JP3652623B2 - Pulse tube refrigerator - Google Patents

Pulse tube refrigerator Download PDF

Info

Publication number
JP3652623B2
JP3652623B2 JP2001150829A JP2001150829A JP3652623B2 JP 3652623 B2 JP3652623 B2 JP 3652623B2 JP 2001150829 A JP2001150829 A JP 2001150829A JP 2001150829 A JP2001150829 A JP 2001150829A JP 3652623 B2 JP3652623 B2 JP 3652623B2
Authority
JP
Japan
Prior art keywords
pulse tube
mesh
wire
wire mesh
tube refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001150829A
Other languages
Japanese (ja)
Other versions
JP2002349981A5 (en
JP2002349981A (en
Inventor
知大 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2001150829A priority Critical patent/JP3652623B2/en
Publication of JP2002349981A publication Critical patent/JP2002349981A/en
Application granted granted Critical
Publication of JP3652623B2 publication Critical patent/JP3652623B2/en
Publication of JP2002349981A5 publication Critical patent/JP2002349981A5/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1408Pulse-tube cycles with pulse tube having U-turn or L-turn type geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1421Pulse-tube cycles characterised by details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1424Pulse tubes with basic schematic including an orifice and a reservoir

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はパルス管冷凍機凍詳しくはパルス管冷凍機の整流機構に関する。
【0002】
【従来の技術】
核磁気共鳴診断装置(NMR)や電子顕微鏡等に使用される小型の極低温冷凍機としてパルス管冷凍機は公知である。
図5に公知のオリフィス型パルス管冷凍機を示す。
パルス管冷凍機は圧縮機1と、蓄冷器2の高温部2aとを所定の周期で切換え連通される高圧弁Va及び、低圧弁Vbと、蓄冷器2の低温部2bと熱交換器4bを介在させてその低温部5bが連通しているパルス管5と、該パルス管5の高温部5aと熱交換器4a及びオリフィス6を介して連通しているバッファタンク7から構成されている。
【0003】
なお、蓄冷器2内には銅、ステンレス鋼製金網等の蓄冷材3が充填されており、熱交換器4a、4bの内部には銅、アルミニウム等の金網Fが積層充填されている。図中Cは寒冷取り出し部となる冷却端ブロック、Hは高温端ブロックである。なお、金網Fはパンチングプレートでもよい。
【0004】
上記のパルス管冷凍機は、圧縮機1で圧縮された高圧のヘリウムガスは高圧弁Vaが開、低圧弁Vbが閉の状態になると、蓄冷器2に流入し、蓄冷材3で冷却されて温度を下げながら蓄冷器2の低温部2bから熱交換器4bで更に冷却されてパルス管5の低温部5bへ流入する。
【0005】
パルス管5内に既に存在していた低圧ガスは新に流入された作動ガスにより圧縮されるためにパルス管5内の圧力がバッファタンク7内の圧力よりも高くなり作動ガスはオリフィス6を通ってバッファタンク7へ流入する。
【0006】
次に、高圧弁Vaが閉となり低圧弁Vbが開に切り替わると、パルス管5内の作動ガスは蓄冷器2の低温部2bから蓄冷器2内を通過して高温部2aから低圧弁を通って圧縮機へ回収される。
【0007】
パルス管5とバッファタンク7とはオリフィス6を介して連通されているため、圧力変動の位相と作動ガスの体積変化の位相とが一定の位相差をもって変化する。この位相差によってパルス管5の低温端5bにおいて作動ガスの膨張に伴う寒冷が発生し、上記課程が反復されることにより冷凍機として作用している。
【0008】
【発明が解決しようとする課題】
上記公知のパルス管冷凍機はバッファタンク7内に閉じこめられた作動ガスがオリフィス6からパルス管5へ向かって噴出するとき、或いは、蓄冷器2からの作動ガスがパルス管5へ流入するとき、熱交換器によってある程度整流されるもののパルス管内のガスの流れを乱し冷却性能を低下させていた。
本発明は作動ガスの噴流がパルス管内のガスの乱れを起こさないようにし、パルス管冷凍機の冷却能力の向上を図ることを目的とするものである。
【0009】
【課題を解決するための手段】
本発明の請求項1は、パルス管5の高温部5a及び/又は低温部5bに目の開き及び線径が夫々異なる細目金網8aと粗目金網8bを積層してなる整流器8、8’を設置したことを特徴とする。
本発明の請求項2は、細目金網8aは目の開きが0.17〜0.4mm、線径が0.08〜0.20mmの60〜100メッシュであり、粗目金網8bは目の開きが0.8〜2.0mm、線径が0.2〜1.0mmの12〜20メッシュの金網であることを特徴とする。
本発明の請求項3請求項1又は請求項2記載のパルス管冷凍機において、パルス管5の高温部5a及び/又は低温部5bの両端部又は片方の端部に、金網又はパンチングプレートからなる熱交換器4a、4bを備えていることを特徴とする。
【0010】
【発明の実施の形態】
本発明にかかるパルス管冷凍機の実施形態について図1ないし図4を参照して説明する。なお、図中同一部品には同一符号を付し説明の重複を省略する。
図1は本発明の実施形態の説明図であって、前記図5に示した公知のパルス管冷凍機において、パルス管5の高温部5aと低温部5bに夫々整流器8、8’を設置している。
【0011】
整流器8、8’の詳細構造を図2に示す。本発明にかかる整流器は、細目金網8aと粗目金網8bの2種類の金網を積層した構造である。(a)図は細目金網8aと粗目金網8bを積層した状態を示している。(b)図は細目金網、(c)図は粗目金網をそれぞれ示している。
【0012】
上記の細目金網8aは目の開きが0.17〜0.4mm、線径が0.08〜0.20mmの60〜100メッシュの金網が使用される。特に目の開きが0.175mm、線径が0.14mm、80メッシュの金網が最適である。
粗目金網8bは目の開きが0.8〜2.0mm、線径が0.2〜1.0mmの12〜20メッシュの金網が使用される。特に目の開きが0.991mm、線径が0.6mm、16メッシュの金網が最適である。
なお、金網材料を高温部側および低温部側の整流器8’、8に銅或いは銅合金を使用すれば金属の容積比熱、熱伝導率の点から有利である。
【0013】
図3はパルス管の低温側に本発明の整流器を設置したときの試験結果である。
図3における縦軸は冷凍能力を示しており、横軸の1は整流器を設置していないとき、2は#16金網:1枚と#80金網:1枚を積層したとき、3は#16金網:9枚と#80金網:1枚を積層したとき、4は#16金網:1枚と#80金網:2枚をセットにしたもの4組積層したとき、5は#16金網:1枚と#80金網:1枚をセットにしたもの6組積層したときである。
【0014】
図4はパルス管の高温側に本発明の整流器を設置したときの試験結果である。
図4における縦軸は冷凍能力を示しており、横軸の1は整流器を設置していないとき、2は#16金網:2枚と#80金網:1枚を積層したとき、3は#16金網:1枚と#80金網:1枚をセットにしたもの4組積層したときである。
【0015】
上記図3、図4に示す試験結果から細目金網8aと粗目金網8bを組み合わせて積層して形成された整流器を使用することによりパルス管冷凍機の冷凍性能を向上させることが確認された。
【0016】
【発明の効果】
本発明はパルス管の高温側及び/又は低温側へ、細目金網と粗目金網からなる種類の異なる金網を積層した構造の整流器を設置したことにより作動ガスがパルス管内に乱れのないガスピストンを形成させることができ、パルス管冷凍機の冷却性能を著しく向上できる。
なお、上記説明は単段のオリフィス型パルス管冷凍機を例にとって説明したが、この型式以外のパルス管冷凍機に適用できることは云うまでもない。
【図面の簡単な説明】
【図1】本発明にかかるパルス管冷凍機の実施形態の説明図。
【図2】本発明にかかる整流器の詳細説明図。
【図3】本発明にかかる整流器をパルス管の低温側に設置したときの試験結果。
【図4】本発明にかかる整流器をパルス管の高温側に設置したときの試験結果。
【図5】公知のオリフィス型パルス管冷凍機の説明図。
【符号の説明】
1 圧縮機 6 オリフィス
2 蓄冷器 7 バッファタンク
2a 蓄冷器高温部 8、8’ 整流器
2b 蓄冷器低温部 8a 細目金網
3 蓄冷材 8b 粗目金網
4a、4b 熱交換器 C 冷却端ブロック
5 パルス管 F 熱交換材層
5a パルス管高温部 H 高温端ブロック
5b パルス管低温部 Va 高圧弁
Vb 低圧弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to freezing of a pulse tube refrigerator, and more particularly to a rectifying mechanism of the pulse tube refrigerator.
[0002]
[Prior art]
A pulse tube refrigerator is known as a small cryogenic refrigerator used in a nuclear magnetic resonance diagnostic apparatus (NMR), an electron microscope, or the like.
FIG. 5 shows a known orifice type pulse tube refrigerator.
The pulse tube refrigerator includes a high-pressure valve Va and a low-pressure valve Vb, which are connected in communication with each other at a predetermined cycle between the compressor 1 and the high-temperature part 2a of the regenerator 2, and a low-temperature part 2b and a heat exchanger 4b. It comprises a pulse tube 5 in which the low temperature part 5 b is in communication with each other, and a buffer tank 7 in communication with the high temperature part 5 a of the pulse tube 5 through a heat exchanger 4 a and an orifice 6.
[0003]
The regenerator 2 is filled with a regenerator material 3 such as copper or stainless steel wire net, and the heat exchangers 4a and 4b are filled with a metal net F such as copper or aluminum. In the figure, C is a cooling end block serving as a cold takeout portion, and H is a high temperature end block. The wire mesh F may be a punching plate.
[0004]
In the above pulse tube refrigerator, the high pressure helium gas compressed by the compressor 1 flows into the regenerator 2 and is cooled by the regenerator 3 when the high pressure valve Va is open and the low pressure valve Vb is closed. The temperature is further cooled by the heat exchanger 4 b from the low temperature part 2 b of the regenerator 2 while lowering the temperature and flows into the low temperature part 5 b of the pulse tube 5.
[0005]
Since the low-pressure gas already existing in the pulse tube 5 is compressed by the newly introduced working gas, the pressure in the pulse tube 5 becomes higher than the pressure in the buffer tank 7, and the working gas passes through the orifice 6. Into the buffer tank 7.
[0006]
Next, when the high pressure valve Va is closed and the low pressure valve Vb is opened, the working gas in the pulse tube 5 passes from the low temperature portion 2b of the regenerator 2 through the regenerator 2 and passes through the low pressure valve from the high temperature portion 2a. And recovered to the compressor.
[0007]
Since the pulse tube 5 and the buffer tank 7 are communicated with each other through the orifice 6, the phase of the pressure fluctuation and the phase of the volume change of the working gas change with a constant phase difference. Due to this phase difference, cold accompanying the expansion of the working gas is generated at the low temperature end 5b of the pulse tube 5, and the above process is repeated to act as a refrigerator.
[0008]
[Problems to be solved by the invention]
In the known pulse tube refrigerator, when the working gas confined in the buffer tank 7 is jetted from the orifice 6 toward the pulse tube 5 or when the working gas from the regenerator 2 flows into the pulse tube 5, Although it is rectified to some extent by the heat exchanger, the gas flow in the pulse tube is disturbed and the cooling performance is lowered.
An object of the present invention is to improve the cooling capacity of a pulse tube refrigerator by preventing the working gas jet from disturbing the gas in the pulse tube.
[0009]
[Means for Solving the Problems]
According to the first aspect of the present invention, the rectifiers 8 and 8 'are formed by laminating the fine wire mesh 8a and the coarse wire mesh 8b having different opening sizes and wire diameters in the high temperature portion 5a and / or the low temperature portion 5b of the pulse tube 5, respectively. It is characterized by that.
According to the second aspect of the present invention, the fine mesh 8a has a mesh opening of 0.17 to 0.4 mm and a wire diameter of 0.08 to 0.20 mm and 60 to 100 mesh, and the coarse mesh 8b has a mesh opening. It is a 12-20 mesh wire net having a diameter of 0.8-2.0 mm and a wire diameter of 0.2-1.0 mm.
In the pulse tube refrigerator according to claim 1 or claim 2 of the present invention, the high-temperature portion 5a and / or the low-temperature portion 5b of the pulse tube 5 is formed of a metal mesh or a punching plate at both ends or one end thereof. Heat exchangers 4a and 4b are provided.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of a pulse tube refrigerator according to the present invention will be described with reference to FIGS. In the drawings, the same parts are denoted by the same reference numerals, and repeated description is omitted.
FIG. 1 is an explanatory diagram of an embodiment of the present invention. In the known pulse tube refrigerator shown in FIG. 5, rectifiers 8 and 8 ′ are installed in the high temperature portion 5a and the low temperature portion 5b of the pulse tube 5, respectively. ing.
[0011]
The detailed structure of the rectifiers 8 and 8 ′ is shown in FIG. The rectifier according to the present invention has a structure in which two types of wire meshes, a fine wire mesh 8a and a coarse wire mesh 8b, are laminated. (A) The figure has shown the state which laminated | stacked the fine metal mesh 8a and the coarse metal mesh 8b. (B) The figure shows the fine wire mesh, and (c) The figure shows the coarse wire mesh.
[0012]
The fine wire mesh 8a is a 60-100 mesh wire mesh having an opening of 0.17 to 0.4 mm and a wire diameter of 0.08 to 0.20 mm. In particular, a wire mesh having an opening of 0.175 mm, a wire diameter of 0.14 mm, and 80 mesh is optimal.
The coarse wire mesh 8b is a 12-20 mesh wire mesh having an opening of 0.8 to 2.0 mm and a wire diameter of 0.2 to 1.0 mm. In particular, a wire mesh having an aperture of 0.991 mm, a wire diameter of 0.6 mm, and 16 mesh is optimal.
If copper or copper alloy is used for the rectifiers 8 'and 8 on the high temperature part side and the low temperature part side, it is advantageous from the viewpoint of the volume specific heat and thermal conductivity of the metal.
[0013]
FIG. 3 shows the test results when the rectifier of the present invention is installed on the low temperature side of the pulse tube.
In FIG. 3, the vertical axis indicates the refrigeration capacity, 1 on the horizontal axis indicates that no rectifier is installed, 2 indicates that # 16 wire mesh and 1 # 80 wire mesh are stacked, and 3 indicates # 16. Wire mesh: 9 sheets and # 80 wire mesh: When 1 sheet is stacked, 4 is # 16 wire mesh: 1 sheet and # 80 wire mesh: 2 sheets are set as 4 sets, 5 is # 16 wire mesh: 1 sheet And # 80 wire mesh: when six sets of one set are stacked.
[0014]
FIG. 4 shows the test results when the rectifier of the present invention is installed on the high temperature side of the pulse tube.
The vertical axis in FIG. 4 indicates the refrigeration capacity, 1 on the horizontal axis when no rectifier is installed, 2 when # 16 wire mesh: 2 sheets and # 80 wire mesh: 1 sheet is laminated, 3 is # 16 This is when four sets of wire mesh: 1 sheet and # 80 wire mesh: 1 sheet are stacked.
[0015]
From the test results shown in FIGS. 3 and 4, it was confirmed that the refrigeration performance of the pulse tube refrigerator was improved by using a rectifier formed by laminating and combining the fine wire mesh 8a and the coarse wire mesh 8b.
[0016]
【The invention's effect】
The present invention forms a gas piston in which the working gas does not disturb the pulse tube by installing a rectifier with a structure in which different types of wire meshes consisting of fine wire mesh and coarse wire mesh are laminated on the high temperature side and / or low temperature side of the pulse tube. The cooling performance of the pulse tube refrigerator can be significantly improved.
In the above description, the single-stage orifice type pulse tube refrigerator has been described as an example.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an embodiment of a pulse tube refrigerator according to the present invention.
FIG. 2 is a detailed explanatory diagram of a rectifier according to the present invention.
FIG. 3 shows test results when the rectifier according to the present invention is installed on the low temperature side of the pulse tube.
FIG. 4 shows test results when the rectifier according to the present invention is installed on the high temperature side of the pulse tube.
FIG. 5 is an explanatory diagram of a known orifice type pulse tube refrigerator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor 6 Orifice 2 Regenerator 7 Buffer tank 2a Regenerator high temperature part 8, 8 'Rectifier 2b Regenerator low temperature part 8a Fine wire mesh 3 Regenerator material 8b Coarse wire mesh 4a, 4b Heat exchanger C Cooling end block 5 Pulse tube F Heat Exchange material layer 5a Pulse tube high temperature part H High temperature end block 5b Pulse tube low temperature part Va High pressure valve Vb Low pressure valve

Claims (3)

パルス管(5)の高温部(5a)及び/又は低温部(5b)に目の開き及び線径が夫々異なる細目金網(8a)と粗目金網(8b)を積層してなる整流器(8、8’)を設置したことを特徴とするパルス管冷凍機。  Rectifiers (8, 8) formed by laminating a fine wire mesh (8a) and a coarse wire mesh (8b) having different eye openings and wire diameters in the high temperature portion (5a) and / or the low temperature portion (5b) of the pulse tube (5). A pulse tube refrigerator characterized by installing '). 細目金網(8a)は目の開きが0.17〜0.4mm、線径が0.08〜0.20mmの60〜100メッシュであり、粗目金網(8b)は目の開きが0.8〜2.0mm、線径が0.2〜1.0mmの12〜20メッシュの金網であることを特徴とする請求項1記載のパルス管冷凍機。  The fine wire mesh (8a) has a mesh opening of 0.17 to 0.4 mm and a wire diameter of 60 to 100 mesh of 0.08 to 0.20 mm, and the coarse mesh (8b) has a mesh opening of 0.8 to 2. The pulse tube refrigerator according to claim 1, wherein the pulse tube refrigerator is a 12 to 20 mesh wire net having a diameter of 2.0 mm and a wire diameter of 0.2 to 1.0 mm. パルス管(5)の高温部(5a)及び/又は低温部(5b)の両端部又は片方の端部に、金網又はパンチングプレートからなる熱交換器(4a、4b)を備えていることを特徴とする請求項1又は請求項2記載のパルス管冷凍機。  A heat exchanger (4a, 4b) made of a wire mesh or a punching plate is provided at both ends or one end of the high temperature portion (5a) and / or the low temperature portion (5b) of the pulse tube (5). The pulse tube refrigerator according to claim 1 or 2.
JP2001150829A 2001-05-21 2001-05-21 Pulse tube refrigerator Expired - Fee Related JP3652623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001150829A JP3652623B2 (en) 2001-05-21 2001-05-21 Pulse tube refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001150829A JP3652623B2 (en) 2001-05-21 2001-05-21 Pulse tube refrigerator

Publications (3)

Publication Number Publication Date
JP2002349981A JP2002349981A (en) 2002-12-04
JP3652623B2 true JP3652623B2 (en) 2005-05-25
JP2002349981A5 JP2002349981A5 (en) 2005-07-07

Family

ID=18995784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001150829A Expired - Fee Related JP3652623B2 (en) 2001-05-21 2001-05-21 Pulse tube refrigerator

Country Status (1)

Country Link
JP (1) JP3652623B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4468851B2 (en) 2005-03-31 2010-05-26 住友重機械工業株式会社 Pulse tube refrigerator
JP2011149600A (en) * 2010-01-20 2011-08-04 Sumitomo Heavy Ind Ltd Pulse tube refrigerator
JP5606744B2 (en) * 2010-01-20 2014-10-15 住友重機械工業株式会社 Pulse tube refrigerator
JP5931779B2 (en) * 2013-03-05 2016-06-08 住友重機械工業株式会社 Pulse tube refrigerator
JP6054248B2 (en) * 2013-05-20 2016-12-27 住友重機械工業株式会社 Stirling type pulse tube refrigerator and its rectifier
JP6270368B2 (en) * 2013-08-01 2018-01-31 住友重機械工業株式会社 refrigerator
CN106152587B (en) 2015-03-30 2018-12-04 浙江大学 A kind of vascular refrigerator

Also Published As

Publication number Publication date
JP2002349981A (en) 2002-12-04

Similar Documents

Publication Publication Date Title
US7600386B2 (en) Pulse tube cryogenic cooler
JP4031121B2 (en) Cryostat equipment
CN104232026B (en) Cool storage material and regenerative refrigerator
JP3624542B2 (en) Pulse tube refrigerator
JP2006284061A (en) Pulse pipe refrigerating machine
JP3652623B2 (en) Pulse tube refrigerator
JP4365188B2 (en) Pulse tube type refrigeration equipment
US7234307B2 (en) Cryocooler with grooved flow straightener
JP2011149600A (en) Pulse tube refrigerator
JP2002257428A (en) Heat exchanger for pulse pipe refrigerating machine
US20060225434A1 (en) Cryocooler assembly with screened regenerator
JP3744413B2 (en) Pulse tube refrigerator heat exchanger
JP2003148826A (en) Pulse tube refrigerating machine
JPH04186802A (en) Magnetic material with high thermal capacity within temperature range of 4k-20k, and cold acculator and magnetic refrigeration unit using same
JP2003148822A (en) Cold storage unit for very low temperature refrigerator
US20150033766A1 (en) Refrigerator
US7165407B2 (en) Methods for operating a pulse tube cryocooler system with mean pressure variations
JP2003139427A (en) Cooling device
JP2004293998A (en) Pulse pipe refrigerator and manufacturing method thereof
JP2002235962A (en) Pulse-tube refrigerator
Gao et al. A hybrid two-stage refrigerator operated at temperatures below 4K
JPH10300251A (en) Refrigerating machine
JPH08313095A (en) Cold storage type refrigerating machine
JP2000310458A (en) Pulse tube refrigerator
JP2845724B2 (en) Regenerator for cryogenic refrigerator

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3652623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080304

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees