JP3653858B2 - Can identification device and can beverage induction heating device - Google Patents

Can identification device and can beverage induction heating device Download PDF

Info

Publication number
JP3653858B2
JP3653858B2 JP10342396A JP10342396A JP3653858B2 JP 3653858 B2 JP3653858 B2 JP 3653858B2 JP 10342396 A JP10342396 A JP 10342396A JP 10342396 A JP10342396 A JP 10342396A JP 3653858 B2 JP3653858 B2 JP 3653858B2
Authority
JP
Japan
Prior art keywords
output
induction heating
voltage
high frequency
heating coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10342396A
Other languages
Japanese (ja)
Other versions
JPH09270070A (en
Inventor
丈夫 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Retail Systems Co Ltd
Original Assignee
Fuji Electric Retail Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Retail Systems Co Ltd filed Critical Fuji Electric Retail Systems Co Ltd
Priority to JP10342396A priority Critical patent/JP3653858B2/en
Priority to TW086103962A priority patent/TW318920B/zh
Priority to KR1019970011502A priority patent/KR100277552B1/en
Publication of JPH09270070A publication Critical patent/JPH09270070A/en
Application granted granted Critical
Publication of JP3653858B2 publication Critical patent/JP3653858B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vending Machines For Individual Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、販売時に缶飲料を瞬時に加熱して販売する自動販売機の缶判別装置及び缶飲料誘導加熱装置に関するものである。
【0002】
【従来の技術】
従来から、低温,常温または予備加熱した状態で保管しておいた缶飲料を、販売時に誘導加熱装置により瞬時に加熱して販売するようにした自動販売機が提案されている。
図5は、缶飲料誘導加熱装置を内蔵する自動販売機内部を示す図である。図5において、1は自動販売機、2はラック、3はシュート、4は誘導加熱部、5は飲料が入っている缶、6は誘導加熱コイル、7は誘導加熱制御部、8は商品取出口、9は商品投入口、10は商品表示ラベルである。
【0003】
各ラック2は、4つの商品コラムA〜Dを有しており、それら各商品コラムには、商品投入口9から缶飲料を入れてそれらを保管する。各商品コラムに保管していた缶5は、最下部からシュート3を通して誘導加熱部4に落下させ、誘導加熱コイル6の位置に置く。そして、誘導加熱制御部7により誘導加熱コイル6を励磁して缶5を加熱する。
【0004】
図6は、従来の缶飲料誘導加熱装置の誘導加熱制御部のブロック図である。図6において、缶5,誘導加熱コイル6は、図5のものに対応している。
交流電源11は、整流回路12に接続され、整流回路12の2次側には、平滑コンデンサC0 が接続される。そして、平滑コンデンサC0 には、共振コンデンサC1 ,C2 との直列回路及びスイッチング素子Q1 ,Q2 の直列回路が並列に接続されている。スイッチング素子Q1 ,Q2 としては、例えば、IGBT(Insulated Gate Bipolar Transistor) が用いられる。
【0005】
スイッチング素子Q1 ,Q2 のエミッタ,コレクタ間には、それぞれ帰還ダイオードD1 ,D2 が接続される。また、2つの共振コンデンサC1 ,C2 の接続点とスイッチング素子Q1 ,Q2 の接続点との間には、誘導加熱コイル6が接続される。
【0006】
この回路では、上下2段になったスイッチング素子Q1 ,Q2 を含む電流共振型ハーフブリッジインバータにより誘導加熱コイル6を励磁するようにしている。そこでまず、図7を使って、このインバータの発振原理を説明する。この電流共振型ハーフブリッジインバータは、スイッチング素子Q1 ,Q2 を交互にオンさせることにより、誘導加熱コイル6と共振コンデンサC1 ,C2 とよりなる共振系を発振させる方式である。
【0007】
スイッチング素子Q1 がオンしている間、スイッチング素子Q1 ,Q2 の接続点Oにおける電位は電源電圧と等しくなり、誘導加熱コイル6には、図7(イ)に実線矢印で示す電流I1 が流れ、共振エネルギーが蓄えられる。そして、その後スイッチング素子Q1 がオフしても、誘導加熱コイル6には、慣性により電流が流れ続け、ダイオードD2 を通って帰還される(図7(イ)に点線矢印で示す電流I2 )。また、その時、接続点Oにおける電位は0Vになる。
【0008】
このダイオードD2 の導通期間中に、スイッチング素子Q2 をオンさせると、ダイオードD2 に流れる電流が減少していき、向きが逆になると、誘導加熱コイル6には、図7(ロ)に実線矢印で示す電流I3 が流れ、上記とは逆向きの共振電流となって蓄積したエネルギーを放出する。その後、スイッチング素子Q2 がオフすると、電流はダイオードD1 を流れ(図7(ロ)に点線矢印で示す電流I4 )、接続点Oにおける電位は電源電圧になる。
【0009】
ダイオードD1 の導通期間中にスイッチング素子Q1 をオンさせると、電流の向きが逆になっても電流が流れ続ける。このような動作を繰り返すことにより、誘導加熱コイル6に高周波電流が流れて缶5が加熱される。その場合、高周波電流の周波数を高くする程、誘導加熱コイル6のインピーダンスが高くなって、誘導加熱コイル6に流れる電流が小さくなる。したがって、その周波数を調整することにより誘導加熱コイル6の出力を制御することができる。
【0010】
次に、図6の回路の全体的な動作を説明する。
整流回路12の1次側の電流をカレントトランスCT1 で検出し、それを入力電流検出部14で電圧に変換してから比較器Aの一方の入力とする。また、比較器Aのもう一方の入力としては、マイクロコンピュータ17から缶5の形状に応じた出力設定電圧VP が与えられる。そこで、比較器Aは、入力電流検出部14の出力電圧、すなわち、整流回路12の1次側の入力が出力設定電圧VP より小さいとき、誘導加熱コイル6の出力をアップさせるように、入力設定部15に対して信号を出力する。入力設定部15は、その信号を受けたら、動作周波数設定部16に対して、周波数を低下させるような信号を出力し、その結果、駆動回路13の、スイッチング素子Q1 ,Q2 のスイッチング周波数が低下して、誘導加熱コイル6の出力が上昇する。そして、その結果、整流回路12の1次側の入力が出力設定電圧VP まで上昇したら、誘導加熱コイル6の出力上昇を停止させる。そのようにして、誘導加熱コイル6の出力が一定になるように制御する。
【0011】
なお、このような缶飲料誘導加熱装置に関連する従来の文献としては、例えば、特開平1-103797号公報(G07F 11/70)がある。
【0012】
【発明が解決しようとする課題】
しかしながら、前記した従来の技術では、タルク缶や溶接缶と接着缶との判別ができず、接着缶であることを知らずに加熱してしまうと缶の接着部がはがれて、中身が漏れだすことがあるため、タルク缶や溶接缶を含む全ての缶の加熱を低出力で長時間かけて行わなければならないという問題点があった。
【0013】
その点について更に説明すると、現在、飲料用缶の種類として、タルク缶と呼ばれている2ピース缶と、3ピース缶とがあり、さらに、3ピース缶には、缶の円筒部分の縦方向接合部を溶接した溶接缶と、縦方向接合部を樹脂製の接着剤で接着した接着缶とがある。そして、同じ銘柄の飲料でも複数種類の缶が用いられることがあり、その内特に、溶接缶と接着缶とは見分けが付きにくいため、1つの自動販売機にそれらが混ざって入れられることがある。
【0014】
そこで、同じ形状で複数種類の缶がある場合、従来の自動販売機では、缶飲料を誘導加熱するとき、接着缶の接着部が変形しない程度の低い出力で、全ての缶を加熱するするようにしていた。その結果、本来なら高出力で短時間で加熱することができるタルク缶や溶接缶でも、低出力で長時間かけて加熱することになっていた。
【0015】
本発明は、そのような問題点を解決し、接着缶を自動的に判別できるようにして、接着缶を加熱するときのみ、低出力で長時間かけて加熱するようにして缶の接着部がはがれないようにし、タルク缶や溶接缶は、高出力で短時間に加熱ができるようにすることを課題とするものである。
【0016】
【課題を解決するための手段】
前記課題を解決するため、本発明の缶判別装置では、缶飲料を缶の円周方向に回転させながら加熱する誘導加熱コイルに高周波電流を流す高周波発生手段の入力電流の脈動の大きさに基づいて接着缶の判別を行うこととした。
【0017】
また、本発明の缶飲料誘導加熱装置では、缶飲料を缶の円周方向に回転させながら誘導加熱コイルで加熱する缶加熱手段と、前記誘導加熱コイルに高周波電流を流す高周波発生手段と、該高周波発生手段の入力電流に対応した電圧を出力する入力電流検出手段と、前記高周波発生手段の出力を制御する制御手段とを有し、前記制御手段は、前記入力電流検出手段の出力電圧の脈動の大きさが所定以上になったとき、前記高周波発生手段の出力を低下させることとした。
【0018】
また、缶飲料を缶の円周方向に回転させながら誘導加熱コイルで加熱する缶加熱手段と、前記誘導加熱コイルに高周波電流を流す高周波発生手段と、該高周波発生手段の入力電流に対応した電圧を出力する入力電流検出手段と、前記高周波発生手段の出力を制御する制御手段とを有し、前記制御手段は、前記入力電流検出手段の出力電圧の脈動の大きさが所定以上になったとき、前記高周波発生手段の出力を停止させることとした。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて詳細に説明する。
図1は、本発明の缶飲料誘導加熱装置の誘導加熱制御部のブロック図である。この回路は、図6のものに比較器Bを付加している。比較器Bは、入力電流検出部14の出力と入力設定部15の出力を分圧した電圧とを比較し、入力設定部15の出力レベルと入力電流検出部14の出力レベルとが反転したことに基づいて、加熱中の缶が接着缶であることを検知する。
【0020】
図2は、接着缶判別回路の一例を示す回路図である。図2において、入力電流検出部14,入力設定部15及び比較器A,Bは、図1のものに対応している。図2中のD点の電圧VD は、整流回路12(図1)の入力電流を検出するカレントトランスCTの出力を整流した電圧に、直流電源電圧VCCを分圧するA点の電圧を加えた値となる。比較器Aは、その電圧VD とマイクロコンピュータ17(図1)から出力される出力設定電圧VP とを比較し、D点の電圧VD が出力設定電圧VP より低いとき出力がハイレベルになって、誘導加熱コイル6(図1)の出力を上昇させる。その後、D点の電圧VD が出力設定電圧VP まで上昇したら、比較器Aの出力はローレベルになって、誘導加熱コイル6の出力上昇を停止させる。そのようにして、誘導加熱コイル6の出力が一定になるように制御する。
【0021】
比較器Bは、D点の電圧VD と入力設定部15の出力電圧を分圧したC点の電圧VC とを比較する。その内、D点の電圧VD が、溶接缶やタルク缶を加熱する場合と、接着缶を加熱する場合とでどのように変わるのかを説明する。溶接缶やタルク缶の円筒部分は電気的に切れ目がないので、それらの缶を加熱する際、誘導加熱コイル6との結合は、缶の円筒部分の全周でほぼ均一になる。一方、接着缶の場合は接着部が絶縁層となるため、その部分で誘導加熱コイル6との結合が悪くなる。そして、缶飲料誘導加熱装置では、撹拌のため缶を高速で回転させながら加熱するので、加熱コイルとの結合は周期的に悪くなる。
【0022】
この誘導加熱制御部では、本来、結合が悪くなると出力が低下するため、それを補うように動作周波数を下げて同一出力になるように働くのであるが、缶を高速で回転させているため動作周波数設定部16(図1)は、それに追従できない。その結果、加熱コイルの出力は、接着部の箇所で低下し、それに伴って入力レベルが下がってしまい、D点の電圧VD は、図3に実線VD で示すように、脈動となって現れる。それに対して、溶接缶やタルク缶を加熱する際は、誘導加熱コイル6との結合が缶の全周でほぼ均一になって、図3に点線で示すように、D点の電圧VD にそのような脈動は現れない。
【0023】
一方、C点の電圧VC は、加熱開始時の0Vから出力設定電圧VP で設定された出力に相当する電圧まで、図3に曲線VC で示すように、回路の時定数で決まる割合で徐々に上昇していく。
【0024】
比較器Bは、そのように変化するD点の電圧VD とC点の電圧VC とを比較することになる。そこで、入力設定部15の出力電圧の分圧比を適当な値に設定することによりC点の電圧レベルを調整し、D点の電圧VD に脈動が生じたときには、D点の電圧VD とC点の電圧VC とが反転する期間が生じ、D点の電圧VD に脈動が生じないときには、常にD点の電圧VD がC点の電圧VC より大きくなるようにしておけば、比較器Bの出力により接着缶と溶接缶やタルク缶との判別が可能となる。そして、接着缶と溶接缶やタルク缶との判別が可能となることにより、接着缶を加熱する際は、誘導加熱コイル6の出力を接着部のはがれがおきない範囲に設定することが可能となり、接着部がない溶接缶やタルク缶は最大出力で加熱することで、従来より短時間で加熱することが可能となる。
【0025】
その際の誘導加熱コイル6の出力の変更は、マイクロコンピュータ17から比較器Aに与える出力設定電圧VP を変化させることにより行う。その場合、出力設定電圧VP の変化のさせ方としては、図4(イ)に示すような方法を採ることができる。すなわち、比較器Aに与える出力設定電圧VP として加熱開始時からフルパワーの出力設定電圧VP1を与え、C点の電圧VC が上昇していって、脈動するD点の電圧VD を時点T1 で一時的にでも上回った時、あるいは、所定回数以上上回った時、接着缶の接着部のはがれがおきない範囲の設定値VP2に変える。その切り換えは、C点の電圧VC がD点の電圧VD を上回った時、比較器Bから出力される接着缶判定信号に基づいて、マイクロコンピュータ17により行う。その結果、誘導加熱コイル6の加熱出力の上昇が止まって、フルパワーより低い出力での加熱が継続される。そして、その場合の加熱時間は、加熱を充分に行わせるために時点T3 まで延長される。
【0026】
一方、加熱開始後、D点の電圧VD に脈動が発生せず、C点の電圧VC がD点の電圧VD を越えることがなかった場合は、その缶は溶接缶またはタルク缶ということになるので、そのままフルパワーで加熱を継続し、時点T3 より早い時点T2 で加熱を停止させる。
【0027】
誘導加熱コイル6の出力の変更の仕方としては、それ以外に、図4(ロ)に示すような方法も採りうる。すなわち、比較器Aに与える出力設定電圧VP として加熱開始時は、フルパワーと接着缶加熱時の加熱出力の中間の加熱出力に相当する出力設定電圧VP3を与え、C点の電圧VC が上昇していって、脈動するD点の電圧VD を時点T4 で一時的にでも上回った時、あるいは、所定回数以上上回った時、接着缶の接着部のはがれがおきない範囲の設定値VP2に変える。その切り換えは、上記のものと同様に比較器Bから出力される接着缶判定信号に基づいて、マイクロコンピュータ17により行う。その結果、誘導加熱コイル6の加熱出力の上昇が止まって、フルパワーより低い出力で加熱が継続される。そして、その場合の加熱時間は、時点T7 まで延長される。このようにすれば、加熱開始時も加熱出力が抑制されるので、より一層確実に接着缶の接着部のはがれを防止することができる。
【0028】
一方、加熱開始後所定の時点T5 になっても、C点の電圧VC がD点の電圧VD を越えることがなかった場合は、その缶は溶接缶またはタルク缶であるとみなして、そのままフルパワーで加熱を継続し、時点T7 より早い時点T6 で加熱を停止させる。
【0029】
なお、上記実施形態では、C点の電圧レベルを定常状態になった時のC点の電圧VC が、脈動が生じない時のD点の電圧VD より下回るように設定したが、それとは逆に、定常状態になった時のC点の電圧VC が、脈動が生じない時のD点の電圧VD を常に上回るように設定してもよい。その場合は、D点の電圧VD に脈動が生じて、D点の電圧VD がC点の電圧VC を上回ったことに基づいて接着缶の判別を行う。
【0030】
また、上記実施形態では、接着缶と判定したとき、加熱出力を低く抑えて加熱を継続するようにしたが、炭酸入り飲料の缶のように、加熱すると破裂するおそれのある接着缶が誤って混入される可能性があるような場合は、接着缶と判定した時点で加熱を停止させるようにしてもよい。
【0031】
また、上記実施形態では、入力電流検出部14の出力電圧が、入力設定部15から出力される周波数設定電圧を所定の分圧比で分圧した電圧以下になったことに基づいて接着缶の判別を行ったが、入力電流検出部14の出力電圧が、予め設定された基準電圧以下になったことに基づいて接着缶の判別を行うこともできる。ただし、その場合は、加熱する缶のサイズに応じて入力電流検出部14の出力電圧が変化するため、缶のサイズに応じて予め設定された基準電圧を変える必要がある。
【0032】
【発明の効果】
以上述べた如く、本発明の缶判別装置及び缶飲料誘導加熱装置によれば、接着缶を自動的に判別できるようにして、接着缶を加熱するときは、低出力で長時間かけて加熱するようにしたり、あるいは、加熱を停止させるようにしたので、接着部のはがれを防止することができる。一方、タルク缶や溶接缶の場合は、高出力で加熱することにより、短時間で加熱を完了させることができる。
【図面の簡単な説明】
【図1】 本発明の缶飲料誘導加熱装置の誘導加熱制御部のブロック図
【図2】 接着缶判別回路の一例を示す回路図
【図3】 比較器Bの入力電圧の変化を示す図
【図4】 加熱出力と出力設定電圧の時間的な変化を示す図
【図5】 缶飲料誘導加熱装置を内蔵する自動販売機内部を示す図
【図6】 従来の缶飲料誘導加熱装置のブロック図
【図7】 スイッチング動作説明図
【符号の説明】
1 自動販売機
2 ラック
3 シュート
4 誘導加熱部
5 缶
6 誘導加熱コイル
7 誘導加熱制御部
8 商品取出口
9 商品投入口
10 商品表示ラベル
11 交流電源
12 整流回路
13 駆動回路
14 入力電流検出部
15 入力設定部
16 動作周波数設定部
17 マイクロコンピュータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a can discrimination device and a can beverage induction heating device of a vending machine that instantaneously heats and sells a can beverage at the time of sale.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, vending machines have been proposed in which canned beverages stored at a low temperature, normal temperature, or preheated are instantaneously heated by an induction heating device at the time of sale.
FIG. 5 is a view showing the inside of a vending machine incorporating a can beverage induction heating device. In FIG. 5, 1 is a vending machine, 2 is a rack, 3 is a chute, 4 is an induction heating unit, 5 is a can containing a beverage, 6 is an induction heating coil, 7 is an induction heating control unit, and 8 is a product picker. An exit, 9 is a product inlet, and 10 is a product display label.
[0003]
Each rack 2 has four product columns A to D. In each of these product columns, a can drink is put from a product insertion port 9 and stored. The cans 5 stored in each product column are dropped from the bottom through the chute 3 onto the induction heating unit 4 and placed at the position of the induction heating coil 6. The induction heating control unit 7 excites the induction heating coil 6 to heat the can 5.
[0004]
FIG. 6 is a block diagram of an induction heating control unit of a conventional can beverage induction heating apparatus. In FIG. 6, the can 5 and the induction heating coil 6 correspond to those in FIG.
The AC power supply 11 is connected to a rectifier circuit 12, and a smoothing capacitor C 0 is connected to the secondary side of the rectifier circuit 12. The smoothing capacitor C 0 is connected in parallel with a series circuit of resonant capacitors C 1 and C 2 and a series circuit of switching elements Q 1 and Q 2 . As the switching elements Q 1 and Q 2 , for example, IGBTs (Insulated Gate Bipolar Transistors) are used.
[0005]
Feedback diodes D 1 and D 2 are connected between the emitters and collectors of the switching elements Q 1 and Q 2 , respectively. An induction heating coil 6 is connected between the connection point of the two resonance capacitors C 1 and C 2 and the connection point of the switching elements Q 1 and Q 2 .
[0006]
In this circuit, the induction heating coil 6 is excited by a current resonance type half-bridge inverter including switching elements Q 1 and Q 2 in two upper and lower stages. First, the oscillation principle of this inverter will be described with reference to FIG. This current resonance type half-bridge inverter is a system that oscillates a resonance system including the induction heating coil 6 and the resonance capacitors C 1 and C 2 by alternately turning on the switching elements Q 1 and Q 2 .
[0007]
While the switching element Q 1 is on, the potential at the connection point O of the switching elements Q 1 and Q 2 becomes equal to the power supply voltage, and the induction heating coil 6 has a current I indicated by a solid line arrow in FIG. 1 flows and the resonance energy is stored. Then, even if the switching element Q 1 is turned off thereafter, a current continues to flow through the induction heating coil 6 due to inertia and is fed back through the diode D 2 (current I 2 indicated by a dotted line arrow in FIG. 7A). ). At that time, the potential at the connection point O becomes 0V.
[0008]
During the conduction period of the diode D 2 and turns on the switching element Q 2, will the current flowing through the diode D 2 is decreased, the orientation is reversed, induced in the heating coil 6, FIG. 7 (b) A current I 3 indicated by a solid arrow flows, and the accumulated energy is released as a resonance current in the opposite direction to the above. Thereafter, when the switching element Q 2 is turned off, a current flows through the diode D 1 (current I 4 indicated by a dotted arrow in FIG. 7B), and the potential at the connection point O becomes the power supply voltage.
[0009]
If the switching element Q 1 is turned on during the conduction period of the diode D 1 , the current continues to flow even if the direction of the current is reversed. By repeating such an operation, a high frequency current flows through the induction heating coil 6 to heat the can 5. In that case, the higher the frequency of the high-frequency current, the higher the impedance of the induction heating coil 6, and the smaller the current flowing through the induction heating coil 6. Therefore, the output of the induction heating coil 6 can be controlled by adjusting the frequency.
[0010]
Next, the overall operation of the circuit of FIG. 6 will be described.
The primary current of the rectifier circuit 12 is detected by the current transformer CT 1 , converted into a voltage by the input current detector 14, and then used as one input of the comparator A. Further, as the other input of the comparator A, an output set voltage V P corresponding to the shape of the can 5 is given from the microcomputer 17. Therefore, the comparator A is input so as to increase the output of the induction heating coil 6 when the output voltage of the input current detector 14, that is, the primary side input of the rectifier circuit 12 is smaller than the output set voltage V P. A signal is output to the setting unit 15. When the input setting unit 15 receives the signal, the input setting unit 15 outputs a signal for lowering the frequency to the operating frequency setting unit 16, and as a result, the switching frequency of the switching elements Q 1 and Q 2 of the drive circuit 13. Decreases and the output of the induction heating coil 6 increases. As a result, when the primary side input of the rectifier circuit 12 rises to the output set voltage V P , the output rise of the induction heating coil 6 is stopped. In this way, the output of the induction heating coil 6 is controlled to be constant.
[0011]
In addition, as a conventional document relating to such a can beverage induction heating apparatus, there is, for example, Japanese Patent Laid-Open No. 1-103797 (G07F 11/70).
[0012]
[Problems to be solved by the invention]
However, with the conventional technology described above, it is impossible to distinguish between a talc can, a welded can and an adhesive can, and if it is heated without knowing that it is an adhesive can, the adhesive part of the can peels off and the contents leak. Therefore, there has been a problem that heating of all cans including talc cans and welded cans has to be performed for a long time with low output.
[0013]
To further explain this point, there are currently two types of cans for beverages called talc cans and three-piece cans, and the three-piece can has a longitudinal direction of the cylindrical portion of the can. There are a welded can in which the joint is welded and an adhesive can in which the longitudinal joint is bonded with a resin adhesive. In addition, multiple types of cans may be used even in beverages of the same brand, and in particular, welded cans and adhesive cans are difficult to distinguish, so they may be mixed in one vending machine. .
[0014]
Therefore, when there are multiple types of cans with the same shape, in conventional vending machines, when canned beverages are induction-heated, all cans are heated with a low output that does not deform the bonded part of the bonded cans. I was doing. As a result, even talc cans and welding cans that can be heated in a short time with high output are supposed to be heated over a long time with low output.
[0015]
The present invention solves such a problem and enables the adhesive can to be automatically identified. An object of the present invention is to prevent the talc can and the welded can from being heated in a short time with high output.
[0016]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, in the can discriminating apparatus of the present invention, based on the magnitude of the pulsation of the input current of the high-frequency generating means for passing a high-frequency current to the induction heating coil that heats the can beverage while rotating the can beverage in the circumferential direction Therefore, it was decided to determine the adhesive can.
[0017]
Further, in the can beverage induction heating apparatus of the present invention, the can heating means for heating the can beverage with the induction heating coil while rotating the can beverage in the circumferential direction of the can, the high frequency generating means for supplying a high frequency current to the induction heating coil, Input current detection means for outputting a voltage corresponding to the input current of the high frequency generation means, and control means for controlling the output of the high frequency generation means, wherein the control means pulsates the output voltage of the input current detection means The output of the high-frequency generating means is reduced when the magnitude of becomes higher than a predetermined value.
[0018]
A can heating means for heating the can beverage with an induction heating coil while rotating the can beverage in a circumferential direction; a high frequency generation means for causing a high frequency current to flow through the induction heating coil; and a voltage corresponding to an input current of the high frequency generation means And a control means for controlling the output of the high frequency generation means, the control means when the magnitude of the pulsation of the output voltage of the input current detection means exceeds a predetermined value Therefore, the output of the high-frequency generator is stopped.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a block diagram of an induction heating control unit of the can beverage induction heating apparatus of the present invention. This circuit adds a comparator B to that of FIG. The comparator B compares the output of the input current detection unit 14 with the voltage obtained by dividing the output of the input setting unit 15, and the output level of the input setting unit 15 and the output level of the input current detection unit 14 are inverted. Based on the above, it is detected that the heating can is an adhesive can.
[0020]
FIG. 2 is a circuit diagram showing an example of an adhesive can discriminating circuit. In FIG. 2, an input current detection unit 14, an input setting unit 15, and comparators A and B correspond to those in FIG. Voltage V D of the D point in FIG. 2, the voltage obtained by rectifying the output of the current transformer CT which detects the input current of the rectifier circuit 12 (FIG. 1), the voltage at the point A for dividing the DC power supply voltage V CC plus Value. The comparator A compares the voltage V D with the output set voltage V P output from the microcomputer 17 (FIG. 1). When the voltage V D at the point D is lower than the output set voltage V P , the output is at a high level. Then, the output of the induction heating coil 6 (FIG. 1) is increased. Thereafter, when the voltage V D at point D rises to the output set voltage V P , the output of the comparator A becomes low level, and the output rise of the induction heating coil 6 is stopped. In this way, the output of the induction heating coil 6 is controlled to be constant.
[0021]
The comparator B compares the voltage V C at point C which divides the output voltage of the input setting unit 15 and the voltage V D at point D min. Among them, how the voltage V D at the point D changes between when the welding can or the talc can is heated and when the bonding can is heated will be described. Since the cylindrical portions of welded cans and talc cans are not electrically cut, when these cans are heated, the coupling with the induction heating coil 6 is substantially uniform over the entire circumference of the cylindrical portion of the cans. On the other hand, in the case of an adhesive can, since the bonded portion becomes an insulating layer, the connection with the induction heating coil 6 becomes worse at that portion. And in a can drink induction heating apparatus, since it heats, rotating a can at high speed for stirring, coupling | bonding with a heating coil becomes bad periodically.
[0022]
In this induction heating control unit, the output decreases when the coupling is originally deteriorated, so that the operation frequency is lowered so as to compensate for the same output, but it operates because the can is rotated at high speed. The frequency setting unit 16 (FIG. 1) cannot follow it. As a result, the output of the heating coil decreases at the location of the bonding portion, and the input level decreases accordingly, and the voltage V D at the point D becomes pulsation as shown by the solid line V D in FIG. appear. In contrast, when heating the welded can and talc cans, inductive coupling between the heating coil 6 are made substantially uniform in the entire circumference of the can, as shown by the dotted line in FIG. 3, the voltage V D at point D Such pulsation does not appear.
[0023]
On the other hand, the voltage V C at the point C is a ratio determined by the time constant of the circuit from 0 V at the start of heating to the voltage corresponding to the output set by the output setting voltage V P as shown by the curve V C in FIG. It will gradually rise.
[0024]
The comparator B compares the voltage V D at the point D thus changing with the voltage V C at the point C. Therefore, the voltage level at the point C is adjusted by setting the voltage dividing ratio of the output voltage of the input setting unit 15 to an appropriate value, and when the voltage V D at the point D pulsates, the voltage V D at the point D is occurs period in which the voltage V C is inverted at the point C, when no pulsation in the voltage V D at point D is always if as the voltage V D at point D is greater than the voltage V C at point C, The output from the comparator B enables discrimination between an adhesive can, a welded can, and a talc can. And since it becomes possible to discriminate between an adhesive can and a welding can or a talc can, it becomes possible to set the output of the induction heating coil 6 within a range where the adhesive portion does not peel off when the adhesive can is heated. In addition, it is possible to heat a welding can or a talc can having no bonding portion in a shorter time than before by heating at a maximum output.
[0025]
In this case, the output of the induction heating coil 6 is changed by changing the output setting voltage V P applied from the microcomputer 17 to the comparator A. In that case, the are manner of change of the output setting voltage V P, it can take a method as shown in FIG. 4 (b). That is, the full power output set voltage V P1 is given from the start of heating as the output set voltage V P to be supplied to the comparator A, and the voltage V C at the point C rises and the voltage V D at the point D that pulsates is obtained. When it exceeds even temporarily at the time point T 1 or exceeds a predetermined number of times, it is changed to a set value V P2 in a range where the adhesion portion of the adhesive can does not peel. The switching is performed by the microcomputer 17 based on the adhesive can determination signal output from the comparator B when the voltage V C at the point C exceeds the voltage V D at the point D. As a result, the heating output of the induction heating coil 6 stops increasing, and heating at an output lower than full power is continued. The heating time in this case is extended to the time T 3 in order to sufficiently perform the heating.
[0026]
On the other hand, after the start of heating, no pulsation occurs to a voltage V D of the D point, if the voltage V C at point C never exceeds the voltage V D of the D point, the can is of welded cans or talc can Therefore, the heating is continued at full power as it is, and the heating is stopped at time T 2 earlier than time T 3 .
[0027]
As a method for changing the output of the induction heating coil 6, a method as shown in FIG. That is, as the output setting voltage V P to be supplied to the comparator A, when heating is started, an output setting voltage V P3 corresponding to a heating output intermediate between the full power and the heating output at the time of heating the adhesive can is given, and the voltage V C at the point C There went rises, when the voltage V D of the D point pulsating exceeded even temporarily at the time T 4, or when it exceeds a predetermined number of times or more, setting the range that does not place the peeling of adhesion portion of the adhesive can Change to the value VP2 . The switching is performed by the microcomputer 17 based on the adhesive can determination signal output from the comparator B in the same manner as described above. As a result, the heating output of the induction heating coil 6 stops increasing, and heating is continued at an output lower than full power. The heating time in this case is extended to time point T 7. In this way, since the heating output is suppressed even at the start of heating, it is possible to more reliably prevent peeling of the bonded portion of the bonding can.
[0028]
On the other hand, if the voltage V C at the point C does not exceed the voltage V D at the point D at the predetermined time T 5 after the start of heating, the can is regarded as a welded can or a talc can. , it was continued heating at full power, to stop the heating as early T 6 from the time T 7.
[0029]
In the embodiment described above, the voltage V C at the point C when the voltage level at the point C is in a steady state is set to be lower than the voltage V D at the point D when no pulsation occurs. Conversely, the voltage V C at the point C when the steady state is reached may be set to always exceed the voltage V D at the point D when no pulsation occurs. In that case, it occurs pulsation in the voltage V D of the D point, makes a decision as to bond the can on the basis of the voltage V D of the D point exceeds the voltage V C at point C.
[0030]
In the above embodiment, when it is determined as an adhesive can, the heating output is kept low and the heating is continued. However, like a carbonated beverage can, an adhesive can that may burst when heated is mistaken. When there is a possibility of being mixed, heating may be stopped when it is determined as an adhesive can.
[0031]
Moreover, in the said embodiment, discrimination | determination of an adhesion | attachment can is based on the output voltage of the input current detection part 14 having become below the voltage which divided the frequency setting voltage output from the input setting part 15 by predetermined | prescribed voltage dividing ratio. However, it is also possible to determine the adhesive can based on the fact that the output voltage of the input current detection unit 14 is equal to or lower than a preset reference voltage. However, in that case, since the output voltage of the input current detection unit 14 changes according to the size of the can to be heated, it is necessary to change a preset reference voltage according to the size of the can.
[0032]
【The invention's effect】
As described above, according to the can discriminating apparatus and can beverage induction heating apparatus of the present invention, the adhesive can can be automatically discriminated, and when the adhesive can is heated, it is heated for a long time with a low output. Since the heating is stopped or the heating is stopped, the peeling of the bonded portion can be prevented. On the other hand, in the case of a talc can or a welded can, heating can be completed in a short time by heating at a high output.
[Brief description of the drawings]
FIG. 1 is a block diagram of an induction heating control unit of a can beverage induction heating apparatus according to the present invention. FIG. 2 is a circuit diagram showing an example of an adhesive can discrimination circuit. FIG. 3 is a diagram showing a change in input voltage of a comparator B. FIG. 4 is a diagram showing temporal changes in heating output and output setting voltage. FIG. 5 is a diagram showing the inside of a vending machine incorporating a can beverage induction heating device. FIG. 6 is a block diagram of a conventional can beverage induction heating device. [Fig. 7] Switching operation explanatory diagram [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Vending machine 2 Rack 3 Chute 4 Induction heating part 5 Can 6 Induction heating coil 7 Induction heating control part 8 Product outlet 9 Product inlet 10 Product display label 11 AC power supply 12 Rectifier circuit 13 Drive circuit 14 Input current detection part 15 Input setting unit 16 Operating frequency setting unit 17 Microcomputer

Claims (3)

缶飲料を缶の円周方向に回転させながら加熱する誘導加熱コイルに高周波電流を流す高周波発生手段の入力電流の脈動の大きさに基づいて接着缶の判別を行うことを特徴とする缶判別装置。A can discriminating apparatus for discriminating an adhesive can based on the magnitude of pulsation of an input current of a high-frequency generating means for supplying a high-frequency current to an induction heating coil that heats the can beverage while rotating it in the circumferential direction of the can. . 缶飲料を缶の円周方向に回転させながら誘導加熱コイルで加熱する缶加熱手段と、前記誘導加熱コイルに高周波電流を流す高周波発生手段と、該高周波発生手段の入力電流に対応した電圧を出力する入力電流検出手段と、前記高周波発生手段の出力を制御する制御手段とを有し、
前記制御手段は、前記入力電流検出手段の出力電圧の脈動の大きさが所定以上になったとき、前記高周波発生手段の出力を低下させることを特徴とする缶飲料誘導加熱装置。
Can heating means for heating a can beverage with an induction heating coil while rotating the can in the circumferential direction of the can, high frequency generation means for supplying a high frequency current to the induction heating coil, and a voltage corresponding to the input current of the high frequency generation means is output. Input current detecting means for controlling, and control means for controlling the output of the high frequency generating means,
The can beverage induction heating apparatus characterized in that the control means reduces the output of the high frequency generation means when the magnitude of the pulsation of the output voltage of the input current detection means exceeds a predetermined value.
缶飲料を缶の円周方向に回転させながら誘導加熱コイルで加熱する缶加熱手段と、前記誘導加熱コイルに高周波電流を流す高周波発生手段と、該高周波発生手段の入力電流に対応した電圧を出力する入力電流検出手段と、前記高周波発生手段の出力を制御する制御手段とを有し、
前記制御手段は、前記入力電流検出手段の出力電圧の脈動の大きさが所定以上になったとき、前記高周波発生手段の出力を停止させることを特徴とする缶飲料誘導加熱装置。
Can heating means for heating a can beverage with an induction heating coil while rotating the can in the circumferential direction of the can, high frequency generation means for supplying a high frequency current to the induction heating coil, and a voltage corresponding to the input current of the high frequency generation means is output. Input current detecting means for controlling, and control means for controlling the output of the high frequency generating means,
The can beverage induction heating apparatus characterized in that the control means stops the output of the high frequency generation means when the magnitude of the pulsation of the output voltage of the input current detection means exceeds a predetermined value.
JP10342396A 1996-03-29 1996-03-29 Can identification device and can beverage induction heating device Expired - Fee Related JP3653858B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP10342396A JP3653858B2 (en) 1996-03-29 1996-03-29 Can identification device and can beverage induction heating device
TW086103962A TW318920B (en) 1996-03-29 1997-03-27
KR1019970011502A KR100277552B1 (en) 1996-03-29 1997-03-29 Can discrimination device and can drink induction heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10342396A JP3653858B2 (en) 1996-03-29 1996-03-29 Can identification device and can beverage induction heating device

Publications (2)

Publication Number Publication Date
JPH09270070A JPH09270070A (en) 1997-10-14
JP3653858B2 true JP3653858B2 (en) 2005-06-02

Family

ID=14353638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10342396A Expired - Fee Related JP3653858B2 (en) 1996-03-29 1996-03-29 Can identification device and can beverage induction heating device

Country Status (1)

Country Link
JP (1) JP3653858B2 (en)

Also Published As

Publication number Publication date
JPH09270070A (en) 1997-10-14

Similar Documents

Publication Publication Date Title
EP2059091A2 (en) Apparatus and method for induction heating
JP3724857B2 (en) Temperature control device and start method for electromagnetic induction heating device
WO2007088931A1 (en) Induction heating apparatus
JP2006351371A (en) Induction heating cooker
JP3653858B2 (en) Can identification device and can beverage induction heating device
KR100277552B1 (en) Can discrimination device and can drink induction heating device
WO2003098790A1 (en) Circuit arrangement for a resonant converter and method of operating said converter
JPH0495383A (en) Induction heating cooker
US6753659B2 (en) Operating device for discharge lamps having a preheating device
JPH09270069A (en) Induction heating device for can beverage
US11337279B2 (en) Method for sensing container using resonant current
JP2578950B2 (en) Vending machine induction heating device
JP2001037252A (en) Method of generating sine-wave for controlling power factor compensation
JP3895506B2 (en) Canned induction heating method and apparatus
JPH10172746A (en) Inverter device
JPH07322632A (en) Inverter device
JP2856788B2 (en) Electromagnetic cooker
KR19990058482A (en) Driving device of induction heating cooker and its driving method
JP2878917B2 (en) Induction heating cooker
JPH08148266A (en) Induction heating cooker
KR0176837B1 (en) Heating conversion circuit for magnetic/non-magnetic induction cooker
KR19990048885A (en) Induction heating cooker combined with magnetic and non-magnetic
KR20180095017A (en) A microwave oven circuit, a microwave oven circuit control method and apparatus, and a microwave oven
JPH01226095A (en) Automatic vending machine
JP2865669B2 (en) Electromagnetic cooker

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees