JP3656283B2 - Connection structure of branch connection in high-pressure fuel rail - Google Patents

Connection structure of branch connection in high-pressure fuel rail Download PDF

Info

Publication number
JP3656283B2
JP3656283B2 JP15981095A JP15981095A JP3656283B2 JP 3656283 B2 JP3656283 B2 JP 3656283B2 JP 15981095 A JP15981095 A JP 15981095A JP 15981095 A JP15981095 A JP 15981095A JP 3656283 B2 JP3656283 B2 JP 3656283B2
Authority
JP
Japan
Prior art keywords
branch
seat surface
pressure
fuel rail
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15981095A
Other languages
Japanese (ja)
Other versions
JPH0875075A (en
Inventor
信夫 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Usui Co Ltd
Original Assignee
Usui Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Usui Co Ltd filed Critical Usui Co Ltd
Priority to JP15981095A priority Critical patent/JP3656283B2/en
Publication of JPH0875075A publication Critical patent/JPH0875075A/en
Application granted granted Critical
Publication of JP3656283B2 publication Critical patent/JP3656283B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Branch Pipes, Bends, And The Like (AREA)

Description

【0001】
【産業上の利用分野】
本発明は高圧燃料多岐管またはブロックレールのような高圧燃料レールにおける分岐枝管または分岐金具のような分岐接続体の接続構造に係り、特にディーゼル内燃機関への燃料供給路となる1000kgf/cm以上の高圧燃料レールにおける分岐接続体の接続構造に関する。
【0002】
【従来の技術】
従来、この種の分岐接続体の接続構造は、本出願人により特開平3−273599号公報で提案されたが、これは図11に例示するように、分岐接続体としての分岐枝管13の内部に流通路13″を有し、且つ先端部側に設けた押圧頭部13′を球面14′となすとともに、該球面に連ってその基部に直線部(円管壁)14を有し、かつ押圧頭部13′のなす曲率半径を分岐枝管13の直径Dの0.4D乃至10.0Dに設定して構成していた。そして高圧燃料本管側の開口傾斜状のそれぞれの受圧座面12′に当接係合して組付けナットにより締着せしめて接続固定するものであった。
【0003】
【発明が解決しようとする課題】
従来技術による前記接続構造としては、分岐枝管13の接続に際して組付けナットによる締着により簡易に接続することができ、また、接続時の分岐枝管13側の押圧頭部13′での偏芯を締着につれて自動修正し、受圧座面12′と円形線接触状態を保持して均一な面圧をもって接続固定することができ、その点満足し得るものではある。しかしながら、超高圧流の繰返し供給並びに加振下での長期の使用に際して直線部14が剛性に乏しいために、撓みや倒れ等が発生し分岐枝管13内部の流通路13″の先端側に潰れに伴う該流通路13″の狭小化が生じて流過抵抗の増大により正確な燃料噴射制御を阻害し、また不安定な“座り”や組付けナット側の緩みに起因して、未だ長期に亘りその接続を確実となし得ず、洩れを誘発する問題を有する傾向にあった。
【0004】
本発明は従来技術の有する前記問題に鑑みてなされたものであり、従来技術と同様に接続に際しての分岐接続体側の押圧頭部での偏芯を締着に伴って自動修正する機能を損うことなく、さらに押圧頭部での剛性を高めて機械的強度を充分となしヘタリ等の永久変形を防止するとともに、該頭部の相手受圧座面での“座り”を安定となし、長期に亘り接続固定を確実とすることができ、かつ分岐接続体の流通路の狭小化を防止できる高圧燃料レールにおける分岐接続体の接続構造を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
前記目的を達成するために、本発明は、燃料レール本管内に軸方向に高圧燃料が流通する流通路が形成されるとともに前記流通路の周壁に軸方向の複数位置において貫孔が形成され、前記貫孔にそれぞれ前記流通路に通じる流路を有する分岐接続体が連設されるよう、前記燃料レール本管の周面方向に拡大開口した受圧座面が形成され、前記受圧座面に前記分岐接続体の端部に形成された押圧頭部を当接係合させて、前記分岐接続体側に組込んだナットを締着することにより、前記分岐接続体を前記燃料レール本管に固定する高圧燃料レールにおける分岐接続体の接続構造において、前記押圧頭部が、先端の球面状の押圧座面と、前記球面状の押圧座面の端部から軸方向に間隔をおいて形成された前記ナットと当接する環状フランジ部と、前記球面状の押圧座面に接するように接続されて形成された、前記環状フランジ部から前記球面状の押圧座面の先端に向って先細りとなる円錐面と、から形成されたことを要旨とし、さらに、前記円錐面と押圧座面のなす球面との環状境界線が前記受圧座面と当接係合するよう構成されたものである。
【0006】
【作用】
本発明では、分岐接続体の端部に形成されている押圧頭部の先端には球面状の押圧座面が形成されているので、分岐接続体が燃料レールに対して僅かに傾き、例えその傾きが修正されずに保持されたまま組付けられたとしても、押圧座面は回転面からなる受圧座面と円形の線接触状態が保持されて均一な面圧が得られ接触部の気密は確実に保たれる。
【0007】
一方、分岐接続体が僅かに偏心したり、傾いた状態となったとしても、締付けナットの締付けトルクによりシール面での面圧が上昇する前に押圧座面の球面が受圧座面の回転面を滑動して分岐接続体の偏心や傾きが自動的に修正され、押圧頭部と受圧断面との間に均一な面圧が得られる。
押圧頭部には、球面状の押圧座面に連って、該押圧座面から軸芯方向に間隔をおいて設けた環状フランジ部まで先端に向って先細りとなった剛性の高い円錐面が形成されているので、機械的強度を増して押圧頭部の撓みや倒れ等を防止し安定な“座り”を確保できるとともに、分岐接続体の流通路の狭小化を防止して適正な流通路径を確保し、燃料の流過抵抗の増大を抑制して正確な燃料噴射制御を可能とすることができる。
組み付けは受圧座面に分岐接続体の押圧頭部を当接係合してナットによる螺合によって、分岐接続体を燃料レールに固定するだけで簡単に行われるが、螺子を継手金具の外周に設けて袋ナットにより螺合するように構成してもよい。
【0008】
【実施例】
以下、本発明の実施例を図1乃至図10を参照して説明する。
ここで、図1は一実施例の正面図、図2は図1の一部断面正面図、図3および図4はそれぞれ異なる実施例の要部の説明図、図5は本発明の構成を示す説明図、図6(a)乃至(c)は押圧頭部と受圧座面との圧接状態を示す部分拡大断面図、図7は本発明の動作を示す説明図、図8(a)および図9はそれぞれさらに他の実施例を示す図2相当図、図8(b)は図8(a)で用いるブロックレールの斜視図、図10はさらに別の実施例を示す図2相当図である。
【0009】
図1に示すように、燃料レールとして設けられた本管1の軸心方向に直角に分岐接続体としての分岐枝管3が、継手金具4部分において、ナット5によって締着されている。図2に示すように、例えば外径20mm、肉厚6mmの比較的肉厚の金属管からなる本管1には流通路1′が形成され、この流通路1′には貫孔2′が形成され、この貫孔2′の端部には本管1の外周面方向に拡大開口した、貫孔2′の軸芯を中心とした回転面、即ち円錐面、回転円弧面、回転楕円面、回転放物線面、回転双曲線面等の形状を有する受圧座面2が形成されている。
本管1に対して受圧座面2を囲繞して継手金具4が設けられ、この継手金具4には螺子孔4′が形成されている。
【0010】
分岐枝管3の端部には押圧頭部6が形成され、この押圧頭部6には、図3に示すように先端に球面状の押圧座面6′が形成され、また該押圧座面6′から軸芯方向に間隔をおいて半径方向に突出した環状フランジ部3′が形成されている。この押圧座面6′に連って環状フランジ部3′まで先端に向って先細りとなった円錐面6″が形成されている。そして、この円錐面6″は押圧座面6′のなす球面の接線方向に延長している。
なお、フランジ部3′は半径方向に突出させることなく、図4のように円錐面6″から直立するよう形成することもできる。
【0011】
この実施例においては、図5に示すように特開平3−273599号と同様押圧座面6′の曲率半径γは分岐枝管3の直径Dに対して
0.4D≦γ≦10D …(1)
の範囲に設定してあり、0.4D未満では締付けナット5の締付けトルクにより押圧座面6′が受圧座面2を突き抜け流通路1′内に突出してしまい、一方10Dを超えると、押圧座面6′の輪郭が直線または円錐形に近くなり下記するような球面による自己修正作用等を期待できないからである。なお、好ましい範囲は0.4D≦γ≦4Dである。
【0012】
分岐枝管3の押圧頭部6の押圧座面6′を受圧座面2に対接させた状態で、ナット5が螺子孔4′に締着されて、分岐接続体3が本管1に組み付けられ、ナット5の先端部が必要に応じ設けたワッシャ7を介して環状フランジ部3′を押圧するに伴い、図6(a)のように押圧座面6′と受圧座面2とが互いに圧接したり、図6(b)のように円錐面6″と受圧座面2とが互いに圧接したりするが、図6(c)のように押圧座面6′と円錐面6″との間の環状境界線6aと受圧座面2とが互いに高い面圧で圧接することも可能であり、このようにして本管1の流通路1′が分岐枝管3の流路3″によって気密的に分岐されている。換言すると、前記受圧座面2は前記押圧頭部6の円錐面6″と前記押圧座面6′の球面の接線方向に延長する仮想面との間に位置するよう設けられている。
なお、前記環状境界線6aは、ミクロ的視点では断面尖端状に突出しており、したがって受圧座面2と圧接すると該環状境界線6aにより面圧が高まり気密効果は一層向上する。
【0013】
上記実施例では押圧頭部6を直接受圧座面2に当接係合させる場合を示したが、押圧頭部6と受圧座面2との間にインジュウム、銀、銅、真鍮あるいはアルミニウム等からなるシール材を介在させてもよい。
【0014】
次にこれら実施例において、例え分岐枝管3が軸心χ方向に対し僅かに傾き、かつその傾きが束縛された状態で組付された場合でも、押圧頭部6は回転面からなる受圧座面2と円形の線接触状態を保持するため、本管1に対して分岐枝管3は常に安定位置を保持して均一な面圧が得られ、一方、図7に示すように何らかの原因で分岐枝管3が軸心χ方向から僅かに傾いたり偏心したりすると、締付けナット5の螺合による締付けトルクによって環状フランジ部3′が押圧されてシール面での面圧が上昇する前に押圧頭部6の球面が受圧座面2の回転面を滑動し、このため分岐枝管3の傾きや偏心が所定位置に修正される(自己修正作用)ので、シール面において均一な面圧が得られ燃料洩れを起すことなく確実な超高圧燃料の供給が行われる。
【0015】
押圧頭部6の押圧座面6′は球面なので、回転面である受圧座面2と円形の線接触をし、分岐枝管3が僅かに傾いたり偏心しても、回転面と円形の線接触は気密性を保持し、かつすでに述べたように自己修正作用によって分岐枝管3の傾きは修正されるので、燃料洩れ状態となることはない。
また、押圧頭部6の押圧座面6′の曲率半径γが(1)式に示す値に設定されているので、押圧頭部6は受圧座面2に対して、最適の範囲において対接し、確実で完全な気密性対接が行われる。
【0016】
なお、上記実施例では受圧座面2を囲繞するよう継手金具4を設けたものについて説明したが、本発明は図8(b)に示すように燃料レールとして本管1に代えてブロックレール1aに適用することも可能である。図8に示す実施例では、継手金具4を設けることなく、流通路1′をブロックレール1aに偏心して穿設し、その厚肉部に流通路1′と連通する貫孔2′、受圧座面2および螺子孔8を設け、この螺子孔8に直接締付けナット5を螺合し、ワッシャ7を介して接続するよう構成したものである。
【0017】
さらに本発明は図9のような袋ナット5′も使用することができる。この袋ナット5′には中央に円柱状の突出部5′aが形成されており、袋ナット5′の内周螺子5′bを継手金具4の外周の螺子4″に螺合するに伴いこの突出部5′aによりワッシャ7を介して環状フランジ部3′を下方に押圧して押圧頭部6を受圧座面2に当接係合せしめるものである。
【0018】
次に、図10はさらに別の実施例の要部の縦断側面図であり、この実施例では分岐枝管3に代えて分岐接続体が分岐金具3aで構成されている。この実施例は分岐接続体を曲げ加工するに際し、大きな曲率に伴って生じる他の部品との干渉を避けるために、エルボ等の分岐金具を用いる場合や等圧弁、減衰弁、送出し弁および吐出弁等の機構を内設する分岐金具を使用する場合等を考慮してなされたものである。
図10の実施例では、分岐金具3aの一端には前記実施例と同様に押圧頭部6に球面状の押圧座面6′、環状フランジ部3′および該押圧座面と環状フランジ部とに連なる円錐面6″とを有し、ナット5の外周に設けた螺子5″を継手金具4の螺子孔4′に螺合することにより環状フランジ部3′を介して本管1の受圧座面2に分岐金具3aの接続頭部6を当接係合させている。一方分岐金具3aの他端にはスリーブ9を介して袋ナット10を螺合することにより分岐枝管3が接続される構成となっている。
この実施例によると、本管1の長手方向に平行に分岐枝管3を導出することができる。
【0019】
【発明の効果】
以上詳細に説明したように、本発明によると、押圧座面の球面によって分岐接続体が傾いた状態で組付けられたとしても押圧頭部は受圧座面と円形の線接触状態を保持されて均一な面圧が得られ、一方、分岐接続体の偏心や傾きがあっても、締付けナットの締付けトルクによりシール面での面圧が上昇する前に押圧座面の球面が受圧座面を滑動して分岐接続体の偏心や傾き等は自動的に修正されて均一な面圧を得ることができ、さらに、燃料レールに対して分岐接続体を簡単な操作で気密的に固定することが可能となり、また円錐面を設けて剛性を増したため、ヘタリ等の永久変形が防止できるとともに、受圧座面に対する“座り”が安定し、超高圧燃料流の繰り返し加圧やディーゼル内燃機関の振動に対して燃料の飛散による洩れや接続部の離脱の発生を防止し、さらに分岐接続体の流通路の狭小化を阻止して適正な流通路径を確保し、流過抵抗の増大を抑制して燃料の流れを円滑にし正確な燃料噴射制御を可能にすることができる高圧燃料レールにおける分岐接続体の接続構造を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施例の正面図である。
【図2】図1の一部断面正面図である。
【図3】本発明の要部の一実施例を示す図である。
【図4】他の実施例の図3相当図である。
【図5】本発明の構成を示す説明図である。
【図6】本発明の圧接状態を示す部分拡大断面図で、(a)は押圧座面と受圧座面とが互いに圧接した状態を示す図、(b)は円錐面と受圧座面とが互いに圧接した状態を示す図、(c)は押圧座面と円錐面との間の環状境界線と受圧座面とが互いに圧接した状態を示す図である。
【図7】本発明の動作を示す説明図である。
【図8】本発明の他の実施例を示す図で、(a)は図2相当図、(b)は(a)に用いるブロックレールの斜視図である。
【図9】さらに他の実施例を示す図2相当図である。
【図10】さらに別の実施例を示す図2相当図である。
【図11】従来の高圧燃料レールにおける分岐接続体の接続構造の要部を示す図である。
【符号の説明】
1 本管
1a ブロックレール
1′ 流通路
2 受圧座面
2′ 貫孔
3 分岐枝管
3a 分岐金具
3′ 環状フランジ部
3″ 流路
4 継手金具
4′ 螺子孔
5 ナット
5′ 袋ナット
5′a 突出部
5′b 螺子
5″ 螺子
6′ 押圧座面
6″ 円錐面
6a 環状境界線
7 ワッシャ
8 螺子孔
9 スリーブ9
10 袋ナット10
[0001]
[Industrial application fields]
The present invention relates to a connection structure of a branch connection body such as a branch branch pipe or a branch fitting in a high pressure fuel rail such as a high pressure fuel manifold or a block rail, and more particularly 1000 kgf / cm 2 serving as a fuel supply path to a diesel internal combustion engine. The present invention relates to the connection structure of the branch connection body in the above high-pressure fuel rail.
[0002]
[Prior art]
Conventionally, a connection structure of this kind of branch connection body has been proposed by the present applicant in Japanese Patent Laid-Open No. 3-273599. This is illustrated in FIG. A pressing head 13 ′ having a flow passage 13 ″ inside and a pressing head 13 ′ provided on the tip end side is formed as a spherical surface 14 ′, and a linear portion (circular tube wall) 14 is provided at the base of the spherical surface. In addition, the radius of curvature formed by the pressing head 13 'is set to 0.4D to 10.0D, which is the diameter D of the branch branch pipe 13. And each of the pressure receiving pressures on the inclined side of the high-pressure fuel main pipe is inclined. The bearing surface 12 ′ is abutted and engaged, and is fastened and fixed by an assembly nut.
[0003]
[Problems to be solved by the invention]
The connection structure according to the prior art can be easily connected by fastening with an assembly nut when connecting the branch branch pipe 13, and the bias head 13 'on the side of the branch branch pipe 13 at the time of connection is also offset. The core is automatically corrected as it is tightened, and the pressure receiving seat surface 12 'can be kept in contact with the circular line and connected and fixed with a uniform surface pressure, which is satisfactory. However, since the straight portion 14 has poor rigidity when it is repeatedly supplied with an ultrahigh pressure flow and used for a long time under vibration, the straight portion 14 is bent and collapsed, and is collapsed to the front end side of the flow passage 13 ″ inside the branch branch pipe 13. As a result, the flow passage 13 ″ is narrowed to prevent accurate fuel injection control due to an increase in the flow resistance, and due to unstable “sitting” and loosening of the assembly nut, However, there was a tendency that the connection could not be made reliably and had a problem of inducing leakage.
[0004]
The present invention has been made in view of the above-described problems of the prior art, and as in the prior art, the function of automatically correcting the eccentricity at the pressing head on the side of the branch connector upon connection with the fastening is impaired. In addition, the rigidity at the pressing head is further increased to ensure sufficient mechanical strength and prevent permanent deformation such as settling, and stable "sitting" on the mating pressure bearing surface of the head is achieved for a long time. It is an object of the present invention to provide a connection structure for a branch connection body in a high-pressure fuel rail that can reliably secure the connection and prevent the flow path of the branch connection body from being narrowed.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has a flow passage in which high-pressure fuel flows in the axial direction in the fuel rail main pipe, and through holes are formed at a plurality of positions in the axial direction on the peripheral wall of the flow passage. A pressure receiving seat surface that is enlarged and opened in the circumferential direction of the fuel rail main pipe is formed so that a branched connection body having a flow path that communicates with the flow passage is connected to the through hole, and the pressure receiving seat surface is provided with the pressure receiving seat surface. The branch connection body is fixed to the fuel rail main pipe by abutting and engaging the pressing head formed at the end of the branch connection body and fastening the nut incorporated on the branch connection body side. In the connection structure of the branch connection body in the high-pressure fuel rail, the pressing head is formed with a spherical pressing seat surface at the tip and an end spaced from the end of the spherical pressing seat surface in the axial direction. An annular flange that contacts the nut and the front Is formed by connecting in contact with the spherical pressing seat surface, and summarized in that the conical surface that tapers toward from said annular flange portion to the distal end of the spherical pressing seat surface, formed from, Furthermore, an annular boundary line between the conical surface and the spherical surface formed by the pressing seat surface is configured to abut and engage with the pressure receiving seat surface.
[0006]
[Action]
In the present invention, since the spherical pressing seat surface is formed at the tip of the pressing head formed at the end of the branch connector, the branch connector is slightly inclined with respect to the fuel rail. Even if the pressure seat is assembled without being corrected, the pressing seat surface maintains a circular line contact state with the pressure receiving seat surface, which is a rotating surface, and a uniform surface pressure is obtained, and the air tightness of the contact portion is Securely kept.
[0007]
On the other hand, even if the branch connector is slightly decentered or inclined, the spherical surface of the pressure seat surface becomes the rotational surface of the pressure-receiving seat surface before the surface pressure on the seal surface rises due to the tightening torque of the tightening nut. , The eccentricity and inclination of the branch connection body are automatically corrected, and a uniform surface pressure is obtained between the pressing head and the pressure receiving section.
The pressing head has a highly rigid conical surface that is tapered toward the tip from the pressing seat surface to an annular flange portion that is spaced from the pressing seat surface in the axial direction along the spherical pressing seat surface. Since it is formed, it can increase the mechanical strength to prevent bending and falling of the pressing head and ensure a stable “sitting”, and prevent the narrowing of the flow path of the branch connection body and the appropriate flow path diameter. Can be ensured, and an increase in fuel flow resistance can be suppressed to enable accurate fuel injection control.
Assembly is done simply by abutting and engaging the pressing head of the branch connector to the pressure-receiving seat surface and screwing the nut to the fuel rail by screwing with a nut. It may be configured to be provided and screwed with a cap nut.
[0008]
【Example】
Embodiments of the present invention will be described below with reference to FIGS.
Here, FIG. 1 is a front view of one embodiment, FIG. 2 is a partially sectional front view of FIG. 1, FIGS. 3 and 4 are explanatory views of main parts of different embodiments, and FIG. 5 is a configuration of the present invention. 6 (a) to 6 (c) are partially enlarged sectional views showing the press contact state between the pressing head and the pressure receiving seat surface, FIG. 7 is an explanatory view showing the operation of the present invention, FIG. 8 (a) and FIG. FIG. 9 is a view corresponding to FIG. 2 showing another embodiment, FIG. 8B is a perspective view of the block rail used in FIG. 8A, and FIG. 10 is a view corresponding to FIG. is there.
[0009]
As shown in FIG. 1, a branch branch pipe 3 as a branch connection body perpendicular to the axial direction of the main pipe 1 provided as a fuel rail is fastened by a nut 5 at a joint fitting 4 portion. As shown in FIG. 2, a flow passage 1 'is formed in the main pipe 1 made of a relatively thick metal tube having an outer diameter of 20 mm and a thickness of 6 mm, for example, and a through hole 2' is formed in the flow passage 1 '. At the end of this through hole 2 ′, a rotating surface centering on the axis of the through hole 2 ′, ie, a conical surface, a rotating arc surface, a rotating ellipsoid, which is enlarged and opened toward the outer peripheral surface of the main pipe 1 is formed. A pressure receiving seat surface 2 having a shape such as a rotating parabolic surface, a rotating hyperbolic surface or the like is formed.
A joint fitting 4 is provided surrounding the pressure-receiving seat surface 2 with respect to the main pipe 1, and a screw hole 4 ′ is formed in the joint fitting 4.
[0010]
A pressing head 6 is formed at the end of the branch branch pipe 3, and a spherical pressing seat surface 6 'is formed at the tip of the pressing head 6 as shown in FIG. An annular flange portion 3 ′ protruding in the radial direction at an interval in the axial direction from 6 ′ is formed. A conical surface 6 "tapering toward the tip is formed to the annular flange portion 3 'continuously with the pressing seat surface 6'. The conical surface 6" is a spherical surface formed by the pressing seat surface 6 '. It extends in the tangential direction.
The flange portion 3 'can be formed so as to stand upright from the conical surface 6 "as shown in FIG. 4 without protruding in the radial direction.
[0011]
In this embodiment, as shown in FIG. 5, the radius of curvature γ of the pressing seat surface 6 ′ is 0.4D ≦ γ ≦ 10D (1) with respect to the diameter D of the branch branch pipe 3 as in Japanese Patent Laid-Open No. 3-273599. )
In the range of less than 0.4D, the pressing seat surface 6 'protrudes through the pressure receiving seat surface 2 due to the tightening torque of the tightening nut 5, and protrudes into the flow passage 1'. This is because the contour of the surface 6 'is close to a straight line or a conical shape, and the self-correcting action by the spherical surface as described below cannot be expected. A preferred range is 0.4D ≦ γ ≦ 4D.
[0012]
In a state where the pressing seat surface 6 ′ of the pressing head 6 of the branch branch pipe 3 is in contact with the pressure receiving seat surface 2, the nut 5 is fastened to the screw hole 4 ′ and the branch connector 3 is attached to the main pipe 1. As shown in FIG. 6A, the pressing seat surface 6 'and the pressure-receiving seat surface 2 are brought together as the tip end portion of the nut 5 presses the annular flange portion 3' through a washer 7 provided as necessary. The conical surface 6 ″ and the pressure-receiving seat surface 2 are in pressure contact with each other as shown in FIG. 6B, but the pressing seat surface 6 ′ and the conical surface 6 ″ as shown in FIG. 6C. It is also possible for the annular boundary line 6a and the pressure-receiving seat surface 2 to be brought into pressure contact with each other with a high surface pressure. In this way, the flow passage 1 'of the main pipe 1 is formed by the flow path 3 "of the branch branch pipe 3. In other words, the pressure-receiving seat surface 2 extends temporarily in a tangential direction between the conical surface 6 ″ of the pressing head 6 and the spherical surface of the pressing seat surface 6 ′. It is provided so as to be positioned between the surfaces.
Note that the annular boundary line 6a protrudes in a tip-like shape from a microscopic viewpoint. Therefore, when the pressure receiving seat surface 2 is pressed, the surface pressure is increased by the annular boundary line 6a, and the airtight effect is further improved.
[0013]
In the above-described embodiment, the pressing head 6 is directly contacted and engaged with the pressure-receiving seat surface 2, but between the pressing head 6 and the pressure-receiving seat surface 2 is made of indium, silver, copper, brass, aluminum, or the like. A sealing material may be interposed.
[0014]
Next, in these embodiments, even when the branch branch pipe 3 is assembled with a slight inclination with respect to the axial center χ direction and the inclination is constrained, the pressing head 6 has a pressure receiving seat made of a rotating surface. In order to maintain the circular line contact state with the surface 2, the branch branch pipe 3 always maintains a stable position with respect to the main pipe 1 to obtain a uniform surface pressure. On the other hand, as shown in FIG. When the branch branch pipe 3 is slightly tilted or decentered from the axial center χ direction, the annular flange portion 3 ′ is pressed by the tightening torque due to the screwing of the tightening nut 5 and pressed before the surface pressure on the seal surface rises. The spherical surface of the head 6 slides on the rotational surface of the pressure-receiving seating surface 2, so that the inclination and eccentricity of the branch branch pipe 3 are corrected to predetermined positions (self-correcting action), so that a uniform surface pressure is obtained on the sealing surface. Therefore, the ultra-high pressure fuel can be reliably supplied without causing fuel leakage.
[0015]
Since the pressing seat surface 6 ′ of the pressing head 6 is a spherical surface, it makes circular line contact with the pressure receiving seat surface 2 that is the rotating surface, and even if the branch branch pipe 3 is slightly tilted or eccentric, it makes circular contact with the rotating surface. The airtightness is maintained, and the inclination of the branch branch pipe 3 is corrected by the self-correcting action as described above, so that no fuel leakage occurs.
Further, since the radius of curvature γ of the pressing seat surface 6 ′ of the pressing head 6 is set to the value shown in the expression (1), the pressing head 6 contacts the pressure receiving seat surface 2 in the optimum range. A reliable and complete hermetic interview is performed.
[0016]
In the above embodiment, the joint metal fitting 4 is provided so as to surround the pressure-receiving seat surface 2, but the present invention replaces the main pipe 1 as a fuel rail with a block rail 1a as shown in FIG. 8 (b). It is also possible to apply to. In the embodiment shown in FIG. 8, the flow passage 1 ′ is eccentrically drilled in the block rail 1 a without providing the joint fitting 4, and a through hole 2 ′ communicating with the flow passage 1 ′ is formed in the thick portion thereof, and the pressure receiving seat. The surface 2 and the screw hole 8 are provided, and the tightening nut 5 is screwed directly into the screw hole 8 and connected via the washer 7.
[0017]
Furthermore, the present invention can also use a cap nut 5 'as shown in FIG. The cap nut 5 'is formed with a cylindrical protrusion 5'a at the center, and the inner peripheral screw 5'b of the cap nut 5' is screwed to the outer screw 4 "of the fitting 4. The projecting portion 5'a presses the annular flange portion 3 'downward through the washer 7 so that the pressing head 6 is brought into contact with and engaged with the pressure receiving seat surface 2.
[0018]
Next, FIG. 10 is a longitudinal side view of a main part of still another embodiment. In this embodiment, a branch connection body is constituted by a branch fitting 3a instead of the branch branch pipe 3. In this embodiment, when bending a branch connector, in order to avoid interference with other parts caused by a large curvature, a branch fitting such as an elbow is used, an isobaric valve, a damping valve, a delivery valve, and a discharge. This is made in consideration of the case of using a branch metal fitting with a mechanism such as a valve.
In the embodiment of FIG. 10, at one end of the branch fitting 3a, a spherical pressing seat surface 6 ', an annular flange portion 3', and the pressing seat surface and the annular flange portion are formed on the pressing head 6 in the same manner as in the previous embodiment. The pressure receiving seating surface of the main pipe 1 through the annular flange portion 3 ′ by screwing a screw 5 ″ provided on the outer periphery of the nut 5 into the screw hole 4 ′ of the fitting 4. 2, the connection head 6 of the branch fitting 3a is brought into abutment. On the other hand, the branch branch pipe 3 is connected to the other end of the branch fitting 3 a by screwing a cap nut 10 through a sleeve 9.
According to this embodiment, the branch branch pipe 3 can be led out parallel to the longitudinal direction of the main pipe 1.
[0019]
【The invention's effect】
As described above in detail, according to the present invention, even if the branch connector is assembled in a tilted state by the spherical surface of the pressing seat surface, the pressing head is maintained in a circular line contact state with the pressure receiving seat surface. Uniform surface pressure can be obtained. On the other hand, even if the branch connector is eccentric or inclined, the spherical surface of the pressure seat slides on the pressure-receiving seat surface before the surface pressure on the seal surface increases due to the tightening torque of the tightening nut. The eccentricity and inclination of the branch connector can be automatically corrected to obtain a uniform surface pressure. Furthermore, the branch connector can be hermetically fixed to the fuel rail with a simple operation. In addition, since the conical surface is provided to increase rigidity, permanent deformation such as settling can be prevented, and “sitting” with respect to the pressure-receiving seat surface is stable, and against repeated pressurization of ultrahigh-pressure fuel flow and vibration of the diesel internal combustion engine Leakage and connection due to fuel scattering Prevents separation and prevents narrowing of the flow path of the branch connection body to ensure an appropriate flow path diameter, suppresses increase in flow resistance, smoothes the fuel flow, and performs accurate fuel injection control. It is possible to provide a connection structure for a branch connection in a high-pressure fuel rail that can be made possible.
[Brief description of the drawings]
FIG. 1 is a front view of an embodiment of the present invention.
2 is a partial cross-sectional front view of FIG. 1. FIG.
FIG. 3 is a diagram showing an embodiment of the main part of the present invention.
FIG. 4 is a view corresponding to FIG. 3 of another embodiment.
FIG. 5 is an explanatory diagram showing a configuration of the present invention.
6A and 6B are partially enlarged sectional views showing a pressure contact state of the present invention, in which FIG. 6A is a view showing a state in which a pressing seat surface and a pressure receiving seat surface are in pressure contact with each other, and FIG. 6B is a view showing a conical surface and a pressure receiving seat surface; The figure which shows the state which mutually pressed-contacted, (c) is a figure which shows the state which the annular boundary line between a press seat surface and a conical surface, and the pressure-receiving seat surface mutually press-contacted.
FIG. 7 is an explanatory diagram showing the operation of the present invention.
8A and 8B are diagrams showing another embodiment of the present invention, in which FIG. 8A is a view corresponding to FIG. 2 and FIG. 8B is a perspective view of a block rail used in FIG.
FIG. 9 is a view corresponding to FIG. 2, showing still another embodiment.
FIG. 10 is a view corresponding to FIG. 2, showing still another embodiment.
FIG. 11 is a diagram showing a main part of a connection structure of a branch connection body in a conventional high-pressure fuel rail.
[Explanation of symbols]
1 Main pipe 1a Block rail 1 'Flow path 2 Pressure-receiving seat surface 2' Through hole 3 Branch branch pipe 3a Branch fitting 3 'Annular flange 3 "Channel 4 Joint fitting 4' Screw hole 5 Nut 5 'Cap nut 5'a Projection 5′b Screw 5 ″ Screw 6 ′ Pressing seat surface 6 ″ Conical surface 6a Annular boundary 7 Washer 8 Screw hole 9 Sleeve 9
10 Cap nut 10

Claims (2)

燃料レール本管内に軸方向に高圧燃料が流通する流通路が形成されるとともに前記流通路の周壁に軸方向の複数位置において貫孔が形成され、前記貫孔にそれぞれ前記流通路に通じる流路を有する分岐接続体が連設されるよう、前記燃料レール本管の周面方向に拡大開口した受圧座面が形成され、前記受圧座面に前記分岐接続体の端部に形成された押圧頭部を当接係合させて、前記分岐接続体側に組込んだナットを締着することにより、前記分岐接続体を前記燃料レール本管に固定する高圧燃料レールにおける分岐接続体の接続構造において、前記押圧頭部が、先端の球面状の押圧座面と、前記球面状の押圧座面の端部から軸方向に間隔をおいて形成された前記ナットと当接する環状フランジ部と、前記球面状の押圧座面に接するように接続されて形成された、前記環状フランジ部から前記球面状の押圧座面の先端に向って先細りとなる円錐面と、から形成されたことを特徴とする高圧燃料レールにおける分岐接続体の接続構造。A flow passage through which high-pressure fuel flows in the axial direction in the fuel rail main pipe is formed, and through holes are formed at a plurality of positions in the axial direction on the peripheral wall of the flow passage, and the flow paths respectively lead to the flow passages. A pressure receiving seat surface that is enlarged and opened in the circumferential direction of the fuel rail main pipe is formed so that a branch connection body having the following structure is continuously provided, and a pressure head formed on an end portion of the branch connection body on the pressure receiving seat surface In the connection structure of the branch connection body in the high-pressure fuel rail that fixes the branch connection body to the fuel rail main pipe by tightening the nut assembled on the side of the branch connection body by abutting and engaging the part, The pressing head includes a spherical pressing seat surface at the tip, an annular flange portion that contacts the nut formed at an axial distance from an end of the spherical pressing seat surface, and the spherical shape. Connect so that it touches the pressing seat The formed connection structure of the branch connector in the high-pressure fuel rail, characterized in that the conical surface that tapers toward from said annular flange portion to the distal end of the spherical pressing seat surface, formed from. 前記円錐面と押圧座面のなす球面との環状境界線が前記受圧座面と当接係合することを特徴とする請求項1に記載の高圧燃料レールにおける分岐接続体の接続構造。2. The connection structure for a branch connector in a high-pressure fuel rail according to claim 1, wherein an annular boundary line between the conical surface and the spherical surface formed by the pressing seat surface abuts on and engages with the pressure receiving seat surface.
JP15981095A 1994-06-28 1995-06-02 Connection structure of branch connection in high-pressure fuel rail Expired - Fee Related JP3656283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15981095A JP3656283B2 (en) 1994-06-28 1995-06-02 Connection structure of branch connection in high-pressure fuel rail

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP16878894 1994-06-28
JP6-168788 1994-06-28
JP15981095A JP3656283B2 (en) 1994-06-28 1995-06-02 Connection structure of branch connection in high-pressure fuel rail

Publications (2)

Publication Number Publication Date
JPH0875075A JPH0875075A (en) 1996-03-19
JP3656283B2 true JP3656283B2 (en) 2005-06-08

Family

ID=26486501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15981095A Expired - Fee Related JP3656283B2 (en) 1994-06-28 1995-06-02 Connection structure of branch connection in high-pressure fuel rail

Country Status (1)

Country Link
JP (1) JP3656283B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3995526B2 (en) 2002-05-20 2007-10-24 臼井国際産業株式会社 High pressure fuel injection pipe with connecting head
DE502004008971D1 (en) * 2004-08-03 2009-03-26 Ti Automotive Heidelberg Gmbh Pipe connecting device
JP2006070827A (en) 2004-09-02 2006-03-16 Usui Kokusai Sangyo Kaisha Ltd High-pressure fuel injection pipe and molding method therefor
JP6730089B2 (en) * 2016-05-19 2020-07-29 三桜工業株式会社 Fuel distributor

Also Published As

Publication number Publication date
JPH0875075A (en) 1996-03-19

Similar Documents

Publication Publication Date Title
JP3109598B2 (en) Connection structure of branch pipe in high pressure fuel rail
US5667255A (en) Joint structure for joining a branch member to a high pressure fuel rail
JP2802288B2 (en) Connector device for connecting small-diameter pipes
US7143966B2 (en) Fuel injector
US6481421B1 (en) Compensating element
JP2915099B2 (en) Connection structure of branch connector in high pressure fuel manifold
JP2004506136A (en) Compensation elements for fuel injectors
JPH04312286A (en) Joint for high pressure fluid
JPH04175462A (en) Connecting structure of branch connector in high pressure fuel block
KR100691203B1 (en) High-pressure port for a fuel injection system for internal combustion engines
JP2004518850A (en) Sealing device for fuel injection valve
JP3656283B2 (en) Connection structure of branch connection in high-pressure fuel rail
JPH03177694A (en) Branch connected body connecting structure in high pressure fuel rail
JP2005009394A (en) Connection structure for common rail branch connector
KR20040063159A (en) Fuel injection system
JP3768043B2 (en) Connection structure of branch connection for common rail
JP3307645B2 (en) High pressure line connection
JP2004019541A (en) High-pressure fuel injection pipe
JP4210522B2 (en) Fuel injection device for an internal combustion engine, in particular an injector
JP2000227183A (en) Connecting structure of metal pipe and mating part
JPH04285393A (en) Connecting structure of branched connecting body in high pressure fuel rail
JPH10176783A (en) Common rail
JPH084973A (en) Connecting structure of branch joint for high pressure manifold
JPH0727274A (en) Tube joint structure of fluid equipment
JP2001132577A (en) Fuel supply device for engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050126

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050228

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080318

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees