JP3659323B2 - Sn or Sn alloy plating material for terminals and connectors - Google Patents

Sn or Sn alloy plating material for terminals and connectors Download PDF

Info

Publication number
JP3659323B2
JP3659323B2 JP2000279212A JP2000279212A JP3659323B2 JP 3659323 B2 JP3659323 B2 JP 3659323B2 JP 2000279212 A JP2000279212 A JP 2000279212A JP 2000279212 A JP2000279212 A JP 2000279212A JP 3659323 B2 JP3659323 B2 JP 3659323B2
Authority
JP
Japan
Prior art keywords
plating
alloy
test
contact resistance
alloy plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000279212A
Other languages
Japanese (ja)
Other versions
JP2002088496A (en
Inventor
康弘 真谷
隆弘 真名子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000279212A priority Critical patent/JP3659323B2/en
Publication of JP2002088496A publication Critical patent/JP2002088496A/en
Application granted granted Critical
Publication of JP3659323B2 publication Critical patent/JP3659323B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、自動車用集合端子に適する端子、コネクター用Sn又はSn合金めっき材、特に高温雰囲気下のエンジンルーム内に実装されるかん合型端子に適するSn又はSn合金めっき材に関するものである。
【0002】
【従来の技術】
従来、自動車用端子材としては、電気的信頼性(経時的に接触抵抗が上昇しないこと)及び耐食性を向上させるために、銅基合金上にSnめっきした材料が使用されている。Snめっき材の製造方法として、光沢電気Snめっき、電気めっき後溶融処理するリフローSnめっき、溶融Sn中に浸漬する溶融めっきが工業的に実施されている。このとき、黄銅等のZnを含む銅基合金材では、Znの粒界拡散によるはんだ濡れ性低下防止のために、Snめっきの下地めっきとして、CuめっきやNiめっきが施される。
【0003】
昨今、自動車の電装化に伴い、電気配線の接続部に用いられるコネクターの極数は増加し、コネクターかん合時の挿入力は増加する傾向にある。その結果、自動車組立工程の作業性が低下し、生産効率の低下が懸念されている。これに対しては、Snめっき厚さを制御することによって(一般的にSnめっき層は薄いほど摩擦係数が小さくなる)、挿入力を低減した材料開発が行われている(例えば特開平10−265992号公報、特開2000−164279号公報等参照)。
一方、自動車室内の省スペース化の要求から、コネクターの設置個所は室内からエンジンルーム内への移行が進展している。その際、エンジンルームでの雰囲気温度は最大150℃程度に到達し、現行のSnめっき材で製作された端子の接触抵抗が増加する問題が顕在化してきた。接触抵抗が増加すると、電子制御機器の誤作動が懸念される。
【0004】
【発明が解決しようとする課題】
そこで、高温雰囲気下での電気的信頼性を向上する方法として、Snめっき下層に位置する下地めっきの種類の変更(Ag、Niめっき等)が検討されている。これは、Cu合金素材及びCu下地めっき層中のCu原子がSn又はSn合金めっき層中へ拡散してCu−Sn金属間化合物を形成し、高温雰囲気下においてこれがめっき表面層にまで短期間のうちに到達し、接触抵抗を増加させるからである。
しかし、コネクター設置個所の温度が150℃程度になると、下地めっきの種類にかかわらず、接触抵抗増加の要因の一つであるSnめっきの酸化が顕著になる。従って、従来検討されている下地めっき種類の変更では、接触抵抗増加を抑制することは困難である。
【0005】
本発明は上記の問題点に鑑みてなされたもので、高温雰囲気下においても電気的信頼性(低接触抵抗)を維持することができ、かつ挿入力も低く抑えることができる端子、コネクター用Sn又はSn合金めっき材を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明に係る端子、コネクター用Sn又はSn合金めっき材は、銅又は銅合金素材上に、0.1μm以上5μm以下のめっき厚さでかつ0.5ppm以上5000ppm以下の水素を含むNi又はNi合金めっき被膜を形成し、その上にSn又はSn合金めっき被膜を形成したことを特徴とする。なお、水素含有量は質量ppmである。
【0007】
【発明の実施の形態】
上記端子、コネクター用Sn又はSn合金めっき材において、下地めっきであるNi又はNi合金めっきの厚さが0.1μmより薄い場合、銅合金素材中のCu元素の表面への拡散を防止できないため、塩水噴霧試験(実施例参照)後の試料表面に腐食生成物を形成し、外観不良となる。なお、塩水噴霧試験は、自動車で海岸を走行する場合など塩水の付着を想定したものであり、その状況での信頼性を確認するためのものである。一方、Ni又はNi合金めっき厚さが5μmより厚くなると、Ni又はNi合金めっき皮膜自体が硬質であるため、端子成形時に、めっき皮膜の加工クラックに追随して素材自体にクラックが発生し、曲げ加工性が著しく低下する。従って、下地めっきであるNi又はNi合金めっきの厚さは、0.1μm以上5μm以下とする。
【0008】
上記Ni又はNi合金めっき皮膜が水素を含有する場合、端子の高温放置試験後の接触抵抗値が低く維持できる。これは、Ni又はNi合金めっき皮膜中の水素が上層のSn又はSn合金めっき表面に拡散し、酸化したSn又はSn合金めっき皮膜を還元する作用があるためである。しかし、Ni又はNi合金めっき皮膜中の水素含有量が0.5ppmより低い場合、高温放置試験(150℃×100hr)後の接触抵抗の改善は認められなかった。一方、水素含有量が5000ppmよりも高い場合、Ni又はNi合金めっき時のめっき電流効率が著しく低下し、めっき時間が長くなり、かつNi又はNi合金めっき皮膜が硬化し曲げ加工性が低下するため、実用的ではない。従って、Ni又はNi合金めっき皮膜中の水素含有量は、0.5ppm以上5000ppm以下とする。接触抵抗の改善及び実用性の観点から、より望ましくは5ppm以上500ppm以下の範囲内である。
【0009】
なお、Ni又はNi合金めっき皮膜に水素を含有させる具体的手段としては、上記のように、めっきの際に水素を同時に共析させる方法、つまり、めっき時にカソード表面で発生した水素を取り込ませる方法が用いられる。この場合、水素が発生するめっき条件で電解し、水素含有量の調整は浴組成(主としてpH)、電流密度等を変化させて行う。そのほか、めっき中に水素をバブリングして含有させる方法、あるいはめっき後に吸蔵させる方法もある。
下地めっきとしてはNiめっきのほか、Ni−Co、Ni−Fe等、水素を含有することが可能な種々のNi合金めっきを用いることができる。いずれにしても、水素を含有することで高温放置後の電気的信頼性を向上することが可能である。
【0010】
また、Sn又はSn合金めっきの厚さは0.05μm以上5μm以下が望ましい。Sn又はSn合金めっき厚さが0.05μmより薄い場合、亜硫酸ガス腐食試験(実施例参照)後のめっき表面にニッケルを含有した硫化物を形成し、接触抵抗が著しく増加する。なお亜硫酸ガス腐食試験は、排ガスとして亜硫酸ガスが発生する工業地帯の環境を模し、その環境での信頼性を確認するためのものである。一方、Sn又はSn合金めっき厚さが5μmより厚い場合、高温放置後のめっき特性に顕著な差異はなく、また量産性に優れない。従って、Sn又はSn合金めっき厚さは0.05μm以上5μm以下が好ましい。このなかで、Sn又はSn合金めっき厚さが0.05μm以上0.30μm以下の場合、摩擦係数が低下する。よって、特に低挿入力特性を要求される端子材は、このめっき厚さの範囲が望ましい。
なお、Sn又はSn合金めっきとしては、電気光沢めっき、リフローめっき、溶融めっき等、いずれの方法で形成したものでもよい。
また、Sn合金としては、Zn、Ni、Cu、Pb、Ag、In、Biのうち1種又は2種以上を合計で0.05〜40質量%含む合金が挙げられる。
【0011】
【実施例】
<供試材の作成条件>
銅合金素材としてC2600、厚さ0.30mmの板材を用い、Ni−H下地めっきを種々の厚さ及びH含有量で施した後、Snめっきを種々の厚さで施し、これを供試材(No.1〜15)とした。Ni−H下地めっきのめっき浴及びめっき条件を表1に、Snめっきのめっき浴及びめっき条件を表2に示す。H含有量の調整はめっき浴成分のHSOの濃度を管理しpHを制御することで行った(pHを低下させた場合、H含有量が増加する傾向にある)。そのほか、上記の銅合金素材にCu下地めっき及びSnめっきを施したSnめっき材(No.16〜17;従来例)を用意した。各供試材のNi−Hめっき厚さ、そのH含有量及びSnめっき厚さを表5に示す。
【0012】
【表1】

Figure 0003659323
【0013】
【表2】
Figure 0003659323
【0014】
このようにして得た供試材(Snめっき材)のそれぞれについて、下記の要領でめっき厚さ及びNiめっき皮膜中のH含有量を測定し、また高温放置後の接触抵抗、摩擦係数及び亜硫酸ガス試験後の接触抵抗の測定試験、並びに塩水噴霧後の外観検査及び曲げ加工性試験を行った。その結果を表5にあわせて示す。
[めっき厚さ測定]
Sn及びNiめっき厚さは、蛍光X線膜厚計(セイコー電子工業株式会社;型式SFT156A)を用いて測定した。
[Niめっき皮膜中の水素含有量測定]
Niめっき皮膜中の水素含有量(質量ppm)は、真空加熱(真空融解)定容測圧法(JISZ2614に準拠)に基づき測定した。試料を真空加熱炉に挿入しポンプを用いて超高真空にした後、室温から800℃まで加熱した際の発生した水素量を質量分析計にて求めた。
【0015】
[高温放置後の接触抵抗測定]
供試材に対し大気中にて150℃×100hrの熱処理を行った後、接触抵抗を四端子法により、解放電圧20mV、電流10mA、摺動荷重9.8Nの条件にて測定した。
[亜硫酸ガス試験後の接触抵抗測定]
供試材に対し表3に示す条件で亜硫酸ガス試験を行った後、前記と同じ方法で接触抵抗を測定した。
【表3】
Figure 0003659323
[塩水噴霧試験後の外観検査]
供試材に対し表4に示す条件で塩水噴霧試験を行った後、外観を検査し、試験後の供試材表面に変色が発生していないものを○と評価し、点状の変色が発生したものを×と評価した。
【表4】
Figure 0003659323
【0016】
[摩擦係数測定]
かん合型端子の接点部の形状を模擬し、図1に示すように、供試材を内径1.5mmで半球加工した上下のメス試験片1、2の間にオス試験片3(板状のままの供試材)を挟み込み、横型荷重測定器(アイコーエンジニアリング株式会社製Model−2152)を用いて、オス試験片3を水平方向に引っ張り、そのときの最大摩擦力Fを測定した。オス試験片3とメス試験片1、2の接触荷重Pを2.94Nとし、摺動速度を80mm/minとした。摩擦係数を下記式(1)により求めた。なお、4はロードセル、矢印は摺動方向である。
摩擦係数=F/2P・・・・(1)
【0017】
[曲げ加工性]
試験片を圧延方向が長手となるように切出し、JISH3110に規定されるW曲げ試験治具用い、圧延方向に対して直角方向となるように9.8×10Nの荷重で曲げ加工を施した。その後、ミクロトーム法にて、断面を切出し観察を行った。曲げ加工性評価は、試験後の曲げ加工部に発生したクラックが銅合金素材へ伝播しないレベルを○と評価し、銅合金素材へ伝播し銅合金素材に亀裂が発生するレベルを×と評価した。
【0018】
【表5】
Figure 0003659323
【0019】
表5に示すように、下地Ni−Hめっきの水素含有量及びめっき厚が本発明の範囲内にあり、Snめっき厚さも適正なNo.1〜10は高温放置後の接触抵抗のほか、全ての特性が優れている。一方、下地Ni−Hめっきの水素含有量が過多のNo.11と下地Ni−Hめっきの厚さが過大なNo.14は曲げ加工性に劣り、Snめっき厚さが0.05μmに満たないNo.12は亜硫酸ガス試験後の接触抵抗が高く、下地Ni−Hめっきの厚さが不足するNo.13は高温放置後の接触抵抗の改善が不十分で、亜硫酸ガス試験後の接触抵抗及び塩水噴霧試験後の外観も劣り、下地Ni−Hめっきの水素含有量が少ないNo.15は高温放置後の接触抵抗が高い。
なお、見かけの摩擦係数はいずれも小さく、特にSnめっき厚さが0.3μm以下のNo.1、2、12、13はさらに小さくなっている。
【0020】
【発明の効果】
本発明に係る端子、コネクター用Sn又はSn合金めっき材は、高温雰囲気下においても電気的信頼性(低接触抵抗)を維持することができ、かつ挿入力も低く抑えることができる。また、亜硫酸ガス試験後の接触抵抗、塩水噴霧試験後の外観及び曲げ加工性にすぐれるなど、特に高温雰囲気下のエンジンルーム内に実装されるかん合型端子に適している。
【図面の簡単な説明】
【図1】 摩擦係数測定治具の概念図である。
【符号の説明】
1、2 メス試験片
3 オス試験片
4 ロードセル[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a terminal suitable for a collective terminal for automobiles, a Sn or Sn alloy plating material for connectors, particularly a Sn or Sn alloy plating material suitable for a mating type terminal mounted in an engine room in a high temperature atmosphere.
[0002]
[Prior art]
Conventionally, as a terminal material for automobiles, a material plated with Sn on a copper base alloy is used in order to improve electrical reliability (contact resistance does not increase with time) and corrosion resistance. As a method for producing an Sn plating material, bright electric Sn plating, reflow Sn plating to be melt-processed after electroplating, and hot dipping to be immersed in molten Sn are industrially carried out. At this time, in a copper-based alloy material containing Zn such as brass, Cu plating or Ni plating is applied as a base plating for Sn plating in order to prevent a decrease in solder wettability due to Zn grain boundary diffusion.
[0003]
In recent years, the number of poles of a connector used for a connection portion of an electric wiring has increased along with the electrification of automobiles, and the insertion force at the time of connector mating tends to increase. As a result, the workability of the automobile assembly process is lowered, and there is a concern that the production efficiency is lowered. On the other hand, by developing the Sn plating thickness (generally, the thinner the Sn plating layer is, the smaller the friction coefficient is), and thus material development with reduced insertion force has been carried out (for example, Japanese Patent Laid-Open No. Hei 10-10). No. 265992, JP 2000-164279, etc.).
On the other hand, due to the demand for space saving in the automobile interior, the installation location of the connector is moving from the interior to the engine compartment. At that time, the atmospheric temperature in the engine room reaches a maximum of about 150 ° C., and the problem of increasing the contact resistance of the terminal made of the current Sn plating material has become apparent. When the contact resistance increases, there is a concern about malfunction of the electronic control device.
[0004]
[Problems to be solved by the invention]
Therefore, as a method for improving electrical reliability in a high temperature atmosphere, changing the type of base plating (Ag, Ni plating, etc.) located under the Sn plating lower layer has been studied. This is because Cu atoms in the Cu alloy material and the Cu undercoat plating layer diffuse into the Sn or Sn alloy plating layer to form a Cu-Sn intermetallic compound, and this is a short time until it reaches the plating surface layer in a high temperature atmosphere. This is because it reaches the inside and increases the contact resistance.
However, when the temperature of the connector installation location is about 150 ° C., oxidation of Sn plating, which is one of the factors for increasing the contact resistance, becomes significant regardless of the type of base plating. Therefore, it is difficult to suppress an increase in contact resistance by changing the type of base plating that has been studied in the past.
[0005]
The present invention has been made in view of the above-mentioned problems, and it is possible to maintain electrical reliability (low contact resistance) even in a high-temperature atmosphere and to suppress the insertion force to a low level. It aims at providing Sn alloy plating material.
[0006]
[Means for Solving the Problems]
The Sn or Sn alloy plating material for terminals and connectors according to the present invention is a Ni or Ni alloy containing hydrogen of 0.5 ppm to 5000 ppm on a copper or copper alloy material with a plating thickness of 0.1 μm to 5 μm. A plating film is formed, and an Sn or Sn alloy plating film is formed thereon. In addition, hydrogen content is mass ppm.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the case of the terminal or connector Sn or Sn alloy plating material, when the thickness of the Ni or Ni alloy plating that is the base plating is thinner than 0.1 μm, it is not possible to prevent the diffusion of the Cu element in the copper alloy material to the surface. Corrosion products are formed on the sample surface after the salt spray test (see Examples), resulting in poor appearance. The salt spray test is intended to confirm the reliability in the situation, assuming that salt water adheres, such as when driving on the coast of an automobile. On the other hand, when the Ni or Ni alloy plating thickness is thicker than 5 μm, the Ni or Ni alloy plating film itself is hard. Workability is significantly reduced. Therefore, the thickness of the Ni or Ni alloy plating as the base plating is 0.1 μm or more and 5 μm or less.
[0008]
When the Ni or Ni alloy plating film contains hydrogen, the contact resistance value after the high temperature standing test of the terminal can be kept low. This is because hydrogen in the Ni or Ni alloy plating film diffuses to the upper Sn or Sn alloy plating surface, and has an effect of reducing the oxidized Sn or Sn alloy plating film. However, when the hydrogen content in the Ni or Ni alloy plating film was lower than 0.5 ppm, no improvement in contact resistance was observed after the high temperature storage test (150 ° C. × 100 hr). On the other hand, when the hydrogen content is higher than 5000 ppm, the plating current efficiency at the time of Ni or Ni alloy plating is remarkably reduced, the plating time is prolonged, and the Ni or Ni alloy plating film is cured and bending workability is lowered. Not practical. Therefore, the hydrogen content in the Ni or Ni alloy plating film is 0.5 ppm or more and 5000 ppm or less. From the viewpoint of improvement of contact resistance and practicality, it is more preferably in the range of 5 ppm or more and 500 ppm or less.
[0009]
In addition, as a concrete means for containing hydrogen in the Ni or Ni alloy plating film, as described above, a method of co-depositing hydrogen at the time of plating, that is, a method of taking in hydrogen generated on the cathode surface during plating Is used. In this case, electrolysis is performed under plating conditions in which hydrogen is generated, and the hydrogen content is adjusted by changing the bath composition (mainly pH), the current density, and the like. In addition, there are a method of bubbling and containing hydrogen during plating, or a method of occlusion after plating.
As the base plating, in addition to Ni plating, various Ni alloy plating capable of containing hydrogen, such as Ni—Co and Ni—Fe, can be used. In any case, it is possible to improve electrical reliability after being left at high temperature by containing hydrogen.
[0010]
The thickness of the Sn or Sn alloy plating is preferably 0.05 μm or more and 5 μm or less. When the Sn or Sn alloy plating thickness is less than 0.05 μm, a sulfide containing nickel is formed on the plating surface after the sulfurous acid gas corrosion test (see Examples), and the contact resistance is remarkably increased. The sulfurous acid gas corrosion test is for simulating the environment of an industrial area where sulfurous acid gas is generated as exhaust gas and confirming the reliability in that environment. On the other hand, when the Sn or Sn alloy plating thickness is thicker than 5 μm, there is no significant difference in plating characteristics after leaving at high temperature, and the mass productivity is not excellent. Therefore, the Sn or Sn alloy plating thickness is preferably 0.05 μm or more and 5 μm or less. Among these, when the Sn or Sn alloy plating thickness is 0.05 μm or more and 0.30 μm or less, the friction coefficient decreases. Therefore, the range of the plating thickness is desirable for a terminal material that particularly requires low insertion force characteristics.
In addition, as Sn or Sn alloy plating, you may form by any methods, such as electro-gloss plating, reflow plating, and hot dipping.
Examples of the Sn alloy include alloys containing 0.05 to 40% by mass in total of one or more of Zn, Ni, Cu, Pb, Ag, In, and Bi.
[0011]
【Example】
<Conditions for creating specimens>
A C2600, 0.30 mm thick plate material was used as the copper alloy material, Ni-H undercoating was applied with various thicknesses and H contents, and then Sn plating was applied with various thicknesses. (No. 1 to 15). Table 1 shows the plating bath and plating conditions for the Ni—H base plating, and Table 2 shows the plating bath and plating conditions for the Sn plating. The H content was adjusted by controlling the pH by controlling the concentration of H 2 SO 4 as a plating bath component (when the pH is lowered, the H content tends to increase). In addition, Sn plating materials (No. 16 to 17; conventional examples) in which the above-described copper alloy material was subjected to Cu base plating and Sn plating were prepared. Table 5 shows the Ni—H plating thickness, the H content, and the Sn plating thickness of each test material.
[0012]
[Table 1]
Figure 0003659323
[0013]
[Table 2]
Figure 0003659323
[0014]
For each of the test materials (Sn plating materials) thus obtained, the plating thickness and the H content in the Ni plating film were measured in the following manner, and the contact resistance, friction coefficient and sulfurous acid after standing at high temperature. A contact resistance measurement test after the gas test, an appearance inspection after the salt spray, and a bending workability test were performed. The results are also shown in Table 5.
[Plating thickness measurement]
The Sn and Ni plating thicknesses were measured using a fluorescent X-ray film thickness meter (Seiko Electronics Co., Ltd .; model SFT156A).
[Measurement of hydrogen content in Ni plating film]
The hydrogen content (mass ppm) in the Ni plating film was measured based on a vacuum heating (vacuum melting) constant volume pressure measuring method (based on JISZ2614). After inserting the sample into a vacuum heating furnace and making it an ultra-high vacuum using a pump, the amount of hydrogen generated when heated from room temperature to 800 ° C. was determined with a mass spectrometer.
[0015]
[Measurement of contact resistance after standing at high temperature]
After heat-treating the test material at 150 ° C. × 100 hr in the air, the contact resistance was measured by a four-terminal method under the conditions of an open voltage of 20 mV, a current of 10 mA, and a sliding load of 9.8 N.
[Contact resistance measurement after sulfurous acid gas test]
After performing a sulfurous acid gas test on the test material under the conditions shown in Table 3, the contact resistance was measured by the same method as described above.
[Table 3]
Figure 0003659323
[Appearance inspection after salt spray test]
After the salt spray test was performed on the test material under the conditions shown in Table 4, the appearance was inspected, and when the test material surface after the test was not discolored, it was evaluated as ○. What was generated was evaluated as x.
[Table 4]
Figure 0003659323
[0016]
[Friction coefficient measurement]
As shown in FIG. 1, the shape of the contact portion of the mating type terminal is simulated, and a male test piece 3 (plate-like) is formed between upper and lower female test pieces 1 and 2 in which a specimen is hemispherically processed with an inner diameter of 1.5 mm. As is, the male test piece 3 was pulled in the horizontal direction using a horizontal load measuring instrument (Model-2152 manufactured by Aiko Engineering Co., Ltd.), and the maximum frictional force F at that time was measured. The contact load P between the male test piece 3 and the female test pieces 1 and 2 was 2.94 N, and the sliding speed was 80 mm / min. The coefficient of friction was determined by the following formula (1). In addition, 4 is a load cell and the arrow is a sliding direction.
Friction coefficient = F / 2P (1)
[0017]
[Bending workability]
The test piece was cut out so that the rolling direction was long, and was bent with a load of 9.8 × 10 3 N so as to be perpendicular to the rolling direction using a W bending test jig specified in JISH3110. did. Then, the cross section was cut out and observed by the microtome method. For the evaluation of bending workability, the level at which cracks occurred in the bent part after the test did not propagate to the copper alloy material was evaluated as ◯, and the level at which cracks occurred in the copper alloy material and cracked in the copper alloy material was evaluated as x. .
[0018]
[Table 5]
Figure 0003659323
[0019]
As shown in Table 5, the hydrogen content and plating thickness of the base Ni—H plating are within the scope of the present invention, and the Sn plating thickness is also an appropriate No. 1 to 10 are excellent in all characteristics in addition to the contact resistance after being left at high temperature. On the other hand, the hydrogen content of the base Ni—H plating is excessive. No. 11 and the base Ni—H plating thickness is excessive. No. 14 is inferior in bending workability, and the Sn plating thickness is less than 0.05 μm. No. 12 has high contact resistance after the sulfurous acid gas test, and the thickness of the base Ni—H plating is insufficient. No. 13 was insufficient in improving the contact resistance after being left at high temperature, contact resistance after the sulfurous acid gas test and appearance after the salt spray test were poor, and the hydrogen content of the base Ni—H plating was low. No. 15 has a high contact resistance after being left at high temperature.
Note that the apparent friction coefficient is small, and in particular, No. No. with a Sn plating thickness of 0.3 μm or less. 1, 2, 12, and 13 are even smaller.
[0020]
【The invention's effect】
The terminal, Sn for connector, or Sn alloy plating material according to the present invention can maintain electrical reliability (low contact resistance) even in a high-temperature atmosphere, and can keep the insertion force low. In addition, the contact resistance after the sulfurous acid gas test, the appearance after the salt spray test, and the bending workability are particularly suitable for mating type terminals mounted in an engine room in a high temperature atmosphere.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a friction coefficient measuring jig.
[Explanation of symbols]
1, 2 Female test piece 3 Male test piece 4 Load cell

Claims (1)

銅又は銅合金素材上に、0.1μm以上5μm以下のめっき厚さでかつ0.5ppm以上5000ppm以下の水素を含むNi又はNi合金めっき被膜を形成し、その上にSn又はSn合金めっき被膜を形成したことを特徴とする端子、コネクター用Sn又はSn合金めっき材。On a copper or copper alloy material, a Ni or Ni alloy plating film containing 0.5 to 5000 ppm of hydrogen having a plating thickness of 0.1 to 5 μm is formed, and an Sn or Sn alloy plating film is formed thereon. A Sn or Sn alloy plating material for a terminal or connector characterized by being formed.
JP2000279212A 2000-09-14 2000-09-14 Sn or Sn alloy plating material for terminals and connectors Expired - Lifetime JP3659323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000279212A JP3659323B2 (en) 2000-09-14 2000-09-14 Sn or Sn alloy plating material for terminals and connectors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000279212A JP3659323B2 (en) 2000-09-14 2000-09-14 Sn or Sn alloy plating material for terminals and connectors

Publications (2)

Publication Number Publication Date
JP2002088496A JP2002088496A (en) 2002-03-27
JP3659323B2 true JP3659323B2 (en) 2005-06-15

Family

ID=18764253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000279212A Expired - Lifetime JP3659323B2 (en) 2000-09-14 2000-09-14 Sn or Sn alloy plating material for terminals and connectors

Country Status (1)

Country Link
JP (1) JP3659323B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7104850B2 (en) 2004-08-18 2006-09-12 Yazaki Corporation Low insertion-force connector terminal, method of producing the same and substrate for the same
JP4592532B2 (en) * 2004-08-18 2010-12-01 矢崎総業株式会社 Low insertion force connector terminal, manufacturing method thereof, and low insertion force connector terminal board
JP5887283B2 (en) * 2013-01-04 2016-03-16 Jx金属株式会社 Metal foil for electromagnetic shielding and electromagnetic shielding material
JP5887287B2 (en) * 2013-01-04 2016-03-16 Jx金属株式会社 Metal foil for electromagnetic shielding and electromagnetic shielding material
JP5887305B2 (en) * 2013-07-04 2016-03-16 Jx金属株式会社 Metal foil for electromagnetic shielding, electromagnetic shielding material, and shielded cable
CN106460219B (en) 2014-05-30 2019-11-19 Jx金属株式会社 Electromagnetic wave shielding metal foil, electromagnetic shielding material and shielded cable

Also Published As

Publication number Publication date
JP2002088496A (en) 2002-03-27

Similar Documents

Publication Publication Date Title
JP4024244B2 (en) Conductive material for connecting parts and method for manufacturing the same
JP4771970B2 (en) Conductive material for connecting parts
JP4090302B2 (en) Conductive material plate for forming connecting parts
JP5025387B2 (en) Conductive material for connecting parts and method for manufacturing the same
US6759142B2 (en) Plated copper alloy material and process for production thereof
JP5667152B2 (en) Surface treatment plating material, method for producing the same, and electronic component
JP5319101B2 (en) Sn plating material for electronic parts
US8076582B2 (en) Terminal for engaging type connector
JP5005420B2 (en) Mating connector terminal and manufacturing method thereof
JP5464792B2 (en) Method for manufacturing mating connector terminal
JP4940081B2 (en) Reflow Sn plating material and electronic component using the same
CN104379810A (en) Electronic component metal material and manufacturing method thereof, and connector terminal, connector and electronic component using said electronic component metal material
CN104379818A (en) Electronic component metal material and manufacturing method thereof, and connector terminal, connector and electronic component using said electronic component metal material
JP2005350774A (en) Film, its production method and electric and electronic components
JP2014208904A (en) Electroconductive material superior in resistance to fretting corrosion for connection component
JP2004300524A (en) Sn-COATED COPPER OR COPPER ALLOY MEMBER AND ITS MANUFACTURING METHOD
JP2008248332A (en) Tin-plated strip and its production method
JP3659323B2 (en) Sn or Sn alloy plating material for terminals and connectors
JP4090483B2 (en) Conductive connection parts
JP2014139345A (en) Surface treatment plated material and production method of the same, and electronic component
JP2016044346A (en) Conductive material for connection part excellent in minute slide abrasion resistance
JP4090488B2 (en) Conductive material plate for connecting part forming process and manufacturing method thereof
JP2971035B2 (en) Tin or tin alloy plated copper alloy for multi-pole terminals and multi-pole terminals
JP2009173989A (en) Tinned strip of copper alloy having excellent wear resistance
JP2000164279A (en) Sn PLATED COPPER ALLOY MATERIAL FOR TERMINAL CONNECTOR

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050308

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3659323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080325

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 9

EXPY Cancellation because of completion of term