JP3657237B2 - CV cable manufacturing method - Google Patents

CV cable manufacturing method Download PDF

Info

Publication number
JP3657237B2
JP3657237B2 JP2002106580A JP2002106580A JP3657237B2 JP 3657237 B2 JP3657237 B2 JP 3657237B2 JP 2002106580 A JP2002106580 A JP 2002106580A JP 2002106580 A JP2002106580 A JP 2002106580A JP 3657237 B2 JP3657237 B2 JP 3657237B2
Authority
JP
Japan
Prior art keywords
cable
cable core
heat insulating
methane gas
winder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002106580A
Other languages
Japanese (ja)
Other versions
JP2003303525A (en
Inventor
虎一 石川
智 國村
雅彦 伊藤
享 高橋
聡 福元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2002106580A priority Critical patent/JP3657237B2/en
Publication of JP2003303525A publication Critical patent/JP2003303525A/en
Application granted granted Critical
Publication of JP3657237B2 publication Critical patent/JP3657237B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processes Specially Adapted For Manufacturing Cables (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、架橋ポリエチレン電力ケーブル(「CVケーブル」という)の製造に際して、CVケーブルコアを加温してメタンガスを除去するCVケーブルの製造方法に関する。
【0002】
【従来の技術】
CVケーブルは、導体とは内部半導電層、装架橋ポリエチレン絶縁体層、外部半導電層からなるCVケーブルコアと、最外層のプラスチック等からなるシースから構成されている。
【0003】
特開平9−190722号公報に記載されるように、このCVケーブルの製造においては、架橋に際して、架橋剤として有機過酸化物を混入して加熱することにより架橋反応を起こさせている。この際、架橋剤の分解残渣としてメタンガスが発生し、このメタンガスが架橋ポリエチレン層中に残留しやすい。
従来は、シースで被覆する前のケーブルコアをドラムに巻き取り、そのドラムごとケーブルコアを乾燥室に運搬し、乾燥室で熱風等によりケーブルコアを加熱乾燥してメタンガスを除去していた。この場合に、メタンガスを除去する条件は、内部半導電層、絶縁層、外部半導電層の肉厚によって、残留メタンガス量が0.1cc/1ccPE以下になるように温度と時間を決めている。
【0004】
【発明が解決しようとする課題】
しかしながら、前記従来の方法では、架橋ポリエチレン層の厚さが増大するとメタンガス除去に時間がかかり、厚さ20mmを越える架橋ポリエチレン層では数週間を要することが知られている。しかも、そのようなケーブルコアは巻き取った状態で巻き姿が大きなものになり、ドラムごと乾燥室に運搬するのに大型の運搬機械が必要でかつ非常に手間のかかる作業になる。
これに対して前記公報記載の技術では、導体の一部にヒータ線を設けてヒータ線に通電してケーブルコアを加熱してメタンガスを除去している。しかるに、これでは、せっかくメタンガス除去の時間を短縮できたとしても、導体中にヒータ線を設ける工程が増えてしまい、結局、ケーブルのコスト上昇を招く問題点が生じる。
【0005】
本発明は、CVケーブルコアのメタンガス除去のための加温工程を行うのにケーブルコアを巻き取ったドラムごと運搬する手間をなくし、かつ、ケーブル導体にヒータ線など特別の機器・構造を設ける必要も無くして工程の簡単化かつ作業負荷を軽減してコスト低減を図ることができるCVケーブルの製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、ケーブル導体をドラムから巻き出して送る送り出し機と、送り出されたケーブル導体を押し出し成形前に予熱する予熱管と、ケーブル導体の外周にクロスヘッドから内部半導電層、架橋ポリエチレン絶縁層および外部半導電層を押し出し成形する押し出し成形機と、押し出し後のCVケーブルコアを架橋加熱・冷却する架橋筒と、架橋後CVケーブルコアをカテナリーライン型で巻き取る巻き取り機とを備えたCVケーブルの製造ラインにおいて、前記架橋筒で架橋されて断熱室に入るまでの通路を断熱材で覆われた断熱通路とし、側面断熱カーテンと床面の樹脂断熱とを有しなる断熱部材で覆われて周囲の雰囲気から隔絶された断熱室内に収容された巻き取り機によってCVケーブルコアを巻き取り、断熱室内の雰囲気を加熱器で加熱して、前記巻き取り機に巻き取られ中および巻き取られた状態のCVケーブルコアから残留メタンガス量が0.1cc/1ccPE以下となるようにメタンガス除去を行うようにしたことを特徴とするCVケーブルの製造方法である。
本発明によれば、断熱室内に収容した前記巻き取り機に巻き取られ中および巻き取られた状態のCVケーブルコアを加温してすなわちインラインでメタンガス除去を行うことが可能になり、巻き取り工程とメタンガス除去の加温工程を同じ時間から開始しかつ実行できるようになる。
したがって、従来のような巻き取り工程後に改めてCVケーブルコアのメタンガス除去の加温工程を行うというアウトライン処理でないため、CVケーブルコアを巻き取ったドラムごと運搬する等といった手間をなくし、かつ、ケーブル導体にヒータ線など特別の機器・構造を設ける必要も無くして、工程の簡単化かつ作業負荷を軽減してコスト低減を図ることができる。
断熱部材は断熱室側面の断熱カーテンと断熱室床面の樹脂断熱体とを有してなるので、断熱カーテン等軽量・簡単な材料を用いて断熱室を構成できるので、既存のCVケーブル製造ラインに容易かつ簡単に採用し設置ができる。
【0007】
【発明の実施の形態】
以下、図面を参照して本発明の実施形態を詳細に説明する。
図1は本発明の実施形態にかかるCVケーブル製造ラインにおけるCVケーブルコア巻き取り装置およびその周囲の構成説明図である。
【0008】
CVケーブルの製造ラインは、縦型、横型、カテナリー型等種々のCVケーブル製造ラインに採用可能である。図1の巻き取り機ではカテナリー型ラインに設けたものを示している。なお、その他の横型、縦型等のCVケーブル製造ラインでも本発明は実施可能である。
【0009】
前記製造ラインでは、ケーブル導体をドラムから巻き出して送る送り出し機と、送られるケーブル導体を押し出し成形前に予熱する予熱管と、ケーブル導体にクロスヘッドから内部半導電層、絶縁層、外部半導電層を押し出し成形する三層同時押し出し成形機と、押し出し後のCVケーブルコア2を架橋加熱・冷却する架橋筒と、架橋後のCVケーブルコア2を巻き取る巻き取り機3とを備えている。
【0010】
巻き取り機3は、図1に示すように、断熱部材4で覆われて周囲の雰囲気から隔絶された断熱室5内に収容されており、この巻き取り機3に架橋後のCVケーブルコア2を巻き取るようになっている。
断熱室5はその内部雰囲気を加熱器(例えば電熱ヒータ10kw×3)6で加熱して、前記巻き取り機3にドラム3aに巻き取られ中および巻き取られた状態のケーブルコア2を加温する(インライン処理加温処理する)。また、断熱室5に入るまでの通路5aも断熱材で覆われた断熱通路としており、熱が逃げるのを防止できる。
【0011】
なお、前記断熱部材4は側面の断熱カーテンと床面の樹脂断熱体とを有してなる。また、断熱部材として、断熱カーテンは二重にすることがより一層の断熱効果が得られて好ましい。
また、上記加温によるメタンガス除去は、ケーブルコアの残留メタンガス量が、0.1cc/1ccPE以下になるように温度と時間を決める必要がある。温度等の条件は、CVケーブルのサイズや肉厚などによって異なり、適切に設定することが好ましい。
【0012】
実施形態によれば、CVケーブルコア2のメタンガス除去のための加温工程を行うのに、製造中にインラインでメタンガス除去の加温を可能にするので、該ケーブルコア2を巻き取ったドラムごと運搬する手間をなくし、かつ、ケーブル導体1にヒータ線など特別の機器・構造を設ける必要も無くして工程の簡単化かつ作業負荷を軽減してコスト低減を図ることができる。
【0013】
ケーブルコアの一例に前記の加温処理をした例を図2に基づき説明する。
この場合に、メタンガスを除去する条件は、内部半導電層、絶縁層、外部半導電層の肉厚によって、残留メタンガス量が0.1cc/1ccPE以下になることを目標として温度と時間を決めている。そして、処理対象のCVケーブルは、77kvの3×100mm2(絶縁厚11mmt)で巻き取り中に乾燥した(インライン乾燥した)ものである(巻き取り乾燥始)。また、比較のために、実施形態装置と同様に巻き取り機に断熱室を設けたもので巻き取り後、直ぐに乾燥したもの(巻き取り乾燥終)を示す。
【0014】
図2には、従来例としてケーブルコアを巻き取り後に放置して自然乾燥したものを示してあり、この場合に残留メタンガスが前記目標となるには96時間を要した。
また、ケーブルコアを巻き取り後、直ぐに加温乾燥したもの(巻き取り乾燥終)は、残留メタンガスが0.1cc/ccPE以下になるのに、従来例よりも15時間短縮できたが、81時間を要した。
一方、本発明にかかる巻き取り中にも加熱乾燥したもの(巻き取り乾燥始)は、巻き取り開始から36.5時間後に巻き取り終わりそのまま加温乾燥する。乾燥により残留メタンガスが0.1cc/ccPE以下になるのは、巻き取り後68時間後を要するだけで済んだ。なお、全体の加温乾燥時間は、巻き取り開始後104.5時間を要した。
【0015】
上記本発明例と従来例を比較すれば、メタンガスが十分除去されて巻き取り機から出せるにようになるのに、自然乾燥した従来例よりも28時間も短縮されている。また、巻き取り後に乾燥を開始した比較例と比較しても、13時間短縮されている。そして、本発明例では、巻き取りつつあるケーブルコアを乾燥させるため、ケーブルの乾燥している時間自体は比較例(81時間)と比しても前記のように104.5時間と十分に長く、ケーブルコア全体としての均一なメタンガス除去が期待できる。
【0016】
【発明の効果】
本発明によれば、CVケーブルコアのメタンガス除去のための加温工程を行うのに製造中にインラインでメタンガス除去の加温を可能にするので、ケーブルコアを巻き取ったドラムごと運搬する手間をなくし、かつ、ケーブル導体にヒータ線など特別の機器構造を設ける必要も無くして、工程簡単化かつ作業負荷を軽減してコスト低減を図ることができる。
【図面の簡単な説明】
【図1】本発明の実施形態にかかるCVケーブル製造ラインにおけるCVケーブルコア巻き取り装置およびその周囲の構成説明図である。
【図2】ケーブルコアに対するメタンガス除去を本発明例と従来例および比較例を比較して示す側定例の説明図である。
【符号の説明】
2 ケーブルコア
3 巻き取り機
4 断熱部材
5 断熱室
6 加熱器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a CV cable in which a methane gas is removed by heating a CV cable core when manufacturing a cross-linked polyethylene power cable (referred to as “CV cable”).
[0002]
[Prior art]
In the CV cable, the conductor is composed of a CV cable core composed of an inner semiconductive layer, a cross-linked polyethylene insulator layer, and an outer semiconductive layer, and a sheath made of an outermost layer plastic or the like.
[0003]
As described in JP-A-9-190722, in the production of this CV cable, at the time of crosslinking, an organic peroxide as a crosslinking agent is mixed and heated to cause a crosslinking reaction. At this time, methane gas is generated as a decomposition residue of the crosslinking agent, and this methane gas tends to remain in the crosslinked polyethylene layer.
Conventionally, a cable core before being covered with a sheath is wound around a drum, the cable core is transported together with the drum to a drying chamber, and the cable core is heated and dried with hot air or the like in the drying chamber to remove methane gas. In this case, the conditions for removing the methane gas are determined such that the amount of residual methane gas is 0.1 cc / 1 ccPE or less depending on the thickness of the internal semiconductive layer, the insulating layer, and the external semiconductive layer.
[0004]
[Problems to be solved by the invention]
However, in the conventional method, it is known that when the thickness of the cross-linked polyethylene layer increases, it takes time to remove methane gas, and a cross-linked polyethylene layer exceeding 20 mm in thickness takes several weeks. In addition, such a cable core has a large winding shape in a wound state, and a large transport machine is required to transport the drum to the drying chamber, which is a very laborious operation.
On the other hand, in the technique described in the above publication, a heater wire is provided in a part of the conductor, and the heater wire is energized to heat the cable core and remove methane gas. However, in this case, even if the time for removing methane gas can be shortened, the number of steps for providing the heater wire in the conductor increases, resulting in a problem of increasing the cost of the cable.
[0005]
The present invention eliminates the trouble of transporting the drum around which the cable core is wound in order to perform the heating process for removing methane gas from the CV cable core, and it is necessary to provide a special device / structure such as a heater wire on the cable conductor. It is an object of the present invention to provide a method of manufacturing a CV cable that can be simplified and can reduce costs by reducing the work load.
[0006]
[Means for Solving the Problems]
The present invention relates to a feeding machine for unwinding and feeding a cable conductor from a drum, a preheating tube for preheating the fed cable conductor before extrusion, an inner semiconductive layer and a cross-linked polyethylene insulating layer from the crosshead to the outer periphery of the cable conductor. And an extrusion molding machine for extruding the outer semiconductive layer, a crosslinking cylinder for crosslinking heating / cooling of the extruded CV cable core, and a winder for winding the crosslinked CV cable core in a catenary line type the cable manufacturing line, wherein the cross-linked with a crosslinking cylinder to an adiabatic passage covered passages up with a heat insulating material into the insulation chamber, a heat insulating member formed and a resin insulation of the heat insulating curtain and the floor side The CV cable core is wound up by a winder housed in a heat-insulated chamber that is covered with and isolated from the surrounding atmosphere, and the atmosphere in the heat-insulated chamber is It was heated with a heater and methane gas was removed from the CV cable core being wound and wound by the winder so that the amount of residual methane gas was 0.1 cc / 1 cc PE or less. It is the manufacturing method of the CV cable characterized.
According to the present invention, it becomes possible to heat the CV cable core being wound and wound by the winder accommodated in the heat insulation chamber, that is, to perform methane gas removal in-line, The process and the heating process for removing methane gas can be started and executed at the same time.
Therefore, since it is not an outline process in which the heating process for removing the methane gas from the CV cable core is performed after the winding process as in the prior art, the trouble of transporting the drum around which the CV cable core is wound is eliminated, and the cable conductor It is not necessary to provide special equipment / structure such as a heater wire, and the process can be simplified and the work load can be reduced to reduce the cost.
Since the heat insulating member has a heat insulating curtain on the side surface of the heat insulating chamber and a resin heat insulating body on the floor surface of the heat insulating chamber, a heat insulating chamber can be configured by using a light and simple material such as a heat insulating curtain. Can be easily and easily adopted and installed.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is an explanatory diagram of a configuration of a CV cable core winding device and its surroundings in a CV cable production line according to an embodiment of the present invention.
[0008]
The CV cable production line can be employed in various CV cable production lines such as vertical, horizontal, and catenary types. In the winder of FIG. 1, the one provided in the catenary line is shown. Note that the present invention can also be implemented in other horizontal and vertical CV cable production lines.
[0009]
In the production line, the cable conductor is unwound from the drum and sent out, the preheated tube for preheating the cable conductor to be sent before extrusion, and the cable conductor from the crosshead to the inner semiconductive layer, the insulating layer, and the outer semiconductive A three-layer simultaneous extrusion molding machine for extruding the layers, a bridging cylinder for bridging heating / cooling of the extruded CV cable core 2, and a winder 3 for winding up the crosslinked CV cable core 2 are provided.
[0010]
As shown in FIG. 1, the winder 3 is housed in a heat insulating chamber 5 that is covered with a heat insulating member 4 and is isolated from the surrounding atmosphere. Is supposed to wind up.
The heat insulation chamber 5 heats the internal atmosphere with a heater (for example, an electric heater 10 kw × 3) 6, and heats the cable core 2 that is being wound and wound around the drum 3 a by the winder 3. (In-line heat treatment) Further, the passage 5a leading to the heat insulation chamber 5 is also a heat insulation passage covered with a heat insulating material, and heat can be prevented from escaping.
[0011]
The heat insulating member 4 includes a heat insulating curtain on the side surface and a resin heat insulating body on the floor surface. Moreover, it is preferable that the heat insulating curtain is doubled as the heat insulating member because a further heat insulating effect is obtained.
Moreover, the methane gas removal by the said heating needs to determine temperature and time so that the amount of residual methane gas of a cable core may be 0.1 cc / 1ccPE or less. Conditions such as temperature vary depending on the size and thickness of the CV cable and are preferably set appropriately.
[0012]
According to the embodiment, in order to perform the heating process for removing the methane gas of the CV cable core 2, the heating of the methane gas removal can be performed in-line during production. It is possible to simplify the process and reduce the work load by reducing the time and effort of carrying and eliminating the necessity of providing the cable conductor 1 with a special device or structure such as a heater wire.
[0013]
An example in which the above-described heating process is performed on an example of the cable core will be described with reference to FIG.
In this case, the conditions for removing the methane gas are determined by determining the temperature and time with the goal of reducing the amount of residual methane gas to 0.1 cc / 1 ccPE or less, depending on the thickness of the internal semiconductive layer, insulating layer, and external semiconductive layer. Yes. The CV cable to be processed was dried (in-line dried) with 77 kv of 3 × 100 mm 2 (insulation thickness 11 mmt) during winding (starting winding and drying). In addition, for comparison, an example in which a winder is provided with a heat insulation chamber as in the embodiment apparatus and immediately dried after winding (end of winding and drying) is shown.
[0014]
FIG. 2 shows a conventional example in which a cable core is wound and then left to dry naturally, and in this case, it took 96 hours for the residual methane gas to become the target.
In addition, when the cable core was wound up and heated and dried immediately (after winding and drying), although the residual methane gas was 0.1 cc / ccPE or less, it was 15 hours shorter than the conventional example, but 81 hours. Cost.
On the other hand, a product that has been heat-dried even during winding according to the present invention (beginning of winding and drying) is heated and dried as it is after 36.5 hours from the start of winding. It took only 68 hours after winding to reduce the residual methane gas to 0.1 cc / ccPE or less by drying. In addition, the whole warming drying time required 104.5 hours after the start of winding.
[0015]
Comparing the above-described example of the present invention with the conventional example, the methane gas is sufficiently removed so that it can be taken out from the winder, but it is shortened by 28 hours compared with the naturally-dried conventional example. Moreover, it is shortened by 13 hours compared with the comparative example which started drying after winding. In the example of the present invention, since the cable core being wound is dried, the cable drying time itself is sufficiently long as 104.5 hours as described above compared with the comparative example (81 hours). In addition, uniform methane gas removal can be expected for the entire cable core.
[0016]
【The invention's effect】
According to the present invention, the heating process for removing the methane gas from the CV cable core enables the heating of the methane gas removal in-line during production. lost, and then it is not necessary to provide a special equipment and structures such as a heater wire in the cable conductors, the cost can be reduced to simplify the process and to reduce the workload.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a configuration of a CV cable core winding device and its surroundings in a CV cable production line according to an embodiment of the present invention.
FIG. 2 is an explanatory view of a fixed example showing methane gas removal from a cable core in comparison with an example of the present invention, a conventional example, and a comparative example.
[Explanation of symbols]
2 Cable core 3 Winding machine 4 Thermal insulation member 5 Thermal insulation chamber 6 Heater

Claims (1)

ケーブル導体をドラムから巻き出して送る送り出し機と、送り出されたケーブル導体を押し出し成形前に予熱する予熱管と、ケーブル導体の外周にクロスヘッドから内部半導電層、架橋ポリエチレン絶縁層および外部半導電層を押し出し成形する押し出し成形機と、押し出し後のCVケーブルコアを架橋加熱・冷却する架橋筒と、架橋後CVケーブルコアをカテナリーライン型で巻き取る巻き取り機とを備えたCVケーブルの製造ラインにおいて、
前記架橋筒で架橋されて断熱室に入るまでの通路を断熱材で覆われた断熱通路とし、
側面断熱カーテンと床面の樹脂断熱とを有しなる断熱部材で覆われて周囲の雰囲気から隔絶された断熱室内に収容された巻き取り機によってCVケーブルコアを巻き取り、
断熱室内の雰囲気を加熱器で加熱して、前記巻き取り機に巻き取られ中および巻き取られた状態のCVケーブルコアから残留メタンガス量が0.1cc/1ccPE以下となるようにメタンガス除去を行うようにしたことを特徴とするCVケーブルの製造方法。
A feeding machine that unwinds and feeds the cable conductor from the drum, a preheating pipe that preheats the sent cable conductor before extrusion, and an inner semiconductive layer, a cross-linked polyethylene insulating layer, and an outer semiconductive from the crosshead to the outer periphery of the cable conductor CV cable production line comprising an extrusion molding machine for extruding a layer, a bridging cylinder for bridging heating and cooling of the extruded CV cable core, and a winder for winding the crosslinked CV cable core in a catenary line type In
The passage from the bridge to the heat insulation chamber after being bridged by the bridge cylinder is a heat insulation passage covered with a heat insulating material,
Winding the CV cable core by the side of the heat insulating curtain and the floor surface of the resin insulation and winder is covered with a heat insulating member which is housed in the heat insulating chamber which is isolated from the surrounding atmosphere comprising a,
The atmosphere in the heat insulation chamber is heated with a heater, and the methane gas is removed from the CV cable core being wound and wound by the winder so that the amount of residual methane gas is 0.1 cc / 1 ccPE or less. A method of manufacturing a CV cable, characterized in that it is configured as described above.
JP2002106580A 2002-04-09 2002-04-09 CV cable manufacturing method Expired - Fee Related JP3657237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002106580A JP3657237B2 (en) 2002-04-09 2002-04-09 CV cable manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002106580A JP3657237B2 (en) 2002-04-09 2002-04-09 CV cable manufacturing method

Publications (2)

Publication Number Publication Date
JP2003303525A JP2003303525A (en) 2003-10-24
JP3657237B2 true JP3657237B2 (en) 2005-06-08

Family

ID=29390860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002106580A Expired - Fee Related JP3657237B2 (en) 2002-04-09 2002-04-09 CV cable manufacturing method

Country Status (1)

Country Link
JP (1) JP3657237B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2352540T3 (en) * 2008-02-20 2011-02-21 Abb Research Ltd. METHOD FOR PROVIDING A HIGH VOLTAGE CD ELECTRICAL CABLE ISOLATED TO A HIGH VOLTAGE CD TERMINATION OR ARTICULATION.

Also Published As

Publication number Publication date
JP2003303525A (en) 2003-10-24

Similar Documents

Publication Publication Date Title
EP2983177A1 (en) Method for preparing a crosslinked cable
JP3657237B2 (en) CV cable manufacturing method
US7168934B2 (en) Installation for producing cables
US20040144471A1 (en) Method for producing a cable
KR101481739B1 (en) Manufacturing system of fire proof cable and manufacturing methdo of the same
US4415518A (en) Continuous curing of cable
JP2021170452A (en) Method for manufacturing power transmission cable
JP2002298673A (en) Manufacturing method of crosslinked polyethylene insulation power cable
JPS6343766Y2 (en)
JP2910941B2 (en) Forced cooling method of drum winding power cable
JPH06325646A (en) Drying method for resin insulated wire
JP2003308743A (en) Method for manufacturing cv cable
JPH0680221U (en) Cable bridge equipment
KR101425073B1 (en) Continuous type cable manufacturing device and manufacturing method using the same
JPS5833620Y2 (en) Rubber plastic material
US3196060A (en) Process and apparatus for the manufacture of high tension cables
JPS586242B2 (en) Kakiyo Polyolefin Inset Cable
JPH07170623A (en) Terminal treating method for cable
JPS5990314A (en) Rubber and plastic cable producing apparatus
KR0154650B1 (en) Processes adapted to the manufacture of corss linked polyethylene insulated vinyl sheathed cable
JPH066925A (en) Method of forming cable joint
JPH0239916A (en) Manufacture of heat-resistant heat-shrinkable tube
JP4309077B2 (en) CV cable mold heating tube and CV cable terminal processing method.
JP2001136628A (en) Joint for submarine cv cable
JPS5835886A (en) Method of connecting rubber and plastic insulated cable

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050308

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080318

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees