JP3658989B2 - Liquefied gas on-off valve structure - Google Patents

Liquefied gas on-off valve structure Download PDF

Info

Publication number
JP3658989B2
JP3658989B2 JP11133798A JP11133798A JP3658989B2 JP 3658989 B2 JP3658989 B2 JP 3658989B2 JP 11133798 A JP11133798 A JP 11133798A JP 11133798 A JP11133798 A JP 11133798A JP 3658989 B2 JP3658989 B2 JP 3658989B2
Authority
JP
Japan
Prior art keywords
liquefied gas
valve
supply
gas
discharge pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11133798A
Other languages
Japanese (ja)
Other versions
JPH11294696A (en
Inventor
伊知郎 中山
力 岩崎
義彦 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Kaisha Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP11133798A priority Critical patent/JP3658989B2/en
Publication of JPH11294696A publication Critical patent/JPH11294696A/en
Application granted granted Critical
Publication of JP3658989B2 publication Critical patent/JP3658989B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Filling Of Jars Or Cans And Processes For Cleaning And Sealing Jars (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、液化ガスを流下・滴下したり微小粒滴の状態で噴霧したりする際の開閉バルブに関し、特にガス置換による陽圧包装体を確実に得るために容器内に液化ガスを充填する装置の開閉バルブに関する。
【0002】
【従来の技術】
従来、液体窒素等の液化ガスを容器内に流下・滴下させたり、ミスト状にし噴霧して充填することによって、内容液の酸化を防止するためガス置換を行うと共に内圧を発生させて容器の変形を防いだガス置換陽圧包装体を得ることが広く行われている。この際、適正な包装体の内圧を安定して得るためには、包装体に適量の液体窒素が供給されることが重要なポイントとなる。ところが扱う流体が常温・大気圧の基では気化してしまう液化ガスであるため、供給口から流出される前に気化が始まると、流路内の流体は気液混合体となってしまい、供給口からの液化ガスの流出は脈動流となって、安定した供給をすることができなくなってしまう。従って、特に、液化ガスの温度管理と気化したガスが液体に混じって供給口から流出することがない環境を確保することが重要となる。
【0003】
この種の液体窒素流下装置には、液体窒素の供給と停止を切り替えるために開閉弁が必要となるが、弁はこの開閉操作を行うために図1のBに示されるようにニードルが流路外部にまで延在しているので、このニードル自体が熱伝導路となるという構造的条件を有することになる。この構造の開閉弁を用いた場合、図示のようにニードルの相当長さ分を断熱構造で覆うようにし、熱の流入を押さえるようにしているが、ニードルの材質が金属であることにより熱伝導率は高くこれだけで十分な効果を得ることは出来なかった。また、図2に示されるように供給停止時にはこの開閉弁部より下流側の液体窒素は排出され、この部分は外気を含んだガスで満たされることになるため、構造上外気温度による温度上昇を受けることになる。これらの熱流入によって、液体窒素が一部ガス化することにより気泡が発生するという現象が生じ、ノズルから供給される液体窒素にそのガスが混合されてしまうと液体窒素の定量供給が出来なくなってしまうという問題を抱えていた。
【0004】
【発明が解決しようとする課題】
本発明は、上記従来の液化ガスの滴下装置及び噴霧装置の問題点、すなわち熱の流入による液化ガスの気化を防止し、一部気化してしまったガスについても気液分離を施して気液混合を防止して、液化ガスを安定的に供給できる装置を提供するものであって、更にその技術によって液化ガスの適量充填が精度良くでき、品質保証性に優れた陽圧ガス置換包装体を得ることが可能な液化ガスの流下・滴下装置又は噴霧装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、供給タンクの下部に弁座からノズルをつなぐ排出管が形成された供給路部材を接続した液化ガス開閉バルブ構造体であって、先端に弁部が形成されたニードルは前記弁座に対峙して前記供給タンクを貫通させて設けることで、ニードルを液化ガス中に浸して温度を低温に保てる構成とするとともに、前記排出管の外側を液化ガスで囲む冷却構造として供給停止時における温度上昇を押さえ、液化ガスの気化を抑制するようにした。更に、前記冷却構造を円筒部材とそれと同心状の排出管で構成すると共に、前記排出管上部に配置された弁座の上方位置に気泡偏向部材を取り付けて、冷却室の液化ガスの気化したものが弁部に流れ込まないようにした。
【0006】
【発明の実施の形態】
以下、本発明の実施形態を示し詳細に説明する。ノズルから液化ガスである液体窒素が安定して供給されるためには、まずノズルに液体窒素が安定して定量供給されていなければならないが、ノズルまでの供給路中で液体窒素の沸騰気化が起こると気液混合流体となり、その供給量が一定にならず脈動を起こしてしまう。したがって、本発明においては開閉弁機構と弁からノズルまでの間は大気の温度が伝達され難い構造として気化を抑制することができる。また、液体窒素が気化した場合には、ガスは分離してノズルに供給される液体窒素には決して気化したガスが含まれないようにしている。
【0007】
まず初めに本発明を液体窒素を微小粒滴のミスト状にして供給する所謂ミストタイプに適用した実施例を図1のA,図2のAに基づいて説明する。図1は弁が開かれ供給中の全体図、図2は弁を閉じた供給停止時の要部図である。図で示されたように、液体窒素の供給タンク1は二重壁の真空断熱構造となっており、下部には大きな開口部1ー1が設けられている。この開口部に供給路部材2が接続されるが、この供給路部材2は本実施例では開口部に内挿される形で該開口部とほぼ同径の円筒部材2ー1と該円筒部材2ー1に対し同心状に設けられ先端が底部下方に突出した形態の排出管2ー2と上部にフランジ部2ー3を有する構造となっている。この供給路部材2は供給タンク1の開口部1ー1に上部円周縁が内挿される形でフランジ部2ー3が供給タンク1にボルト着けされる。排出管2ー2の上部先端部はフランジ部2ー3より下方に位置するとともに内面に雌ネジが切られており、そこに弁座4が内挿される形で螺合固着される。該弁座4の上方には雄ネジが切られており、上方に開いた形の漏斗状の気泡偏向部材5が螺合連接される。また前記排出管2ー2の下端部外周には雄ネジが切られており、ノズル6がナット部材8により螺合固着されている。弁座4には弁部3ー1が上下方向に進退自在で対峙する位置関係で設けられ、長いニードル3が供給タンク1を貫通して該供給タンク1の上部を経て図示していない弁操作部まで鉛直方向に延在している。また、供給タンク1と供給路部材2、排出管路2ー2と弁座4、弁座4と漏斗状の気泡偏向部材5間の各接続においてはシールと固着安定のため、O−リング等適宜のシーリング材が介在されている。
【0008】
長いニードル3は相当長さ分が供給タンク1に貯蔵されている液体窒素に浸されていることになるため、ニードル3の温度は低温に保たれることとなる。少なくともこのニードル3が弁部3ー1近傍で気化を促す熱源となることはない。要するにニードルの相当長さが常時液体窒素中に浸される状況を確保でき、しかも気化して発生した窒素の気泡が滞留することなくタンク上部に抜けられる構造であればよい。弁を閉鎖した供給停止状態には図2のAに示されるように、弁下流の供給路は液体窒素が排出されて外気を含む気体で充満されるが、排出管2ー2の上部分は円筒部材2ー1に囲まれており、ここが液体窒素で満たされた冷却室7を形成しているので、外気温度より遥かに低い温度を保つことができる。ちなみに図3のグラフに示した実験結果では、図1、図2のBに示した比較例ではノズル6の部分が外気温度近くの20℃まで上がってしまったものが、本発明の実施例では−50℃に保つことができたことが分かる。そのため、弁を開き供給を開始した場合には、比較例が供給開始から温度環境が定常状態に至るまで約180秒要していたものが、本発明の実施例では約55秒で定常状態に達している。また、冷却室7の液体窒素が熱交換によって気化して気泡が発生した場合にはガスは液体中を上昇することになるが、弁座4には漏斗状の気泡偏向部材5が連接されているので、発生したガスはこの気泡偏向部材5により円筒部材2ー1の管壁近くに導かれ、中央部分に設けられている弁部に流れ込むことはない。したがって、本装置によれば液体窒素の気化を抑制することができ、万一気化して気泡が発生した場合でも気液を分離して液体窒素を安定して供給することができ、また供給開始時においては短時間で定常安定状態に至らせることができる。
【0009】
さらに、ミストタイプのものは流下・滴下タイプと異なり、液体窒素を液相状態のまま連続流で流下したり断続流で滴下排出するのではなく、ノズルを出た部分で一部液体窒素が気化を開始し、その急激な気化膨張現象によって未だ液相状態にある残りの窒素を微小粒滴にして噴霧させるものである。したがって、ノズルまでの供給路では断熱状態として極低温を保ち、ノズル近傍でも決して沸点に達することが無いようにしなくてはならない。そしてノズル開口部で一気に一部液体窒素が気化を始める状況にもっていくようにしている。そのため、排出されるまですなわち流路内では決して気化が始まってはならないという点で同様であるが、ノズル通過直後に一部液化ガスが沸騰気化を始めるように環境設定を行う必要があり、滴下タイプのものに比べて、ノズルの部分での熱交換率と圧力勾配が高くなるように開口面積を狭く構成している。ちなみに0.1〜0.5mm2が目安である。狭い流路を通過することで熱交換をよくし、大気圧であるノズル外部に対しノズル内部の圧力差を大きく保つことができる。圧力が低下すれば沸点温度が低下することと、熱交換がよいことによってノズルを通過したところで、一気に一部液体窒素が気化を始める環境を整えている。
【0010】
他の実施形態を図4において説明する。供給タンク1の開口部1ー1にフランジ部2ー3がボルトで固着されている排出路部材2の大部分は、フランジ部2ー3を含め適当な断熱効果をもたせるための断熱ブロック9によりすっぽりと囲繞されている。排出管2ー2の先端には雄ネジが切られており、ノズル6がナット部材8により螺合固着されている。弁座4には弁部3ー1が上下方向に進退自在で対峙する位置関係で設けられ、長いニードル3が供給タンク1を貫通して該供給タンク1の上部を経て図示していない弁操作部まで鉛直方向に延在している。前記断熱ブロック9にはフード10がフランジ部をボルトにより固着され、前記排出管2ー2の先端部とノズル6は当該フード10によって囲繞された形態となっている。
【0011】
ミストタイプのこの実施例ではノズル6の周辺をフード10によって囲繞するようにし、その空間にガス供給路11より乾燥ガスを供給しノズル先端部のさらに先にある開口部より常時排気パージさせるようにしている。この様に構成したのは、ノズル6を水分を含む大気から遮断した状態を維持することによって、該ノズル開口部に大気中の水分が結露氷結し、液体窒素の供給を妨害する現象を起こすことがないようにするためである。なお、以上の実施例では液化ガスを液体窒素とし、ミストタイプの充填装置を例として説明してきたが、本発明はこれに限られるものではなく、ノズルを換えて連続流で液化ガスを供給する流下タイプや断続流で液化ガスを供給する滴下タイプにも適用でき、液化ガスはアルゴンガス等の不活性ガスであっても良いことは勿論である。また気泡偏向部材は漏斗状のものとして説明したが、発生した窒素ガスの気泡を円筒部材の管壁側にガイドするものであればよく、必ずしも漏斗状である必要はない。
【0012】
【発明の効果】
本発明によれば、長いニードルは供給タンクに貯蔵されている液体窒素等の液化ガスに浸されているため、ニードルの温度は低温に保たれることとなり、少なくともこのニードルが弁部近傍で気化を促す熱源となることはない。弁を閉鎖した供給停止状態には弁下流の供給路は液体窒素が排出されて外気を含む気体で充満されるが、排出管の上部分は円筒部材に囲まれており、ここが液体窒素で満たされた冷却室を形成するので、外気温度より遥かに低い温度を保つことができる。したがって、供給開始後にこの部分が熱源となって気化する液体窒素の量を極力少なくすることができ、従来装置に比べて供給開始から温度環境が定常状態に至るまでの時間も格段に短くなり生産効率を増すことができる。
【0013】
また、冷却室の液化ガスが熱交換によって気化をした場合にはガスは気泡となって冷却室の液体中を上昇することになるが、弁座4の上方には気泡偏向部材5が連接されているので、発生したガスはこの気泡偏向部により供給路部材の円筒部材管壁近くに導かれ、供給路の中心部すなわち弁部の方に流れ込むことはない。また、図1のBに示すような気化したガスが滞留する箇所もなくノズルに供給する液体窒素等の液化ガスに、気化したガスが混じることはない等気液の分離も万全である。以上のように本発明においては各構成要素が総合して気化を極力押さえると共に気液を分離して液化ガスを安定して供給することができ、特に、ガス置換による陽圧包装体を確実に得るために容器内に液化ガスを充填する装置に適用すると、流下開始から短時間で定常安定状態に至らせることができ、安定した供給量が確保できることによって品質保証性に優れた陽圧ガス置換包装体を得ることが可能となるという格別の効果を奏するものである。
【図面の簡単な説明】
【図1】 供給中の状態を示す図でAは本発明の全体装置、Bは比較例の全体装置を示す。
【図2】 供給停止中の状態を示す図でAは本発明の装置の要部、Bは比較例の装置の要部を示す。
【図3】 流下開始からの時間とノズル温度との関係を示す図である。
【図4】 ミストタイプの装置の他の実施例を示す図。
【符号の説明】
1 供給タンク 1ー1 開口部
2 供給路部材 2ー1 円筒部材
3 ニードル 2ー2 排出管
4 弁座 2ー3 フランジ部
5 気泡偏向部材 3ー1 弁部
ノズル 9 断熱ブロック
7 冷却室 10 フード
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an open / close valve when liquefied gas is flowed down / dropped or sprayed in the form of fine particles, and in particular, the container is filled with liquefied gas in order to reliably obtain a positive pressure package by gas replacement. The present invention relates to an on-off valve of the apparatus.
[0002]
[Prior art]
Conventionally, liquefied gas such as liquid nitrogen flows down or drops into the container or is sprayed and filled in a mist to replace the gas to prevent oxidation of the content liquid and generate internal pressure to deform the container. It is widely performed to obtain a gas replacement positive pressure package that prevents the above. At this time, in order to stably obtain an appropriate internal pressure of the package, it is important to supply an appropriate amount of liquid nitrogen to the package. However, since the fluid to be handled is a liquefied gas that vaporizes under normal temperature and atmospheric pressure, if vaporization starts before it flows out from the supply port, the fluid in the flow path becomes a gas-liquid mixture, and supply The outflow of the liquefied gas from the mouth becomes a pulsating flow, and stable supply cannot be performed. Therefore, it is particularly important to manage the temperature of the liquefied gas and ensure an environment in which the vaporized gas is not mixed with the liquid and flows out of the supply port.
[0003]
In this type of liquid nitrogen flow-down device, an on-off valve is required to switch between supply and stop of liquid nitrogen, and the valve has a needle as shown in FIG. Since it extends to the outside, this needle itself has a structural condition that it becomes a heat conduction path. When using the on-off valve of this structure, so as to cover an adiabatic structure considerable length of the needle, as shown, so that pressing the influx of heat, the heat by the material of the needle is a metal The conductivity was high and it was not possible to obtain a sufficient effect by itself. Further, as shown in FIG. 2, when the supply is stopped, the liquid nitrogen on the downstream side of the on-off valve portion is discharged, and this portion is filled with gas containing outside air, so that the temperature rise due to the outside air temperature is structurally increased. Will receive. Due to these heat inflows, a phenomenon occurs in which liquid nitrogen partially gasifies and bubbles are generated. If the gas is mixed with liquid nitrogen supplied from the nozzle , liquid nitrogen cannot be quantitatively supplied. I had the problem of end.
[0004]
[Problems to be solved by the invention]
The present invention prevents the problems of the conventional liquefied gas dropping device and the spray device, that is, the vaporization of the liquefied gas due to the inflow of heat. A device that prevents mixing and provides a stable supply of liquefied gas is provided. Further, by using this technology, an appropriate amount of liquefied gas can be filled with high accuracy, and a positive pressure gas replacement packaging body excellent in quality assurance can be obtained. It is an object of the present invention to provide a liquefied gas flow down / dropping device or spraying device that can be obtained.
[0005]
[Means for Solving the Problems]
The present invention relates to a liquefied gas on-off valve structure in which a supply passage member having a discharge pipe connecting a nozzle from a valve seat is connected to a lower portion of a supply tank, wherein a needle having a valve portion formed at a tip thereof is the valve seat. In contrast , the needle is immersed in the liquefied gas so as to keep the temperature low by providing the supply tank so as to penetrate the supply tank, and a cooling structure that surrounds the outside of the discharge pipe with the liquefied gas is used when the supply is stopped. hold the temperature increase, and so as to suppress the vaporization of liquefied gas. Further, the cooling structure is constituted by a cylindrical member and a concentric discharge pipe, and a bubble deflecting member is attached above the valve seat disposed above the discharge pipe to vaporize the liquefied gas in the cooling chamber. Was prevented from flowing into the valve.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be shown and described in detail. In order for liquid nitrogen, which is a liquefied gas, to be stably supplied from the nozzle , first, liquid nitrogen must be stably supplied in a fixed amount to the nozzle. However, liquid nitrogen evaporates in the supply path to the nozzle. When it occurs, it becomes a gas-liquid mixed fluid, and its supply amount is not constant and causes pulsation. Therefore, in the present invention, vaporization can be suppressed as a structure in which the atmospheric temperature is hardly transmitted between the on-off valve mechanism and the valve to the nozzle . Further, when the liquid nitrogen is vaporized, the gas is separated and the liquid nitrogen supplied to the nozzle is never included in the vaporized gas.
[0007]
First, an embodiment in which the present invention is applied to a so-called mist type in which liquid nitrogen is supplied in the form of a mist of fine droplets will be described with reference to FIGS. 1A and 2A. FIG. 1 is an overall view during supply with the valve open, and FIG. 2 is a main part view when supply is stopped with the valve closed. As shown in the figure, the liquid nitrogen supply tank 1 has a double-walled vacuum heat insulating structure, and a large opening 1-1 is provided at the bottom. The supply path member 2 is connected to the opening. In the present embodiment, the supply path member 2 is inserted into the opening, and the cylindrical member 2-1 and the cylindrical member 2 having the same diameter as the opening. It has a structure that is concentrically provided with respect to -1, has a discharge pipe 2-2 with a tip projecting downward at the bottom, and a flange portion 2-3 at the top. This supply path member 2 is bolted to the supply tank 1 with a flange portion 2-3 in such a manner that the upper circumferential edge is inserted into the opening 1-1 of the supply tank 1. The upper end of the upper portion of the discharge pipe 2-2 is positioned below the flange portion 2-3, and an internal thread is cut on the inner surface, and the valve seat 4 is inserted and fixed therein. A male screw is cut above the valve seat 4, and a funnel-shaped bubble deflecting member 5 that opens upward is screwed together. A male screw is cut around the outer periphery of the lower end of the discharge pipe 2-2, and the nozzle 6 is screwed and fixed by a nut member 8. In the valve seat 4, a valve portion 3-1 is provided so as to be opposed to be movable up and down in the vertical direction, and a long needle 3 passes through the supply tank 1 and passes through the upper portion of the supply tank 1 to operate a valve (not shown). It extends to the vertical direction. In addition, in each connection between the supply tank 1 and the supply passage member 2, the discharge pipe line 2-2 and the valve seat 4, and between the valve seat 4 and the funnel-shaped bubble deflecting member 5, an O-ring or the like is used for sealing and fixing stability. An appropriate sealing material is interposed.
[0008]
Since the length of the long needle 3 is immersed in the liquid nitrogen stored in the supply tank 1, the temperature of the needle 3 is kept at a low temperature. At least the needle 3 does not become a heat source for promoting vaporization in the vicinity of the valve portion 3-1. In short, any structure may be used as long as the length of the needle is always immersed in liquid nitrogen, and the nitrogen bubbles generated by vaporization can be removed from the upper portion of the tank without staying. In the supply stop state in which the valve is closed, as shown in FIG. 2A, the supply path downstream of the valve is filled with a gas containing outside air by discharging liquid nitrogen, but the upper part of the discharge pipe 2-2 is Since it is surrounded by the cylindrical member 2-1 and forms a cooling chamber 7 filled with liquid nitrogen, a temperature much lower than the outside air temperature can be maintained. Incidentally, in the experimental results shown in the graph of FIG. 3, in the comparative example shown in FIG. 1 and FIG. 2B, the portion of the nozzle 6 rose to 20 ° C. near the outside air temperature. It can be seen that the temperature could be kept at −50 ° C. Therefore, when the valve is opened and the supply is started, the comparative example takes about 180 seconds from the start of supply until the temperature environment reaches a steady state. In the embodiment of the present invention, the steady state is reached in about 55 seconds. Has reached. Further, when liquid nitrogen in the cooling chamber 7 is vaporized by heat exchange and bubbles are generated, the gas rises in the liquid, but the funnel-shaped bubble deflecting member 5 is connected to the valve seat 4. because there, the generated gas is guided by the bubble deflector 5 in the tube wall near the cylindrical member 2-1, it does not flow into the valve portion provided in a central portion. Therefore, according to the present apparatus, the vaporization of liquid nitrogen can be suppressed, and even when gas bubbles are generated due to vaporization, the gas and liquid can be separated and liquid nitrogen can be stably supplied, and supply can be started. In some cases, a steady state can be reached in a short time.
[0009]
In addition, the mist type is different from the flow-down / drop-down type, and liquid nitrogen is vaporized partially at the part exiting the nozzle, rather than flowing down in a liquid phase in a continuous flow or dropping and discharging in an intermittent flow. The remaining nitrogen that is still in the liquid phase is sprayed in the form of fine droplets due to the rapid vaporization and expansion phenomenon. Thus, the supply path to the nozzle maintaining cryogenic as adiabatic state, must never as have never reaches boiling point near the nozzle. And it is going to be in the situation where a part of liquid nitrogen begins to vaporize at a stretch in the nozzle opening. Therefore, it is the same in that vaporization should never start until it is discharged, that is, in the flow path, but it is necessary to set the environment so that part of the liquefied gas starts boiling and vaporization immediately after passing through the nozzle. Compared to the type, the opening area is made narrow so that the heat exchange rate and pressure gradient in the nozzle portion are higher. By the way, 0.1 ~ 0.5mm 2 is a standard. By passing through the narrow flow path, heat exchange can be improved, and the pressure difference inside the nozzle can be kept large with respect to the outside of the nozzle which is atmospheric pressure. When the pressure drops, the boiling point temperature drops and heat exchange is good, so that the environment where a part of liquid nitrogen starts to vaporize at once is prepared.
[0010]
Another embodiment is illustrated in FIG. Most of the discharge passage member 2 in which the flange portion 2-3 is fixed to the opening 1-1 of the supply tank 1 with a bolt is formed by a heat insulating block 9 for providing an appropriate heat insulating effect including the flange portion 2-3. It is completely enclosed. A male thread is cut at the tip of the discharge pipe 2-2, and the nozzle 6 is screwed and fixed by a nut member 8. In the valve seat 4, a valve portion 3-1 is provided so as to be opposed to be movable up and down in the vertical direction, and a long needle 3 passes through the supply tank 1 and passes through the upper portion of the supply tank 1 to operate a valve (not shown). It extends to the vertical direction. A hood 10 is fixed to the heat insulating block 9 with a bolt by a bolt, and the tip of the discharge pipe 2-2 and the nozzle 6 are surrounded by the hood 10.
[0011]
In this embodiment of the mist type, the periphery of the nozzle 6 is surrounded by a hood 10, and a dry gas is supplied into the space from the gas supply path 11 so that the exhaust gas is constantly purged from the opening further ahead of the nozzle tip. ing. In this way, by maintaining the state in which the nozzle 6 is shut off from the atmosphere containing moisture, moisture in the atmosphere is condensed on the nozzle openings, causing a phenomenon that disturbs the supply of liquid nitrogen. This is so that there is not. In the above embodiments, the liquefied gas is liquid nitrogen and the mist type filling device has been described as an example. However, the present invention is not limited to this, and the liquefied gas is supplied in a continuous flow by changing the nozzle. The present invention can also be applied to a flow-down type or a dropping type that supplies liquefied gas in an intermittent flow, and the liquefied gas may be an inert gas such as argon gas. Although the bubble deflecting member has been described as having a funnel shape, it may be any one that guides the generated nitrogen gas bubbles to the tube wall side of the cylindrical member, and does not necessarily have a funnel shape.
[0012]
【The invention's effect】
According to the present invention, since the long needle is immersed in a liquefied gas such as liquid nitrogen stored in the supply tank, the temperature of the needle is kept low, and at least the needle is vaporized in the vicinity of the valve portion. It does not become a heat source that encourages In the supply stop state with the valve closed, the supply path downstream of the valve is discharged with liquid nitrogen and filled with gas containing outside air, but the upper part of the discharge pipe is surrounded by a cylindrical member, which is liquid nitrogen. Since the filled cooling chamber is formed, a temperature much lower than the outside air temperature can be maintained. Therefore, the amount of liquid nitrogen that vaporizes as this part becomes a heat source after the start of supply can be reduced as much as possible, and the time from the start of supply until the temperature environment reaches a steady state is significantly shortened compared to conventional devices. Efficiency can be increased.
[0013]
Further, when the liquefied gas in the cooling chamber is vaporized by heat exchange, the gas becomes bubbles and rises in the liquid in the cooling chamber, but the bubble deflecting member 5 is connected to the upper side of the valve seat 4. Therefore, the generated gas is guided near the cylindrical member tube wall of the supply path member by the bubble deflecting section, and does not flow toward the center of the supply path, that is, the valve section. In addition, as shown in FIG. 1B, there is no portion where the vaporized gas stays, and the vaporized gas is not mixed with the liquefied gas such as liquid nitrogen supplied to the nozzle . As described above, in the present invention, the components can be combined to suppress vaporization as much as possible, and gas-liquid can be separated and liquefied gas can be stably supplied. When applied to an apparatus that fills a liquefied gas in a container to obtain a positive pressure gas replacement with excellent quality assurance by being able to reach a steady stable state in a short time from the start of flow and ensuring a stable supply amount The special effect that it becomes possible to obtain a package is exhibited.
[Brief description of the drawings]
FIG. 1 is a diagram showing a state during supply, in which A is an overall apparatus of the present invention, and B is an overall apparatus of a comparative example.
FIG. 2 is a diagram showing a state in which supply is stopped, in which A is a main part of the apparatus of the present invention and B is a main part of the apparatus of a comparative example.
FIG. 3 is a diagram showing a relationship between time from the start of flow and nozzle temperature.
FIG. 4 is a view showing another embodiment of a mist type device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Supply tank 1-1 Opening part 2 Supply path member 2-1 Cylindrical member 3 Needle 2-2 Discharge pipe 4 Valve seat 2-3 Flange part 5 Bubble deflection member 3-1 Valve part 6 Nozzle 9 Heat insulation block 7 Cooling chamber 10 hood

Claims (2)

供給タンクの下部に弁座からノズルをつなぐ排出管が形成された供給路部材を接続した液化ガス開閉バルブ構造体であって、先端に弁部が形成されたニードルは前記弁座に対峙して前記供給タンクを貫通させて設けることで、ニードルを液化ガス中に浸して温度を低温に保てる構成とするとともに、前記排出管の外側を液化ガスで囲む冷却構造として供給停止時における温度上昇を押さえ、液化ガスの気化を抑制したことを特徴とする液化ガス開閉バルブ構造体。 A liquefied gas on-off valve structure in which a supply passage member formed with a discharge pipe connecting a nozzle from a valve seat to a lower portion of a supply tank is connected, and a needle having a valve portion formed at a tip is opposed to the valve seat. By providing the feed tank penetrating, the temperature can be kept low by immersing the needle in the liquefied gas, and a cooling structure surrounding the outside of the discharge pipe with the liquefied gas suppresses the temperature rise when the supply is stopped. A liquefied gas on-off valve structure characterized by suppressing vaporization of the liquefied gas. 前記冷却構造を円筒部材とそれと同心状の排出管で構成すると共に、前記排出管上部に配置された弁座の上方位置に気泡偏向部材を取り付けて、冷却室の液化ガスの気化したものが弁部に流れ込まないようにしたことを特徴とする請求項1に記載の
液化ガス開閉バルブ構造体。
The cooling structure is composed of a cylindrical member and a concentric discharge pipe, and a bubble deflecting member is attached above the valve seat disposed above the discharge pipe to vaporize the liquefied gas in the cooling chamber. The liquefied gas on-off valve structure according to claim 1, wherein the liquefied gas on-off valve structure is configured not to flow into the section.
JP11133798A 1998-04-08 1998-04-08 Liquefied gas on-off valve structure Expired - Fee Related JP3658989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11133798A JP3658989B2 (en) 1998-04-08 1998-04-08 Liquefied gas on-off valve structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11133798A JP3658989B2 (en) 1998-04-08 1998-04-08 Liquefied gas on-off valve structure

Publications (2)

Publication Number Publication Date
JPH11294696A JPH11294696A (en) 1999-10-29
JP3658989B2 true JP3658989B2 (en) 2005-06-15

Family

ID=14558652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11133798A Expired - Fee Related JP3658989B2 (en) 1998-04-08 1998-04-08 Liquefied gas on-off valve structure

Country Status (1)

Country Link
JP (1) JP3658989B2 (en)

Also Published As

Publication number Publication date
JPH11294696A (en) 1999-10-29

Similar Documents

Publication Publication Date Title
US6519919B1 (en) Method and apparatus for manufacturing pressurized packaging body
CA1275891C (en) Controlled cryogenic liquid delivery
JP4451975B2 (en) Vaporizer and semiconductor manufacturing system using the same
WO1994006529A1 (en) Liquid gasification apparatus
JPH01240419A (en) Low-temperature liquid dispensing device and method
AU631049B2 (en) Cryogen delivery apparatus
US4805806A (en) Apparatus for dispensing liquefied gas
JP3658989B2 (en) Liquefied gas on-off valve structure
CA1258837A (en) Process and device for metering small amounts of a low boiling liquified gas
JP3233457B2 (en) Evaporative gas control device
JP3687342B2 (en) Method and apparatus for atomizing liquid nitrogen, apparatus therefor, nozzle assembly of the apparatus, and method for producing positive pressure package by filling liquid nitrogen fine particles
US6491863B2 (en) Method and apparatus for efficient utilization of a cryogen for inert cover in metals melting furnaces
US3311305A (en) Two-phase spray system for filling tanks
JP3613975B2 (en) Liquefied inert gas filling system
JP2000018499A (en) Liquefied gas storage installation
JPH11321814A (en) Method and apparatus for complex charging of liquefied inert gas
JP2011038581A (en) Liquefied gas injecting device
JP3567762B2 (en) Liquefied gas spray filling method and apparatus
JPS61115819A (en) Device for distributing freezing medium liquid
JPH11100005A (en) Low temperature liquid feed head, feed and transfer passage, and feed equipment
CA1198359A (en) Method of preventing atmosphere from entering heat- insulating container
GB2169998A (en) Liquid nitrogen metering device with nozzle of insulating material
JP4600625B2 (en) Liquid nitrogen filling apparatus and filling nozzle assembly thereof
JPS5849759B2 (en) Inert liquefied gas quantitative addition method and device
JP3630025B2 (en) Liquefied inert gas spray filling device and spray nozzle thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050307

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080325

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees