 wt%、S:0.003 〜0.011 wt%、N:0.004 〜0.009 wt%、O:0.0037〜0.0076wt%、Ti:0.19〜0.26wt%、Nb+V:0.046 〜0.093 wt%でかつV/Nb=2.1 〜4.6 、Ca:0.0006〜0.0022wt%の成分範囲で、Al量を0.0007wt%から 0.023wt%まで変化させた鋼を、溶製し、連続鋳造後(鋳片サイズ:200mm 厚×1240mm幅)、鋳片を手入れすることなく熱間圧延した。熱間圧延は、スラブ加熱条件:1090〜1130℃−40〜60分、粗圧延7パス、粗圧延仕上げ温度:940 〜1000 ℃、粗圧延仕上げ厚:28mm、仕上げ(7スタンド)圧延機出側温度:800 〜880 ℃、仕上げ厚:3mm、コイル巻き取り温度:610 ℃、の条件で行った。
【0012】
ついで、熱延コイルを 880〜920 ℃で連続焼鈍したのち、酸洗を施してから、コイル全長にわたって表面観察を行い、ヘゲ状欠陥の単位面積当たりの平均個数を求めた。
得られた結果を図1に示す。なお、観察されたヘゲ状欠陥はいずれも幅が 0.4〜3.0 mm程度で長さは30〜500 mm程度であった。
図1から明らかなように、Al量が 0.005wt%を超えるとヘゲ状欠陥が発生し始めるのが判る。
これらのヘゲ状欠陥部を分析したところ Al2O3が検出された。従って、かようなヘゲ状欠陥は、鋳込み時に生成した脱酸生成物である Al2O3が凝集・粗大化し、熱延時に圧延方向に分断されてできたものと考えられる。
【0013】
実験2
C:0.006 〜0.011 wt%、Si:0.22〜0.41wt%、Mn:0.27〜0.48wt%、Cr:10.9〜11.3wt%、P:0.021 〜0.041 wt%、S:0.003 〜0.011 wt%、N:0.004 〜0.009 wt%、O:0.0037〜0.0076wt%、Ti:0.19〜0.26wt%、Nb+V:0.046 〜0.093 wt%でかつV/Nb=2.1 〜4.6 、Ca量:0.00090.0024wt%の成分範囲で、Al量を0.0007wt%から 0.023wt%まで変化させた鋼を、溶製し、連続鋳造後(鋳片サイズ:200mm 厚×1240mm幅)、鋳片を手入れすることなく熱間圧延した。熱間圧延は、スラブ加熱条件:1090〜1130℃−40〜60分、粗圧延7パス、粗圧延仕上げ温度:950 〜1000℃、粗圧延仕上げ厚:28mm、仕上げ(7スタンド)圧延機出側温度:800 〜880 ℃、仕上げ厚:3mm、コイル巻き取り温度:590 〜700 ℃、の条件で行った。
得られた熱延コイルを、 880〜920 ℃で連続焼鈍し、酸洗後、冷間圧延により板厚:0.8 mmに仕上げたのち、 880〜910 ℃で連続焼鈍後、酸洗して、冷延焼鈍板とした。
【0014】
かくして得られた冷延焼鈍板の全長にわたって表面観察を行い、ヘゲ状欠陥の単位面積当たりの平均個数を求めた。
また、得られた冷延焼鈍板に存在する酸化物系介在物の定量をブローム法によって行った。
得られた結果を、介在物中の Al2O3量で整理して図2に示す。
得られた結果を、介在物中の Al2O3量で整理して図2に示す。
同図に示したとおり、酸化物系介在物中の Al2O3量が50wt%を超えるとヘゲ状欠陥が急激に発生し始めることが判る。
これに対し、 Al2O3量が50wt%以下ではヘゲ状欠陥の発生は少なく、特に Al2O3量が20wt%以下の場合には、ヘゲ状欠陥の発生はほとんど認められなかった。なお、観察されたヘゲ状欠陥は、幅が 0.2〜2mm程度で長さは80〜1000mm程度であった。
【0015】
実験3
C:0.006 〜0.011 wt%、Si:0.22〜0.41wt%、Mn:0.27〜0.48wt%、Cr:10.9〜11.3wt%、P:0.021 〜0.041 wt%、S:0.003 〜0.011 wt%、N:0.004 〜0.009 wt%、O:0.0037〜0.0076wt%、Ti:0.19〜0.26wt%、Nb+V:0.046 〜0.093 wt%でかつV/Nb=2.1 〜4.6 、Al:0.0007〜0.0039wt%の成分範囲で、Ca量を0.0008〜0.0029wt%の範囲で変化させた鋼を 160トン溶製し、連続鋳造後(鋳片サイズ:200mm 厚×1240mm幅)、鋳片を手入れすることなく熱間圧延した。熱間圧延は、スラブ加熱条件:1090〜1130℃−40〜60分、粗圧延7パス、粗圧延仕上げ温度:950 〜1000℃、粗圧延仕上げ厚:28mm、仕上げ(7スタンド)圧延機出側温度:800 〜880 ℃、仕上げ厚:3mm、コイル巻き取り温度:590 〜700 ℃、の条件で行った。
得られた熱延コイルを、 880〜920 ℃で連続焼鈍し、酸洗後、冷間圧延により板厚:0.8 mmに仕上げたのち、 880〜910 ℃で連続焼鈍後、酸洗して、冷延焼鈍板とした。
【0016】
かくして得られた冷延焼鈍板の試験片表面をエメリー#600 研磨し、塩水噴霧試験(JIS-Z-2371準拠)を4時間行い、錆の個数をカウントした。また、連続鋳造後の浸漬ノズルを回収し、ノズル閉塞率を測定した。さらに、冷延焼鈍板に存在する酸化物系介在物の定量をブローム法により行った。
得られた結果を、酸化物系介在物中のTi酸化物量で整理して図3に示す。
同図から明らかなように、介在物中のTi酸化物量が20〜90wt%の範囲にあれば、連鋳時のノズル閉塞がなく、また耐食性も良好であることが判る。
【0017】
実験4
C:0.006 〜0.011 wt%、Si:0.22〜0.41wt%、Mn:0.27〜0.48wt%、Cr:10.9〜11.3wt%、P:0.021 〜0.041 wt%、S:0.003 〜0.011 wt%、N:0.004 〜0.009 wt%、O:0.0037〜0.0076wt%、Ti:0.19〜0.26wt%、Nb+V:0.046 〜0.093 wt%でかつV/Nb=2.1 〜4.6 、Al:0.0007〜0.0026wt%の成分範囲で、Ca量を0.0003〜0.0055wt%の範囲で変化させた鋼を160 トン溶製し、連続鋳造後(鋳片サイズ:200mm 厚×1240mm幅)、鋳片を手入れすることなく熱間圧延した。熱間圧延は、スラブ加熱条件:1090〜1130℃−40〜60分、粗圧延7パス、粗圧延仕上げ温度:950 〜1000℃、粗圧延仕上げ厚:28mm、仕上げ(7スタンド)圧延機出側温度:800 〜880 ℃、仕上げ厚:3mm、コイル巻き取り温度:590 〜700 ℃、の条件で行った。
得られた熱延コイルを、 880〜920 ℃で連続焼鈍し、酸洗後、冷間圧延により板厚:0.8 mmに仕上げたのち、 880〜910 ℃で連続焼鈍後、酸洗して、冷延焼鈍板とした。
【0018】
かくして得られた冷延焼鈍板の試験片表面をエメリー#600 研磨し、塩水噴霧試験(JIS-Z-2371準拠)を4時間行い、錆の個数をカウントした。また、連続鋳造後の浸漬ノズルを回収し、ノズル閉塞率を測定した。さらに、冷延焼鈍板に存在する酸化物系介在物の定量をブローム法により行った。
得られた結果を、酸化物系介在物中のCaO量で整理して図4に示す。
同図から明らかなように、介在物中のCaO量が5〜50wt%の範囲にあれば、連鋳時のノズル閉塞がなく、また耐食性も良好であることが判る。
【0019】
実験5
C:0.006 〜0.011wt %、Si:0.22〜0.41wt%、Mn:0.27〜0.48wt%、Cr:10.9〜11.3wt%、P:0.021 〜0.041 wt%、S:0.001 〜0.021 wt%、N:0.004 〜0.009 wt%、O:0.0037〜0.0076wt%、Ti:0.19〜0.26wt%、Nb+V:0.046 〜0.093wt %でかつV/Nb:2.1 〜4.6 の組成範囲で、しかも酸化物系介在物中の Al2O3量が5〜20wt%と55〜65wt%の2水準について、Ca量を0.0003〜0.0058wt%の範囲で変化させた鋼を溶製し、連続鋳造後(鋳片サイズ:200mm 厚×1240mm幅)、鋳片を手入れすることなく熱間圧延した。熱間圧延は、スラブ加熱条件:1090〜1130℃−40〜60分、粗圧延7パス、粗圧延仕上げ温度:950 〜1000℃、粗圧延仕上げ厚:28mm、仕上げ(7スタンド)圧延機出側温度:800 〜880 ℃、仕上げ厚:3mm、コイル巻き取り温度:590 〜700 ℃、の条件で行った。
得られた熱延コイルを、 880〜920 ℃で連続焼鈍し、酸洗後、冷間圧延により板厚:0.8 mmに仕上げたのち、 880〜910 ℃で連続焼鈍後、酸洗して、冷延焼鈍板とした。
【0020】
かくして得られた冷延焼鈍板の試験片表面をエメリー#600 研磨し、塩水噴霧試験(JIS-Z-2371準拠)を4時間行い、錆の個数をカウントした。ここで、発錆個数が dm2当たり5個以下の場合をOK、20個以上の場合をNGとした。
図5に、それぞれの Al2O3水準に関して行った耐食性評価結果を、S量とCa量で整理して示す。
同図に示したとおり、酸化物系介在物中の Al2O3量が50wt%以下の水準では、耐食性が良好なS、Ca範囲は広範囲であるのに対し、 Al2O3量が55〜65wt%の水準ではその範囲は非常に狭く、耐食性の面から低S化が必要不可欠であることが判る。
【0021】
実験6
C:0.006 〜0.011wt %、Si:0.22〜0.41wt%、Mn:0.27〜0.48wt%、Cr:10.9〜11.3wt%、P:0.021 〜0.041 wt%、S:0.001 〜0.021 wt%、N:0.004 〜0.009 wt%、O:0.0037〜0.0076wt%、Ti:0.19〜0.26wt%、Al:0.0008〜0.0028wt%、Ca:0.0010〜0.0028wt%の組成範囲で、しかも酸化物系介在物中のTi酸化物量:35〜80wt%、 Al2O3量:5〜10wt%、CaO量:10〜25wt%に制御しつつ、NbおよびV添加量を種々変化させた鋼を溶製し、連続鋳造後(鋳片サイズ:200mm 厚×1240mm幅)、鋳片を手入れすることなく熱間圧延した。熱間圧延は、スラブ加熱条件:1090〜1130℃−40〜60分、粗圧延7パス、粗圧延仕上げ温度:950 〜1000℃、粗圧延仕上げ厚:28mm、仕上げ(7スタンド)圧延機出側温度:800 〜880 ℃、仕上げ厚:3mm、コイル巻き取り温度:590 〜700 ℃、の条件で行った。
得られた熱延コイルを、 880〜920 ℃で連続焼鈍し、酸洗後、冷間圧延により板厚:0.8 mmに仕上げたのち、 880〜910 ℃で連続焼鈍後、酸洗して、2D仕上げの冷延焼鈍板とした。
【0022】
かくして得られた冷延焼鈍板からL方向に平行にJIS-5号引張試験片を採取し、表面をエメリー#600 研磨後、25%の引張りを付加した時の表面粗度(Rmax)を測定して、耐リジング性を評価した。なお、判断基準については、Rmaxが4μm 以下では、リジングが非常に軽微であると判断し、良好(○)とした。また、4μm 超え、7μm までは若干リジング発生が確認できるためやや不十分(△)とした。さらに、7μm を超えるとリジングが顕著に認識できるため不良(×)とした。
得られた結果をNb,V量で整理して図6に示す。
同図に示したとおり、Nb、V量の和が0.04〜0.1 wt%でかつV/Nbが2〜5の範囲では、リジングがほとんど発生しないことが判る。
【0023】
以上、述べたとおり、この発明で所期した目的を達成するためには、鋼中Al量を0.005 wt%以下に抑制し、かつVおよびNbを合計量:0.04〜0.1 wt%、V/Nb=2.0 〜5.0 を満足する範囲で添加すると共に、酸化物系介在物の組成を Al2O3:50wt%以下、Ti酸化物:20〜90wt%およびCaO:5〜50wt%の範囲に制限することが重要である。
しかしながら、酸化物系介在物の組成を上記の範囲に制御するのは容易ではなく、介在物組成が上記の範囲になるように鋼組成を成分調整したつもりでも、介在物組成がばらつきが大きく、必ずしも所望の組成範囲におさまるわけではないことが判明した。
【0024】
そこで、発明者らは、この点について、さらに研究を重ねた結果、酸化物系介在物の組成を上記の範囲に安定して制御するためには、脱酸剤成分であるAl、TiおよびCaの添加量もさることながら、これらの成分を添加する順序が極めて重要であることが判明した。
すなわち、まず、少量のAl添加またはSi添加によって予備的脱酸を行った後、比較的多量のTiを添加してTi脱酸を行うと、Al脱酸により生成した Al2O3またはSi脱酸により生成したSiO2をTi酸化物が包むような形態のAl 2 O 3 (SiO 2 ) Ti 酸化物系複合酸化物となり、このような形態の複合酸化物とした上で適量のCaを添加してやると、所望組成の酸化物系介在物 Al 2 O 3 (SiO 2 ) Ti 酸化物− Ca O系複合酸化物)が安定して得られることが究明されたのである。
ここに、上記のようにして得られた酸化物系介在物は、低融点であるので連続鋳造時にノズル詰まりを生じることがなく、また、その大きさは5〜20μm 程度にすぎないので製品板においてクラスター状介在物に起因した表面欠陥が発生することもない。しかも、この酸化物系介在物の周りにはCaSが生成することがないので発錆のおそれもない。
【0025】
この点、鋼の溶製に際し、脱酸剤成分の添加順序を特に考慮せずに、合金成分を同時に添加した場合、特に従来のようにAlを比較的多量に添加した場合には、Al2O3 が主体の酸化物が生成し易いため、この発明で所期したような組成の介在物とはならず、その結果、所望の効果が得られなかったものと考えられる。
また、この発明では、鋼の溶製段階で、VOD炉等を用いた強攪拌を利用するのに対し、従来は、かような溶製手段を適切に講じていなかったことも、所望の効果が得られなかった一因と考えられる。
【0026】
次に、この発明において、鋼の成分組成を前記の範囲を限定した理由について説明する。
C:0.02wt%以下
Cは、r値や伸びを低下させる元素である。この発明のようにTiの添加を行ってもこれらの特性の面からはC量は低いほど望ましいが、0.02wt%以下であればさほどの悪影響はないので、Cの上限は0.02wt%に定めた。
【0027】
Si:1.0 wt%以下
Siは、脱酸のために有効な元素であるが、過剰の添加は延性の低下を招く。そこで、この発明では 1.0wt%以下で含有させるものとした。好ましくは 0.7wt%以下である。
【0028】
Mn:1.0 wt%以下
Mnは、脱酸のために有効な元素であるが、オーステナイト安定化元素であり、過剰の添加は高温でγ相を生成し、最終冷延焼鈍板において延性の低下を招くので、 1.0wt%以下で含有させるものとした。
【0029】
Cr:5〜32wt%
Crは、耐食性を確保する上で必要不可欠な元素であるが、含有量が5wt%未満ではその添加効果に乏しく、一方32wt%を超えると延性や靱性の劣化が著しくなるので、5〜32wt%の範囲で含有させるものとした。
【0030】
P:0.05wt%以下
Pは、延性や靱性に有害な元素であり、含有量が0.05wt%を超えるとその弊害が顕著となるので、0.05wt%以下に制限した。
【0031】
S:0.015 wt%以下
前述したように、Sは耐食性を低下させる元素である。とりわけ、この発明のようにCa添加を行う場合には水溶性であるCaSを生じ易い。
添加するCa量にも依存するが、この発明の主眼である酸化物系介在物組成をコントロールしても、S量が 0.015wt%を超えると耐食性の劣化が生じ易くなるので、S量は 0.015wt%以下に制限した。
【0032】
N:0.02wt%以下
Nも、Cと同様にr値と伸びに有害な元素であり、低ければ低いほど好ましいが、0.02wt%を超えなければさほどの悪影響はないので、上限を0.02wt%に定めた。
【0033】
Al:0.005 wt%以下
実験1の結果からも明らかなように、冷延板表面品質の点から 0.005wt%以下にする必要がある。すなわち、含有量が 0.005wt%を超えると表面に Al2O3の凝集に起因した巨大なヘゲ状欠陥が生じるからである。
【0034】
O:0.01wt%以下
酸素は鋼中には全く固溶せず、酸化物として存在する。介在物は錆や破壊の起点となり易く、特に酸素量が0.01wt%を超えるとその悪影響が顕著となるので、O量は0.01wt%以下に制限した。
【0035】
Ti:0.08wt%以上かつ6×(C+N)以上、0.5 wt%以下
Tiは、成形加工性の向上に必要不可欠な元素であるだけでなく、脱酸にも有効な元素である。前者の成形加工性向上の点からは、6×(C+N)以上が必要であり、また、脱酸を有効に行ってなおかつC,Nに対しても有効に作用するためには0.08wt%が必要である。従って、Tiの下限は0.08wt%でかつ6×(C+N)に限定される。一方、Ti量が 0.5wt%を超えると延性が低下しはじめるので、Ti量の上限は 0.5wt%に定めた。
【0036】
Nb+V:0.04〜0.1 wt%でかつV/Nb=2.0 〜5.0
Nb, Vはいずれも、耐リジング性の改善に極めて有効な元素である。実験6で示したように、耐リジング性の改善効果は、NbおよびVの合計量が0.04〜0.1 wt%でかつこれらの比V/Nbが 2.0〜5.0 の範囲で顕著なために、この範囲に限定した。
耐リジング性の改善にNb, Vが有効に作用する理由は、現在までのところまだ明確に解明されたわけではないが、熱延時における(001)バンド状組織の破壊にNb,V炭窒化物の析出が有効に作用したものと考えられる。
【0037】
Ca:0.0005wt%以上、0.0050wt%以下
Caは、この発明に係る酸化物系介在物の融点を効果的に低下して、連続鋳造時におけるノズル閉塞を防止するのに極めて有効な元素であり、その効果は0.0005wt%以上で顕著であるので、下限は0.0005wt%とした。一方、多量に添加すると耐食性の劣化を招き、そのおそれが0.0050wt%を超えると顕著になるので、上限は0.0050wt%とした。
【0038】
以上、基本成分について説明したが、この発明では、必要応じて次の元素をそれぞれ適宜添加することができる。
Mo:0.05〜4.0 wt%
Moは、耐食性向上に非常に有効な元素であり、その効果は0.05wt%以上で顕著になるので、下限は0.05wt%とした。一方、Moは添加すればするほど耐食性は向上するが、4.0 wt%を超えるとほぼその効果は飽和に達するばかりでなく、靱性や延性の著しい低下を招くので、上限は 4.0wt%とした。
【0039】
B:0.0002〜0.0030wt%
Bは、深絞り後にさらに加工される場合に問題となる2次加工脆性を防止するのに有用な元素であるが、含有量が0.0002wt%に満たないとその添加効果に乏しく、一方0.0030wt%を超えると延性が低下しはじめるので、Bは0.0002〜0.0030wt%の範囲で含有させるものとした。
【0040】
次に、この発明において、酸化物系介在物組成を前記の範囲を限定した理由について説明する。
Ti酸化物量:20〜90wt%、 Al2O3:50wt%以下、CaO:5〜50wt%
酸化物系介在物の組成を上記の範囲にしたところが、この発明の主眼技術である。
先に実験2,3,4,5で示したように、 Al2O3量を50wt%以下、より好ましくは20wt%以下とすることによって、冷延板で生成するヘゲ状表面欠陥を防止でき、さらにTi酸化物量を20〜90wt%、CaO量を5〜50wt%とすることによって、連続鋳造時におけるノズル詰まりを防止でき、しかも耐食性の劣化もない。従って、この発明では、脱酸生成物に起因した酸化物系介在物の組成について、Ti酸化物:20〜90wt%、 Al2O3:50wt%以下、CaO:5〜50wt%の範囲に限定したのである。
さらに、酸化物系介在物の組成をこの範囲に制限すると、冷延焼鈍板の深絞り加工性の指標であるr値が向上し、同時に面内異方性Δrも小さくなることが見出された。この理由については、まだ明確に解明されたわけではないが、再結晶時の集合組織形成に介在物形態が影響を及ぼしたものと推察される。
【0041】
なお、この発明では、鋼中の全ての介在物を、上記の組成の複合酸化物とする必要はなく、少なくとも50%、好ましくは70%以上がかような Al2O3 (SiO 2 )−Ti酸化物−CaO系複合酸化物になっていれば良い。
ここに、その他に生成される酸化物としては MnO, FeOXおよびMgOなどが考えられる。
【0042】
次に、この発明の好適製造方法について説明する。
この発明では、前述したとおり、溶製段階における脱酸剤成分の添加順序が重要である。
すなわち、まず、少量のAlまたはSiを添加して予備的脱酸を行ったのち、比較的多量のTiを添加してTi脱酸を行う。このようにすると、AlまたはSi脱酸により生成した Al2O3やSiO2がTi酸化物で包まれたような形態のAl 2 O 3 (SiO 2 ) Ti 酸化物系複合酸化物となるが、かような形態の複合酸化物の大きさは5〜20μm 程度であるので、製品板において巨大クラスター状介在物に起因した表面欠陥を有利に防止することができる。
しかしながら、かかるTi酸化物は、溶鋼中では固相であるため、このままでは連続鋳造時に地鉄を取り込んだ形でタンディッシュのノズル内面に付着・堆積して、ノズルの閉塞を生じるおそれがある。
しかしながら、その後にCaを適量添加してやると、低融点の酸化物系介在物( Al 2 O 3 (SiO 2 ) Ti 酸化物− Ca O系複合酸化物)となり、それ故連続鋳造時におけるノズル詰まりが有利に回避されるのである。
しかも、かかる酸化物系介在物の周りにはCaSが生成することがないので発錆も併せて防止できることは前述したとおりである。
【0043】
上記のようにして、所望の鋼組成および介在物組成に調整した溶鋼は、常法に従って、鋳造、熱間圧延、冷間圧延および焼鈍処理を施して製品とされる。
ここに、好適な熱延条件、冷延条件および焼鈍条件は次のとおりである。
熱延条件
スラブ加熱温度:1050〜1260℃、粗圧延温度:900 〜1180℃、粗圧延トータル圧下率:80〜93%、仕上げ圧延温度:750 〜1000℃、仕上げ圧延出側厚さ:1.5 〜7mm、巻取り温度:400 〜850 ℃。
冷延条件
冷間圧延は、タンデムミル、クラスターミルまたはゼンジミィアーミルにより圧延できる。総圧下率は45〜95%程度が好ましい。冷間圧延−焼鈍−冷間圧延を繰り返しても良い。
焼鈍条件
仕上げ焼鈍温度:800 〜1100℃の範囲で、目的とする材質に応じて選択する。
目標温度保持時間:0〜1800sの範囲で、目的とする材質に応じて選択する。
また、表面仕上げについては、2D、2B、BAおよび研磨などがある。
【0044】
【実施例】
表1に示す成分組成の溶鋼を次のようにして溶製した。
すなわち、脱炭処理後の含クロム溶鋼に対し、VOD炉にて、溶鋼攪拌下に、まず所定量のAlを添加して予備脱酸を行い、ついでTiを添加してTi脱酸を行ったのち、成分調整を行い、溶鋼を大気中に移してからCa添加を行った。
ついで、連続鋳造法にて、厚み:200 mm、幅:1000mmサイズに鋳造した。得られたスラブは手入れすることなく、次の条件で熱間圧延を行った。
スラブ加熱温度:1100〜1170℃、加熱時間:30〜90分、粗7パス、粗仕上げ厚み:25mm、粗圧延終了温度:960 〜1060℃、仕上げ(7段ミル)、仕上げ厚:3mm、FDT:800 〜950 ℃、CT:460 〜680 ℃。
【0045】
得られた熱延コイルを、 900〜1000℃で連続焼鈍し、酸洗後、冷間圧延により板厚:0.6 mmに仕上げたのち、 870〜1000℃で連続焼鈍後、酸洗して冷延焼鈍板とした。
かくして得られた冷延焼鈍板について、酸化物系介在物の組成、連鋳後のノズル閉塞率、板表面のヘゲ欠陥個数ならびに冷延焼鈍板のr値、Δr値、2次加工脆性割れ発生温度およびリジング高さについて調べた結果を、表2に示す。
また、同表には、冷延焼鈍板表面をエメリー#600 研磨し、塩水噴霧試験(SST)と塩乾湿複合サイクル腐食試験を行った後の発錆個数と発錆面積率について調査した結果も併せて示す。
成形加工性については、r値、Δr値および2次加工脆性割れ発生温度で、また表面性状については、冷延板における表面欠陥発生個数で、さらに耐食性については、塩水噴霧試験および塩乾湿複合サイクル腐食試験における発錆個数および発錆面積率で、またさらに耐リジング性については表面粗さ(Rmax)で、それぞれ評価した。
【0046】
なお、それぞれの特性評価方法は次のとおりである。
・冷延焼鈍板中の酸化物系介在物の分析
冷延焼鈍板から試験片を採取し、臭素メタノール系の溶液中で電解することによって酸化物系介在物を残査として採取したのち、酸に溶解して化学分析を行った。
・ノズル閉塞率測定法
160 トン連続鋳造後の初期径:60mmのノズルを回収し、断面を切断して最小径を測定し、((初期径−鋳込み後の最小径)/初期径)× 100(%)を閉塞率とした。
【0047】
・r値、Δr値測定
r値は、フェライト系ステンレス鋼の深絞り加工性を示す指標である。冷延焼鈍板からL、 D、 C方向に平行にJIS 13号B引張試験片を採取し、JIS Z 2241に準拠した引張試験を行い、相当歪みが15%の場合でランクフォード値(r値)を測定した。この時にL、 D、 C方向の加重平均をr値とした。また、面内異方性を示すΔrは、(L方向r値+C方向r値−2×D方向r値)/2により算出した。
・2次加工脆性割れ発生温度
絞り比:2で深絞り加工したカップ状試験片を-100〜20℃の特定温度に保持したのち、落重試験(おもり重量:5kg、落差:0.8 m)によりカップ頭部に衝撃荷重を付加し、カップ側壁部における脆性割れの有無から、割れ発生温度を求めた。
・リジング高さ
冷延焼鈍板からL方向に平行にJIS-5号引張試験片を採取し、表面をエメリー#600研磨後、25wt%の引張りを付加した時の表面粗さ(Rmax)を測定し、リジング高さとした。
【0048】
・塩水噴霧試験(SST)
冷延焼鈍板表面をエメリー#600 研磨仕上げ後、脱脂し、JIS Z 2371に準拠した条件で塩水噴霧試験を4h行い、発錆個数をカウントした。
・塩乾湿複合サイクル腐食試験(CCT)
冷延焼鈍板表面をエメリー#600 研磨仕上げ後、脱脂し、35℃で 3.5%NaClを0.5 時間噴霧後、1hの乾燥(60℃)および1h湿潤(40℃、相対湿度:95%以上)を1サイクルとした複合腐食試験を10サイクル実施し、発錆面積率を測定した。
【0049】
【表1】

Figure 0003661419
【0050】
【表2】
Figure 0003661419
【0051】
表2に示したとおり、この発明に従うフェライト系ステンレス鋼は、その溶製後の連続鋳造時においてノズル閉塞が全く生じず、また製品板においても、表面欠陥が全くなく、しかもr値が 1.7以上でかつΔrが 0.2以下という優れた成形加工性および表面粗度(Rmax)が 2.6μm 以下という優れた耐リジング性を有しており、さらに耐食性にも優れていた。
【0052】
【発明の効果】
かくして、この発明によれば、優れた成形加工性を有するのはいうまでもなく、酸化物系介在物に起因した表面欠陥がなく、また耐食性、さらには耐リジング性にも優れたフェライト系ステンレス鋼を安定して得ることができる。
また、この発明のフェライト系ステンレス鋼は、その製造過程の連続鋳造時においてノズル閉塞が生じることもない。
【図面の簡単な説明】
【図1】鋼中のT.Al量と熱延焼鈍板の表面欠陥個数との関係を示したグラフである。
【図2】酸化物系介在物中の Al2O3濃度とヘゲ状表面欠陥個数との関係を示したグラフである。
【図3】酸化物系介在物中のTi酸化物濃度とノズル閉塞率および発錆個数との関係を示したグラフである。
【図4】酸化物系介在物中のCaO濃度とノズル閉塞率および発錆個数との関係を示したグラフである。
【図5】耐食性に及ぼすS量とCa量の影響を、2つの Al2O3水準で比較して示したグラフである。
【図6】リジングの発生程度に及ぼすNbおよびVの影響を示したグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention, a good steel sheet surface properties, corrosion resistance and relates moldability and ridging excellent in ferrites stainless steel, in particular by modifying the composition of the oxide inclusions contained in the steel various This is an advantageous improvement in characteristics.
[0002]
[Prior art]
Ferritic stainless steel sheets do not contain Ni as the main alloying element and are inexpensive, so they are widely used in fields such as automotive parts and electrical appliance / kitchen equipment related fields.
[0003]
For example, Japanese Patent Laid-Open No. 61-276955 discloses that the r value, which is an index of deep drawing processability, is improved by reducing C and N and adding Ti, and further adding B to the secondary work brittleness after deep drawing. A technique for improving the above is disclosed. In this technology, by actively adding Al, the generation of TiO 2 is suppressed and defects on the steel sheet surface are prevented.
However, with this technology, not only the surface quality obtained is not fully satisfied, but also the high melting point inclusions of Al 2 O 3 —TiO 2 adhere to the inner wall of the immersion nozzle during continuous casting during production. There was a problem of accumulation and nozzle clogging.
[0004]
In addition, in Japanese Patent Laid-Open Nos. H8-144021 and H8-260106, in Ti-added ferritic stainless steel containing Al, oxide inclusions are used as a countermeasure against nozzle clogging during continuous casting described above. A technique for preventing nozzle clogging by using a 2 O 3 —TiO 2 —CaO system and lowering the melting point is disclosed.
However, in this technique, CaS is easily generated as inclusions, and since this CaS is the starting point and rust is likely to be generated, there is a problem that the corrosion resistance is deteriorated, and low S is required.
In addition, since the Al deoxidation technology is basically used, there remains a fundamental problem that in the cold-rolled sheet, the bald surface defects generated by the aggregation and clustering of Al 2 O 3 cannot be avoided.
[0005]
Ferritic stainless steel, on the other hand, is prone to “wrinkles” called ridging on the surface along the rolling direction during processing, which not only detracts from the original aesthetics of the stainless steel sheet, but also has a polishing step after processing to remove ridging. There is a problem that it becomes necessary.
As measures for solving this problem, conventionally, the amount of rolling reduction during one pass of rough rolling during hot rolling has been increased or the finish rolling schedule has been optimized. There was a problem that not only was the surface easily wrinkled at the time, but it was difficult to stably carry out mass production.
[0006]
[Problems to be solved by the invention]
The present invention has been developed in view of the above circumstances, all the conventional problems described above were solved, surface properties good corrosion resistance, moldability and anti-ridging excellent in ferrites stainless steel The purpose is to propose.
That is, the problems in the present invention are as follows.
(1) No clogging of nozzles during continuous casting during production, and good manufacturability.
(2) Excellent surface properties with no shaved surface defects.
(3) Excellent corrosion resistance.
(4) Excellent moldability. Specifically, the r value is 1.7 or more and the Δr value is 0.2 or less.
(5) Occurrence of ridging in the molding part is slight.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the inventors have appropriately modified the composition of oxide inclusions contained in the steel while adjusting the components of the steel. However, in order to stably improve the oxide inclusions to the desired composition, the order of addition of the components acting as a deoxidizer among the steel components is extremely effective. I have learned that it is important.
The present invention is based on the above findings.
[0008]
That is, the gist configuration of the present invention is as follows.
1. C: 0.02 wt% or less, Si: 1.0 wt% or less, Mn: 1.0 wt% or less,
Cr: 5 to 32 wt%, P: 0.05 wt% or less, S: 0.015 wt% or less,
N: 0.02 wt% or less, Al: 0.005 wt% or less, O: 0.01 wt% or less,
Ti: 0.08 wt% or more and 6 × (C + N) or more, 0.5 wt% or less,
(V + Nb): 0.04 to 0.1 wt% and V / Nb = 2.0 to 5.0
Ca: 0.0005 to 0.0050wt%
The balance is Fe and inevitable impurities , and the composition of oxide inclusions due to deoxidation products in the steel is Ti oxide: 20 to 90 wt%, Al 2 O 3 : 50 wt % or less and CaO: surface properties which satisfies the range of 5-50 wt% the corrosion resistance was good, the moldability and ridging excellent in ferrites stainless steel.
[0009]
2. In the above 1, the steel composition is further
Mo: 0.05-4.0 wt%
Good surface properties characterized by comprising a composition containing a corrosion resistance, moldability and anti-ridging excellent in ferrites stainless steel.
[0010]
3. In the above 1 or 2, the steel composition is further B: 0.0002 to 0.0030 wt%
Good surface properties characterized by comprising a composition containing a corrosion resistance, moldability and anti-ridging excellent in ferrites stainless steel.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the experimental results that are the basis of the present invention will be described.
Experiment 1
C: 0.006 to 0.011 wt%, Si: 0.22 to 0.41 wt%, Mn: 0.27 to 0.48 wt%, Cr: 10.9 to 11.3 wt%, P: 0.021 to 0.041 wt%, S: 0.003 to 0.011 wt%, N: In the component range of 0.004 to 0.009 wt%, O: 0.0037 to 0.0076 wt%, Ti: 0.19 to 0.26 wt%, Nb + V: 0.046 to 0.093 wt% and V / Nb = 2.1 to 4.6, Ca: 0.0006 to 0.0022 wt% The steel with the Al content changed from 0.0007 wt% to 0.023 wt% was melted and, after continuous casting (slab size: 200 mm thickness x 1240 mm width), hot rolled without maintaining the cast slab. Hot rolling is slab heating conditions: 1090-1130 ° C-40-60 minutes, rough rolling 7 passes, rough rolling finishing temperature: 940-1000 ° C, rough rolling finish thickness: 28mm, finishing (7 stands) rolling mill delivery side The temperature was 800 to 880 ° C., the finish thickness was 3 mm, and the coil winding temperature was 610 ° C.
[0012]
Next, the hot-rolled coil was continuously annealed at 880 to 920 ° C. and then pickled, and then the surface was observed over the entire length of the coil to obtain the average number of bald defects per unit area.
The obtained results are shown in FIG. In addition, all the bald defects observed were about 0.4 to 3.0 mm in width and about 30 to 500 mm in length.
As can be seen from FIG. 1, when the Al content exceeds 0.005 wt%, the bald defects begin to occur.
Analysis of these shaved defects revealed Al 2 O 3 . Therefore, it is considered that such stub-like defects were formed by Al 2 O 3, which is a deoxidation product generated during casting, agglomerates and coarsens and is divided in the rolling direction during hot rolling.
[0013]
Experiment 2
C: 0.006 to 0.011 wt%, Si: 0.22 to 0.41 wt%, Mn: 0.27 to 0.48 wt%, Cr: 10.9 to 11.3 wt%, P: 0.021 to 0.041 wt%, S: 0.003 to 0.011 wt%, N: In the component range of 0.004 to 0.009 wt%, O: 0.0037 to 0.0076 wt%, Ti: 0.19 to 0.26 wt%, Nb + V: 0.046 to 0.093 wt% and V / Nb = 2.1 to 4.6, Ca content: 0.00090.0024 wt% The steel with the Al content changed from 0.0007 wt% to 0.023 wt% was melted and, after continuous casting (slab size: 200 mm thickness x 1240 mm width), hot rolled without maintaining the cast slab. Hot rolling is slab heating conditions: 1090 ~ 1130 ℃ -40 ~ 60min, rough rolling 7 passes, rough rolling finishing temperature: 950 ~ 1000 ℃, rough rolling finish thickness: 28mm, finishing (7 stands) rolling mill exit The temperature was 800 to 880 ° C., the finish thickness was 3 mm, and the coil winding temperature was 590 to 700 ° C.
The obtained hot-rolled coil was continuously annealed at 880 to 920 ° C, pickled and finished to a thickness of 0.8 mm by cold rolling, then continuously annealed at 880 to 910 ° C, pickled and cooled. A fire annealed plate was used.
[0014]
The surface of the cold-rolled annealed plate thus obtained was observed over the entire length, and the average number of bald defects per unit area was determined.
In addition, the oxide inclusions present in the obtained cold-rolled annealed sheet were quantified by the brom method.
The obtained results are shown in FIG. 2 organized by the amount of Al 2 O 3 in the inclusions.
The obtained results are shown in FIG. 2 organized by the amount of Al 2 O 3 in the inclusions.
As shown in the figure, it can be seen that when the amount of Al 2 O 3 in the oxide inclusion exceeds 50 wt%, the bald defects begin to occur rapidly.
On the other hand, when the Al 2 O 3 content is 50 wt% or less, the occurrence of scab-like defects is small, and particularly when the Al 2 O 3 content is 20 wt% or less, almost no scab-like defects are observed. . The observed bald defects had a width of about 0.2 to 2 mm and a length of about 80 to 1000 mm.
[0015]
Experiment 3
C: 0.006 to 0.011 wt%, Si: 0.22 to 0.41 wt%, Mn: 0.27 to 0.48 wt%, Cr: 10.9 to 11.3 wt%, P: 0.021 to 0.041 wt%, S: 0.003 to 0.011 wt%, N: In the component range of 0.004 to 0.009 wt%, O: 0.0037 to 0.0076 wt%, Ti: 0.19 to 0.26 wt%, Nb + V: 0.046 to 0.093 wt% and V / Nb = 2.1 to 4.6, Al: 0.0007 to 0.0039 wt% Then, 160 tons of steel in which the Ca content was changed in the range of 0.0008 to 0.0029 wt% was melted, and after continuous casting (slab size: 200 mm thickness x 1240 mm width), hot rolling was performed without maintaining the cast slab. Hot rolling is slab heating conditions: 1090 ~ 1130 ℃ -40 ~ 60min, rough rolling 7 passes, rough rolling finishing temperature: 950 ~ 1000 ℃, rough rolling finish thickness: 28mm, finishing (7 stands) rolling mill exit The temperature was 800 to 880 ° C., the finish thickness was 3 mm, and the coil winding temperature was 590 to 700 ° C.
The obtained hot-rolled coil was continuously annealed at 880 to 920 ° C, pickled and finished to a thickness of 0.8 mm by cold rolling, then continuously annealed at 880 to 910 ° C, pickled and cooled. A fire annealed plate was used.
[0016]
The surface of the test piece of the cold-rolled annealed plate thus obtained was emery # 600 polished, a salt spray test (based on JIS-Z-2371) was performed for 4 hours, and the number of rusts was counted. Moreover, the immersion nozzle after continuous casting was collect | recovered and the nozzle obstruction | occlusion rate was measured. Furthermore, the oxide inclusions present in the cold-rolled annealed plate were quantified by the brom method.
The obtained results are shown in FIG. 3 organized by the amount of Ti oxide in the oxide inclusions.
As can be seen from the figure, when the amount of Ti oxide in the inclusions is in the range of 20 to 90 wt%, the nozzle is not blocked during continuous casting, and the corrosion resistance is also good.
[0017]
Experiment 4
C: 0.006 to 0.011 wt%, Si: 0.22 to 0.41 wt%, Mn: 0.27 to 0.48 wt%, Cr: 10.9 to 11.3 wt%, P: 0.021 to 0.041 wt%, S: 0.003 to 0.011 wt%, N: 0.004 to 0.009 wt%, O: 0.0037 to 0.0076 wt%, Ti: 0.19 to 0.26 wt%, Nb + V: 0.046 to 0.093 wt% and V / Nb = 2.1 to 4.6, Al: 0.0007 to 0.0026 wt% Then, 160 tons of steel with the Ca content changed in the range of 0.0003 to 0.0055 wt% was melted and, after continuous casting (slab size: 200 mm thickness x 1240 mm width), hot rolled without maintaining the slab. Hot rolling is slab heating conditions: 1090 ~ 1130 ℃ -40 ~ 60min, rough rolling 7 passes, rough rolling finishing temperature: 950 ~ 1000 ℃, rough rolling finish thickness: 28mm, finishing (7 stands) rolling mill exit The temperature was 800 to 880 ° C., the finish thickness was 3 mm, and the coil winding temperature was 590 to 700 ° C.
The obtained hot-rolled coil was continuously annealed at 880 to 920 ° C, pickled and finished to a thickness of 0.8 mm by cold rolling, then continuously annealed at 880 to 910 ° C, pickled and cooled. A fire annealed plate was used.
[0018]
The surface of the test piece of the cold-rolled annealed plate thus obtained was emery # 600 polished, a salt spray test (based on JIS-Z-2371) was performed for 4 hours, and the number of rusts was counted. Moreover, the immersion nozzle after continuous casting was collect | recovered and the nozzle obstruction | occlusion rate was measured. Furthermore, the oxide inclusions present in the cold-rolled annealed plate were quantified by the brom method.
The obtained results are shown in FIG. 4 organized by the amount of CaO in the oxide inclusions.
As can be seen from the figure, when the CaO content in the inclusion is in the range of 5 to 50 wt%, the nozzle is not blocked during continuous casting and the corrosion resistance is good.
[0019]
Experiment 5
C: 0.006 to 0.011 wt%, Si: 0.22 to 0.41 wt%, Mn: 0.27 to 0.48 wt%, Cr: 10.9 to 11.3 wt%, P: 0.021 to 0.041 wt%, S: 0.001 to 0.021 wt%, N: 0.004 to 0.009 wt%, O: 0.0037 to 0.0076 wt%, Ti: 0.19 to 0.26 wt%, Nb + V: 0.046 to 0.093 wt% and V / Nb: 2.1 to 4.6, and in oxide inclusions For two levels of Al 2 O 3 of 5 to 20 wt% and 55 to 65 wt%, steel with varying Ca content in the range of 0.0003 to 0.0058 wt% was melted and after continuous casting (slab size: 200 mm Thickness x 1240mm width), hot rolled without care for the slab. Hot rolling is slab heating conditions: 1090 ~ 1130 ℃ -40 ~ 60min, rough rolling 7 passes, rough rolling finishing temperature: 950 ~ 1000 ℃, rough rolling finish thickness: 28mm, finishing (7 stands) rolling mill exit The temperature was 800 to 880 ° C., the finish thickness was 3 mm, and the coil winding temperature was 590 to 700 ° C.
The obtained hot-rolled coil was continuously annealed at 880 to 920 ° C, pickled and finished to a thickness of 0.8 mm by cold rolling, then continuously annealed at 880 to 910 ° C, pickled and cooled. A fire annealed plate was used.
[0020]
The surface of the test piece of the cold-rolled annealed plate thus obtained was emery # 600 polished, a salt spray test (based on JIS-Z-2371) was performed for 4 hours, and the number of rusts was counted. Here, the case where the number of rusting is 5 or less per dm 2 is OK, and the case where it is 20 or more is NG.
FIG. 5 shows the corrosion resistance evaluation results performed for each of the Al 2 O 3 levels, organized by S content and Ca content.
As shown in the figure, when the amount of Al 2 O 3 in the oxide inclusion is 50 wt% or less, the range of S and Ca with good corrosion resistance is wide, whereas the amount of Al 2 O 3 is 55 It can be seen that at a level of ˜65 wt%, the range is very narrow, and low S is indispensable in terms of corrosion resistance.
[0021]
Experiment 6
C: 0.006 to 0.011 wt%, Si: 0.22 to 0.41 wt%, Mn: 0.27 to 0.48 wt%, Cr: 10.9 to 11.3 wt%, P: 0.021 to 0.041 wt%, S: 0.001 to 0.021 wt%, N: 0.004 to 0.009 wt%, O: 0.0037 to 0.0076 wt%, Ti: 0.19 to 0.26 wt%, Al: 0.0008 to 0.0028 wt%, Ca: 0.0010 to 0.0028 wt%, and in oxide inclusions Ti oxide content: 35~80wt%, Al 2 O 3 content: 5 to 10 wt%, CaO content: while controlling the 10 to 25 wt%, and smelted steel was varied Nb and V amount, continuous casting After (slab size: 200 mm thickness x 1240 mm width), the slab was hot rolled without care. Hot rolling is slab heating conditions: 1090 ~ 1130 ℃ -40 ~ 60min, rough rolling 7 passes, rough rolling finishing temperature: 950 ~ 1000 ℃, rough rolling finish thickness: 28mm, finishing (7 stands) rolling mill exit The temperature was 800 to 880 ° C., the finish thickness was 3 mm, and the coil winding temperature was 590 to 700 ° C.
The obtained hot-rolled coil was continuously annealed at 880 to 920 ° C., pickled, finished to a thickness of 0.8 mm by cold rolling, then continuously annealed at 880 to 910 ° C., pickled, and 2D. A finished cold-rolled annealed sheet was used.
[0022]
JIS-5 tensile test specimens were collected in parallel to the L direction from the cold-rolled annealed plate thus obtained, and the surface roughness (Rmax) when 25% tension was applied after polishing the surface with Emery # 600 was measured. Thus, ridging resistance was evaluated. Regarding the criteria for judgment, when Rmax was 4 μm or less, it was judged that ridging was very slight, and it was judged as good (◯). Moreover, since it was confirmed that ridging occurred slightly over 4 μm and up to 7 μm, it was set as slightly insufficient (Δ). Further, if it exceeds 7 μm, ridging can be recognized remarkably, so that it was judged as defective (×).
The obtained results are organized by Nb and V amounts and shown in FIG.
As shown in the figure, it can be seen that ridging hardly occurs when the sum of the amounts of Nb and V is 0.04 to 0.1 wt% and V / Nb is 2 to 5.
[0023]
As described above, in order to achieve the intended purpose of the present invention, the amount of Al in the steel is suppressed to 0.005 wt% or less, and the total amount of V and Nb is 0.04 to 0.1 wt%, V / Nb. = 2.0 to 5.0, and the composition of oxide inclusions is limited to the range of Al 2 O 3 : 50 wt% or less, Ti oxide: 20 to 90 wt% and CaO: 5 to 50 wt% This is very important.
However, it is not easy to control the composition of the oxide inclusions in the above range, and even if the steel composition is adjusted so that the inclusion composition is in the above range, the inclusion composition varies greatly. It has been found that it does not necessarily fall within the desired composition range.
[0024]
Therefore, as a result of further research on this point, the inventors have studied the deoxidizer components Al, Ti, and Ca in order to stably control the composition of oxide inclusions within the above range. It was found that the order in which these components are added is extremely important.
That is, first, after preliminary deoxidation by adding a small amount of Al or Si, if Ti is deoxidized by adding a relatively large amount of Ti, Al 2 O 3 or Si generated by Al deoxidation is removed. form of Al 2 O 3 as the SiO 2 produced by acid Ti oxides wrap (SiO 2) - becomes a Ti oxide composite oxide, an appropriate amount of Ca in terms of the composite oxide such forms When'll added, oxide inclusions of the desired composition (Al 2 O 3 (SiO 2 ) - Ti oxide - Ca O composite oxide) is had been investigated can be obtained stably.
Here, since the oxide inclusions obtained as described above have a low melting point, nozzle clogging does not occur during continuous casting, and the size is only about 5 to 20 μm. In this case, surface defects due to cluster inclusions are not generated. Moreover, since no CaS is generated around the oxide inclusions, there is no risk of rusting.
[0025]
In this regard, when steel is melted, the addition order of the deoxidizer components is not particularly considered, and when the alloy components are added simultaneously, particularly when a relatively large amount of Al is added as in the conventional case, Al 2 Since oxides mainly composed of O 3 are likely to be formed, it is not an inclusion having a composition as expected in the present invention, and as a result, it is considered that a desired effect was not obtained.
In addition, in the present invention, in the steel melting stage, strong stirring using a VOD furnace or the like is used, but conventionally, such a melting means has not been properly taken. It is thought that this was one of the reasons why
[0026]
Next, the reason why the above-mentioned range is limited for the component composition of steel in this invention will be described.
C: 0.02 wt% or less C is an element that decreases the r value and elongation. Even if Ti is added as in the present invention, the amount of C is preferably as low as possible from the standpoint of these characteristics, but if it is 0.02 wt% or less, there is no significant adverse effect, so the upper limit of C is set to 0.02 wt%. It was.
[0027]
Si: 1.0 wt% or less
Si is an effective element for deoxidation, but excessive addition causes a decrease in ductility. Therefore, in the present invention, the content is 1.0 wt% or less. Preferably it is 0.7 wt% or less.
[0028]
Mn: 1.0 wt% or less
Mn is an element effective for deoxidation, but it is an austenite stabilizing element. Excessive addition generates a γ phase at a high temperature and causes a reduction in ductility in the final cold-rolled annealed plate. It was made to contain below.
[0029]
Cr: 5 to 32 wt%
Cr is an essential element for securing corrosion resistance, poor effect of adding is less than 5 wt% content, whereas since 32 exceeds wt% the deterioration of ductility and toughness becomes significant, 5-32 It was supposed to be contained in the range of wt%.
[0030]
P: 0.05 wt% or less P is an element harmful to ductility and toughness. When the content exceeds 0.05 wt%, the adverse effect becomes significant, so it was limited to 0.05 wt% or less.
[0031]
S: 0.015 wt% or less As described above, S is an element that reduces the corrosion resistance. In particular, when Ca is added as in the present invention, water-soluble CaS is likely to occur.
Although depending on the amount of Ca to be added, even if the oxide inclusion composition which is the main object of the present invention is controlled, if the amount of S exceeds 0.015 wt%, corrosion resistance tends to deteriorate, so the amount of S is 0.015. Limited to wt% or less.
[0032]
N: 0.02 wt% or less N is also an element harmful to the r value and elongation, like C, and is preferably as low as possible, but there is no significant adverse effect unless it exceeds 0.02 wt%, so the upper limit is 0.02 wt% Determined.
[0033]
Al: 0.005 wt% or less As is clear from the results of Experiment 1, it is necessary to make the content 0.005 wt% or less from the viewpoint of the surface quality of the cold rolled sheet. That is, if the content exceeds 0.005 wt%, a huge bald defect due to the aggregation of Al 2 O 3 occurs on the surface.
[0034]
O: 0.01 wt% or less Oxygen does not dissolve at all in the steel but exists as an oxide. Inclusions are likely to be the starting point of rust and destruction, and particularly when the oxygen content exceeds 0.01 wt%, the adverse effect becomes significant, so the O content is limited to 0.01 wt% or less.
[0035]
Ti: 0.08 wt% or more, 6 × (C + N) or more, 0.5 wt% or less
Ti is not only an essential element for improving moldability but also an element effective for deoxidation. In order to improve the former processability, 6 × (C + N) or more is necessary, and in order to effectively perform deoxidation and also effectively act on C and N, 0.08 wt% is required. is necessary. Therefore, the lower limit of Ti is 0.08 wt% and is limited to 6 × (C + N). On the other hand, when the Ti content exceeds 0.5 wt%, the ductility starts to decrease, so the upper limit of Ti content was set to 0.5 wt%.
[0036]
Nb + V: 0.04 to 0.1 wt% and V / Nb = 2.0 to 5.0
Nb and V are both extremely effective elements for improving ridging resistance. As shown in Experiment 6, the effect of improving the ridging resistance is remarkable because the total amount of Nb and V is 0.04 to 0.1 wt% and the ratio V / Nb is 2.0 to 5.0. Limited to.
The reason why Nb and V are effective in improving ridging resistance has not been clearly clarified so far. However, the destruction of (001) band-like structure during hot rolling has caused Nb and V carbonitrides to break down. It is thought that precipitation worked effectively.
[0037]
Ca: 0.0005 wt% or more, 0.0050 wt% or less
Ca is an extremely effective element for effectively lowering the melting point of the oxide inclusions according to the present invention and preventing nozzle clogging during continuous casting, and the effect is significant at 0.0005 wt% or more. Therefore, the lower limit was set to 0.0005 wt%. On the other hand, if it is added in a large amount, corrosion resistance is deteriorated, and when the risk exceeds 0.0050 wt%, the upper limit is set to 0.0050 wt%.
[0038]
The basic components have been described above. In the present invention, the following elements can be appropriately added as necessary.
Mo: 0.05-4.0 wt%
Mo is a very effective element for improving the corrosion resistance, and the effect becomes remarkable at 0.05 wt% or more, so the lower limit was set to 0.05 wt%. On the other hand, the corrosion resistance improves as Mo is added, but when it exceeds 4.0 wt%, not only does the effect reach saturation, but the toughness and ductility are significantly reduced, so the upper limit was set to 4.0 wt%.
[0039]
B: 0.0002-0.0030wt%
B is an element useful for preventing secondary processing embrittlement that becomes a problem when further processed after deep drawing, but if the content is less than 0.0002 wt%, the effect of addition is poor, whereas 0.0030 wt% Since the ductility starts to decrease when the content exceeds 50%, B is included in the range of 0.0002 to 0.0030 wt%.
[0040]
Next, the reason why the range of the oxide inclusion composition is limited in the present invention will be described.
Ti oxide content: 20~90wt%, Al 2 O 3 : 50wt% or less, CaO: 5-50 wt%
The main technique of the present invention is to make the composition of the oxide inclusions in the above range.
As previously shown in Experiments 2, 3, 4, and 5, the amount of Al 2 O 3 is reduced to 50 wt% or less, more preferably 20 wt% or less, thereby preventing the hair-like surface defects generated in the cold-rolled sheet. Further, by setting the amount of Ti oxide to 20 to 90 wt% and the amount of CaO to 5 to 50 wt%, nozzle clogging during continuous casting can be prevented, and corrosion resistance does not deteriorate. Accordingly, in this invention, the composition of oxide inclusions caused by the deoxidation product, Ti oxides: 20~90wt%, Al 2 O 3 : 50wt% or less, CaO: limited to the range of 5-50 wt% It was.
Furthermore, when the composition of oxide inclusions is limited to this range, it has been found that the r value, which is an index of the deep drawing workability of the cold-rolled annealed sheet, is improved and the in-plane anisotropy Δr is also reduced. It was. Although the reason for this has not been clearly elucidated yet, it is presumed that the inclusion form has an influence on the texture formation during recrystallization.
[0041]
In the present invention, it is not necessary for all inclusions in the steel to be a composite oxide having the above composition, and Al 2 O 3 (SiO 2 ) − which is at least 50%, preferably 70% or more. What is necessary is just to become Ti oxide-CaO type complex oxide.
Here, as the oxide to be produced in other, Mn O, etc. FeO X and MgO are contemplated.
[0042]
Next, the preferred manufacturing method of the present invention will be described.
In the present invention, as described above, the order of adding the deoxidizer components in the melting stage is important.
That is, first, a small amount of Al or Si is added to perform preliminary deoxidation, and then a relatively large amount of Ti is added to perform Ti deoxidation. In this way, Al 2 O 3 or Al forms such as SiO 2 is wrapped with Ti oxide 2 O 3 produced by Al or Si deoxidation (SiO 2) - the Ti oxide composite oxide but the size of the composite oxide of such form because of the order of 5 to 20 [mu] m, it is possible to advantageously prevent surface defects caused by the massive clustered inclusions in the product sheet.
However, since such Ti oxide is a solid phase in the molten steel, if it remains as it is, it may adhere to and deposit on the inner surface of the nozzle of the tundish in a form in which the steel is taken in during continuous casting, and the nozzle may be clogged.
However, when subsequently'll adding an appropriate amount of Ca, low-melting oxide inclusions of (Al 2 O 3 (SiO 2 ) - Ti oxide - Ca O composite oxide), and nozzle clogging at the time and therefore the continuous casting Is advantageously avoided.
Moreover, since CaS is not generated around the oxide inclusions, rusting can be prevented as described above.
[0043]
The molten steel adjusted to the desired steel composition and inclusion composition as described above is subjected to casting, hot rolling, cold rolling and annealing treatments to obtain a product according to a conventional method.
Here, suitable hot rolling conditions, cold rolling conditions and annealing conditions are as follows.
Hot rolling conditions <br/> Slab heating temperature: 1050 to 1260C, rough rolling temperature: 900 to 1180C, rough rolling total rolling reduction: 80 to 93%, finish rolling temperature: 750 to 1000C, finish rolling exit thickness Length: 1.5-7mm, winding temperature: 400-850 ° C.
Cold rolling condition Cold rolling can be performed by a tandem mill, a cluster mill or a Sendzimir mill. The total rolling reduction is preferably about 45 to 95%. Cold rolling-annealing-cold rolling may be repeated.
Annealing conditions Finish annealing temperature: 800 to 1100 ° C, selected according to the desired material.
Target temperature holding time: Select from the range of 0 to 1800 s according to the target material.
Further, surface finish includes 2D, 2B, BA, and polishing.
[0044]
【Example】
Molten steel having the composition shown in Table 1 was produced as follows.
That is, the chromium-containing molten steel after the decarburization treatment was first preliminarily deoxidized by adding a predetermined amount of Al while stirring the molten steel in a VOD furnace, and then Ti was deoxidized by adding Ti. After that, the components were adjusted and Ca was added after the molten steel was transferred to the atmosphere.
Subsequently, it was cast to a thickness of 200 mm and a width of 1000 mm by a continuous casting method. The obtained slab was hot rolled under the following conditions without care.
Slab heating temperature: 1100-1170 ° C, heating time: 30-90 minutes, rough 7 passes, rough finish thickness: 25mm, rough rolling finish temperature: 960-1060 ° C, finish (7-step mill), finish thickness: 3mm, FDT : 800-950 ° C, CT: 460-680 ° C.
[0045]
The obtained hot-rolled coil is continuously annealed at 900 to 1000 ° C, pickled, finished to a thickness of 0.6 mm by cold rolling, then continuously annealed at 870 to 1000 ° C, pickled and cold rolled. An annealing plate was used.
About the cold-rolled annealed sheet thus obtained, the composition of oxide inclusions, the nozzle clogging rate after continuous casting, the number of stubble defects on the sheet surface, the r-value of the cold-rolled annealed sheet, the Δr value, secondary work brittle cracking Table 2 shows the results of examining the generation temperature and the ridging height.
The table also shows the results of investigating the number of rusting and the area ratio of rusting after emery # 600 polishing the surface of cold-rolled annealed plate and conducting salt spray test (SST) and salt dry and wet combined cycle corrosion test Also shown.
For forming processability, r value, Δr value and secondary processing brittle cracking temperature, for surface property, number of surface defects generated in cold-rolled sheet, and for corrosion resistance, salt spray test and salt-wet combined cycle The number of rusting and the rusting area ratio in the corrosion test were evaluated, and the ridging resistance was further evaluated by the surface roughness (Rmax).
[0046]
In addition, each characteristic evaluation method is as follows.
・ Analysis of oxide inclusions in cold-rolled annealed plates Samples were taken from cold-rolled annealed plates and electrolyzed in a bromine-methanol-based solution. Chemical analysis was conducted after dissolving in
・ Measurement method of nozzle clogging rate
Initial diameter after 160-ton continuous casting: Collect 60mm nozzle, cut the cross section and measure the minimum diameter, ((initial diameter-minimum diameter after casting) / initial diameter) x 100 (%) It was.
[0047]
· R value, [Delta] r value measurement r value is an index showing the deep drawing of ferrites stainless steel. A JIS No. 13 B tensile test specimen was taken from the cold-rolled annealed plate parallel to the L, D, and C directions, and subjected to a tensile test in accordance with JIS Z 2241. When the equivalent strain was 15%, the Rankford value (r value) ) Was measured. At this time, the weighted average in the L, D, and C directions was defined as the r value. Further, Δr indicating in-plane anisotropy was calculated by (L direction r value + C direction r value−2 × D direction r value) / 2.
-Secondary processing brittle cracking temperature Drawing ratio: After holding a cup-shaped test piece deep-drawn at a specific temperature of -100 to 20 ° C with a draw ratio of 2, according to drop weight test (weight weight: 5 kg, drop: 0.8 m) An impact load was applied to the cup head, and the crack initiation temperature was determined from the presence or absence of brittle cracks in the cup side wall.
・ Ridging height JIS-5 No. 5 tensile test specimen was taken in parallel to the L direction from the cold-rolled annealed plate, and the surface roughness (Rmax) was measured when 25% by weight was applied after emery # 600 polishing. And ridging height.
[0048]
・ Salt spray test (SST)
The surface of the cold rolled annealed plate was emery # 600 polished, degreased, and subjected to a salt spray test for 4 hours under the conditions based on JIS Z 2371, and the number of rusting was counted.
・ Salt dry and wet combined cycle corrosion test (CCT)
After emery # 600 polishing finish on cold-rolled annealed sheet surface, degrease, spray 3.5% NaCl at 35 ° C for 0.5 hour, dry for 1 h (60 ° C) and wet for 1 h (40 ° C, relative humidity: 95% or more) A combined corrosion test with one cycle was carried out for 10 cycles, and the rusting area ratio was measured.
[0049]
[Table 1]
Figure 0003661419
[0050]
[Table 2]
Figure 0003661419
[0051]
As shown in Table 2, sub tofu ferrite stainless steel in this invention is not at all occur nozzle clogging during continuous casting after the melting, and also in the product sheet, is without any surface defects, moreover r value Has an excellent molding processability with an A of 1.7 or more and an Δr of 0.2 or less, an excellent ridging resistance with a surface roughness (Rmax) of 2.6 μm or less, and excellent corrosion resistance.
[0052]
【The invention's effect】
Thus, according to the present invention, excellent molding processability of mention having, without due to the surface defects in the oxide-based inclusions, also corrosion resistance, better ferrites system also in ridging resistance Stainless steel can be obtained stably.
Further, it ferrites stainless steel of the present invention, nor nozzle blockage during continuous casting of the manufacturing process.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the amount of T.Al in steel and the number of surface defects in a hot-rolled annealed plate.
FIG. 2 is a graph showing the relationship between the Al 2 O 3 concentration in oxide inclusions and the number of bald surface defects.
FIG. 3 is a graph showing the relationship between the Ti oxide concentration in oxide inclusions, the nozzle clogging rate, and the number of rusting.
FIG. 4 is a graph showing the relationship between CaO concentration in oxide inclusions, nozzle clogging rate, and number of rusting.
FIG. 5 is a graph showing the effect of the amount of S and Ca on corrosion resistance in comparison with two Al 2 O 3 levels.
FIG. 6 is a graph showing the influence of Nb and V on the extent of ridging.

Claims (3)

C:0.02wt%以下、 Si:1.0 wt%以下、 Mn:1.0 wt%以下、
Cr:5〜32wt%、 P:0.05wt%以下、 S:0.015 wt%以下、
N:0.02wt%以下、 Al:0.005 wt%以下、 O:0.01wt%以下、
Ti:0.08wt%以上かつ6×(C+N)以上、0.5 wt%以下、
(V+Nb):0.04〜0.1 wt%でかつV/Nb=2.0 〜5.0 、
Ca:0.0005〜0.0050wt%
を含有し、残部はFe および不可避的不純物の組成になり、鋼中の脱酸生成物に起因した酸化物系介在物の組成が、Ti酸化物:20〜90wt%、 Al2O3:50wt%以下およびCaO:5〜50wt%の範囲を満足することを特徴とする表面性状が良好で耐食性、成形加工性および耐リジング性に優れたフェライト系ステンレス鋼
C: 0.02 wt% or less, Si: 1.0 wt% or less, Mn: 1.0 wt% or less,
Cr: 5 to 32 wt%, P: 0.05 wt% or less, S: 0.015 wt% or less,
N: 0.02 wt% or less, Al: 0.005 wt% or less, O: 0.01 wt% or less,
Ti: 0.08 wt% or more and 6 × (C + N) or more, 0.5 wt% or less,
(V + Nb): 0.04 to 0.1 wt% and V / Nb = 2.0 to 5.0
Ca: 0.0005 to 0.0050wt%
The balance is Fe and inevitable impurities , and the composition of oxide inclusions resulting from the deoxidation product in the steel is Ti oxide: 20 to 90 wt%, Al 2 O 3 : 50 wt % or less and CaO: surface properties which satisfies the range of 5-50 wt% the corrosion resistance was good, the moldability and ridging excellent in ferrites stainless steel.
請求項1において、鋼組成が、さらに
Mo:0.05〜4.0 wt%
を含有する組成になることを特徴とする表面性状が良好で耐食性、成形加工性および耐リジング性に優れたフェライト系ステンレス鋼
The steel composition according to claim 1, further comprising:
Mo: 0.05-4.0 wt%
Good surface properties characterized by comprising a composition containing a corrosion resistance, moldability and anti-ridging excellent in ferrites stainless steel.
請求項1または2において、鋼組成が、さらに
B:0.0002〜0.0030wt%
を含有する組成になることを特徴とする表面性状が良好で耐食性、成形加工性および耐リジング性に優れたフェライト系ステンレス鋼
The steel composition according to claim 1 or 2, further comprising: B: 0.0002 to 0.0030 wt%
Good surface properties characterized by comprising a composition containing a corrosion resistance, moldability and anti-ridging excellent in ferrites stainless steel.
JP17187998A 1998-06-18 1998-06-18 Ferritic stainless steel with good surface properties and excellent corrosion resistance, molding processability and ridging resistance Expired - Fee Related JP3661419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17187998A JP3661419B2 (en) 1998-06-18 1998-06-18 Ferritic stainless steel with good surface properties and excellent corrosion resistance, molding processability and ridging resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17187998A JP3661419B2 (en) 1998-06-18 1998-06-18 Ferritic stainless steel with good surface properties and excellent corrosion resistance, molding processability and ridging resistance

Publications (2)

Publication Number Publication Date
JP2000001757A JP2000001757A (en) 2000-01-07
JP3661419B2 true JP3661419B2 (en) 2005-06-15

Family

ID=15931496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17187998A Expired - Fee Related JP3661419B2 (en) 1998-06-18 1998-06-18 Ferritic stainless steel with good surface properties and excellent corrosion resistance, molding processability and ridging resistance

Country Status (1)

Country Link
JP (1) JP3661419B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2818289B1 (en) * 2000-12-15 2003-08-08 Usinor STAINLESS STEEL FOR SEVERE SHAPING AND IN PARTICULAR DEEP DRAWING OF A SHEET
FR2818290A1 (en) * 2000-12-15 2002-06-21 Ugine Savoie Imphy Stainless steel for shaping by severe working and notably by cold striking or drawing into small diameter wires, with a controlled composition for selection of the type and dimensions of its inclusions
JP3504655B2 (en) * 2001-12-06 2004-03-08 新日本製鐵株式会社 Ferritic stainless steel sheet excellent in press formability and workability and manufacturing method thereof
JP5744576B2 (en) * 2011-03-08 2015-07-08 新日鐵住金ステンレス株式会社 Ferritic stainless steel with excellent rust resistance

Also Published As

Publication number Publication date
JP2000001757A (en) 2000-01-07

Similar Documents

Publication Publication Date Title
KR100733016B1 (en) FERRITIC STAINLESS STEEL PLATE WITH Ti AND METHOD FOR PRODUCTION THEREOF
JP4150342B2 (en) Steel plate for enamel excellent in workability and resistance to tearing and method for producing the same
JP6683294B1 (en) Steel plate and enamel products
KR101705135B1 (en) Ferritic stainless steel sheet
JP5560578B2 (en) Ferritic stainless steel cold-rolled steel sheet excellent in workability and manufacturing method thereof
CN107835865B (en) Hot-rolled ferritic stainless steel sheet, hot-rolled annealed sheet, and methods for producing same
EP3587610B1 (en) Hot-rolled and annealed ferritic stainless steel sheet, and method for manufacturing same
KR20190032477A (en) Ferritic stainless steel hot-rolled annealed steel sheet and manufacturing method thereof
US20180171430A1 (en) Ferritic stainless steel sheet and method for manufacturing the same
KR101949629B1 (en) Stainless steel and production method therefor
KR101850231B1 (en) Ferritic stainless steel and method for producing same
KR20180009775A (en) Cold-rolled stainless steel sheet material, manufacturing method therefor, and cold-rolled steel sheet
JP7317100B2 (en) hot rolled steel
WO1995009931A1 (en) Continuously annealed and cold rolled steel sheet
JP3661420B2 (en) Ferritic stainless steel with good surface properties and excellent corrosion resistance and moldability
JP3772530B2 (en) Austenitic stainless steel with good surface properties and excellent corrosion resistance
JPH09227999A (en) Ferritic stainless steel sheet excellent in ridging resistance
JP3322157B2 (en) Method for producing ferritic stainless steel strip containing Cu
JP3661419B2 (en) Ferritic stainless steel with good surface properties and excellent corrosion resistance, molding processability and ridging resistance
JP4525813B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP3661418B2 (en) Ferritic stainless steel with good surface properties and excellent corrosion resistance and moldability
JP2001011582A (en) Ferritic stainless steel excellent in workability and corrosion resistance and production of its thin steel sheet
JPH07126812A (en) Ferritic stainless steel sheet excellent in secondary working brittleness and its production
JP4998365B2 (en) Ultra-low carbon steel sheet and manufacturing method thereof
JP4273457B2 (en) Structural stainless steel plate with excellent hole expansion workability

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050314

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080401

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120401

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees