JP3651004B2 - Liquid crystal display element, manufacturing method thereof, and electronic apparatus - Google Patents

Liquid crystal display element, manufacturing method thereof, and electronic apparatus Download PDF

Info

Publication number
JP3651004B2
JP3651004B2 JP51859896A JP51859896A JP3651004B2 JP 3651004 B2 JP3651004 B2 JP 3651004B2 JP 51859896 A JP51859896 A JP 51859896A JP 51859896 A JP51859896 A JP 51859896A JP 3651004 B2 JP3651004 B2 JP 3651004B2
Authority
JP
Japan
Prior art keywords
substrate
liquid crystal
region
crystal display
display element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP51859896A
Other languages
Japanese (ja)
Inventor
正幸 矢崎
英和 小林
周平 山田
英仁 飯坂
豊 土屋
英治 千野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Application granted granted Critical
Publication of JP3651004B2 publication Critical patent/JP3651004B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • G02F1/133757Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle with different alignment orientations

Description

【0001】
【発明の属する技術分野】
本発明は、液晶表示素子およびその製造方法に閲し、特に、情報機器端末、テレビ、家電製品などの表示部を構成する液晶表示素子およびその製造方法に関するものである。
【0002】
【従来の技術】
近年、情報機器の小型軽量化が進行し、それに搭載するディスプレイも省電力化が求められている。小表示容量機器にはTNモードによる液晶表示素子が、中表示容量機器にはFTNモードによる液晶表示素子が反射型ディスプレイとして実用化されている。さらに、反射型ディスプレイの上に、タブレットなどの情報入力装置を組み合わせる用途も拡大し、反射型液晶表示素子には、明るさ、視認性の良さが要求されている。
しかしながら、従来の偏光板を使用したTN方式、FTN方式による液晶表示素子は光の利用効率が低いため、反射型とすると暗くなり、さらに、タブレットなどの情報入力装置と組み合わせると非常に暗い表示となり課題となっていた。また、TN方式、FTN方式で反射型とすると、裏側の基板裏面の偏光板越しに反射板が配置されるために、表示のダブルイメージがあり、細かな文字が不鮮明となり、視認性が問題となっていた。
一方、最近では、偏光板を使用しない明るい反射型ディスプレイが開発されつつある。たとえば、液晶と高分子が互いに分散した高分子分散液晶を用いて、電界印加で透明、電界無印加で光散乱となるように制御する液晶表示素子(特公昭58−501631など)や、電界印加で散乱、電界無印加で透明、あるいは光吸収となるように制御する液晶表示素子(ヨーロッパ公開特許EPO488116A2、特開平4−227684、特開平5−119302など)が開発されている。
特に、ヨーロッパ公開特許EPO488116A2等により開示されている、液晶と高分子が互いに配向分散した高分子分散液晶による高分子分散型液晶表示素子では、偏光板を使用しないので電極を光反射面と兼用することができ、その場合には、偏光板を必要とするTN、FTNモードでは達成できない視認性、高精細度及び明るさが得られ、表示品質の優れた反射型ディスプレイを得ることが可能であった。
【0003】
【発明が解決しようとする課題】
しかしながら、液晶と高分子が互いに配向分散した高分子分散液晶を用いた高分子分散型液晶表示素子に関して開示された従来技術では、偏光板を用いる液晶表示素子の問題点を解決できるものの、十分な散乱特性を得て、明るさを確保するために、液晶を360゜以上ツイストさせる必要があり、その結果、駆動電圧が高くなるという問題があった。たとえば、大容量表示は画素毎にTFT(Thin Film Transistor)やMIM(Metal−Insulator−Metal)素子などのアクティブ素子をそれぞれ形成して画素毎に電気信号制御することにより可能となるが、高分子分散液晶の駆動電圧が高いので、アクティブ素子の耐圧の点から液晶が十分に応答するように駆動することが困難であり、コントラスト比の低下を招き、また、高耐圧の駆動ドライバーも必要とするという問題点があった。
また、配向分散しているという構造から、散乱に指向性が存在するという問題点を有していた。この指向性とは、外部入射光の方向により光散乱効率が変化することであり、たとえば、パネルを回転すると明るさが変化する、使用環境により視認性が影響されやすい等の問題を生じていた。この指向性は、液晶の捻れが小さいほど大きくなる。従って、この問題を解決するには、液晶の捻れを大きくすればよいが、そうすると駆動電圧が高くなってしまうので、捻れを大きくするのは駆動電圧の面から不可能であった。
さらに、大きい捻れ力を生じさせるためにカイラル剤を大量に添加すると、電気光学特性にヒステリシスが発生するという問題があった。
本発明は、このような課題を解決するために行われたものであり、その目的は、高分子と互いに配向分散している液晶の配向状態を制御することにより、低電圧駆動が可能で、明るく、コントラスト比が高く、また、散乱指向性も改良されて視認性について使用環境依存性が小さく、携帯性に優れた液晶表示素子およびその製造方法を提供するところにある。
【0004】
【課題を解決するための手段】
上記問題を解決するために、本発明によれば、画素ごとに画素電極が形成され表面が配向処理された第1の基板と、前記画素電極と対向する電極が形成され表面が配向処理された第2の基板との間に、液晶及び屈折率異方性を有した高分子が挟持されてなり、透過光の散乱による反射表示が可能な液晶表示素子において、前記画素内が、前記液晶が前記第2の基板側から見て右回りに捻れ配向する右捻れ配向領域および、前記液晶が前記第2の基板側から見て左回りに捻れ配向する左捻れ配向領域に少なくとも2分割され、前記液晶が前記右捻れ配向領域内においては前記第1の基板および第2の基板間で右捻れ配向し、前記左捻れ配向領域内においては前記第1の基板および第2の基板間で左捻れ配向しており、前記液晶と前記光分子とが前記両基板間で互いに配向し、分散されており、前記右捻れ配向領域内の前記液晶の捻れ角が、前記左捻れ配向領域の散乱指向性を抑えるために該左捻れ配向領域内の前記液晶の捻れ角とほぼ等しい大きさとされていることを特徴とする液晶表示素子が提供される。
このように、画素内が右捻れ配向領域および左捻れ配向領域に少なくとも2分割され、液晶が右捻れ配向領域内においては右捻れ配向し、左捻れ配向領域内においては左捻れ配向しているから、散乱の指向性が小さくなる。従って、指向性の問題を解決するために液晶の捻れを大きくする必要がなくなり、その結果、小さい電圧で駆動できるようになる。また、液晶の捻れを大きくするためにカイラル剤を大量に添加する必要もなくなり、その結果、電気光学特性にヒステリシスが発生することも抑制される。
右捻れ配向領域内の液晶の捻れ角の大きさが左捻れ配向領域内の液晶の捻れ角の大きさとほぼ等しいことが好ましい。このようにすれば、散乱の指向性が非常に小さくなる。
右捻れ配向領域内の第1の基板および第2の基板のうちの一方の配向方向と、左捻れ配向領域内の第1の基板および第2の基板のうちの前記一方の配向方向とが同じであり、右捻れ配向領域内の第1の基板および第2の基板の他方の配向方向と、左捻れ配向領域内の第1の基板および第2の基板の前記他方の配向方向とが反対であることが好ましい。
液晶の捻れ角が、45〜90゜であることが好ましい。45゜より小さいと、散乱指向性が強く、偏角特性が悪い。また、90゜を超えると、リバースツイストドメインが発生する。
右捻れ配向領域と左捻れ配向領域との境界部の第1の基板および第2の基板の少なくとも一方に遮光層が形成されていることをが好ましい。このようにすると、配向境界のディスクリネーションラインが遮光され均一な表示が得られる。
画素問の第1の基板および第2の基板の少なくとも一方に遮光層が形成されていることが好ましい。このようにすると、配線上の液晶応答による光リークが遮光される。
また、第1の基板の画素電極および第2の基板の電極の一方が、反射性材料により形成されていることが好ましく、本発明は反射型の液晶表示素子に好ましく適用される。
液晶はカイラル剤を含んでいないことが好ましい。カイラル剤を含んでいると、捻れ方向が左右のいずれか一方にそろってしまうからである。
また、本発明によれば、第1の基板に画素電極を形成する工程と、第2の基板に前記画素電極と対向する電極を形成する工程と、前記画素電極の第1の領域内の前記第1の基板および前記第2の基板のうちの一方を第1の方向に配向処理する工程と、前記画素電極の前記第1の領域と異なる第2の領域内の前記第1の基板および前記第2の基板の前記一方を、前記第1の方向とは反対の第2の方向に配向処理する工程と、前記画素内を、前記液晶が前記第2の基板側から見て右回りに捻れ配向する右捻れ配向領域と、前記液晶が前記第2の基板側から見て左回りに捻れ配向する左捻れ配向領域とに2分割するために、前記第1の基板および前記第2の基板の他方を、前記第1の方向及び前記第2の方向とは異なる第3の方向に配向処理する工程と、前記第1の基板および前記第2の基板間に、高分子または高分子前駆体と液晶組成物との液晶性混合材料を配置する工程と、前記液晶性混合材料から高分子を析出させて液晶と高分子とを相分離する工程と、を有することを特徴とする液晶表示素子の製造方法が提供される。さらには、上述の本発明に係る液晶表示素子を備えた情報機器が提供される。
このように、画素電極の第1の領域内の第1の基板および第2の基板のうちの一方を第1の方向に配向処理し、画素電極の第1の領域と異なる領域である第2の領域内の第1の基板および第2の基板の前記一方を第1の方向とは反対の第2の方向に配向処理し、第1の基板および第2の基板の他方を配向処理し、第1の基板と第2の基板とにより空パネルを形成して、この空パネルの第1および第2の基板間に、高分子または高分子前駆体と液晶組成物との液晶性混合材料を配置させることにより、画素電極内が第1の配向領域および第2の配向領域に2分割され、液晶性混合材料が第1の配向領域内においては第1の基板および第2の基板間で右捻れ配向し、第2の配向領域内においては第1の基板および第2の基板間で左捻れ配向するようになる。そして、その後、液晶性混合材料から高分子を析出させて液晶と高分子とを相分離することにより、液晶の配向状態を相分離前の液晶性混合材料の配向状態に保つことができ、液晶が第1の配向領域内においては第1の基板および第2の基板間で右捻れ配向し、第2の配向領域内においては第1の基板および第2の基板間で左捻れ配向するようになる。
【0005】
【発明の実施の形態】
(実施例1)
本発明の液晶表示素子の断面図を第1A図に示した。また、上基板101から見た平面図を第1B図に示した。
下側の基板108上には、クロムをスパッタリングにより約2000オングストローム形成後、パターニングして、画素面積15mm□の反射画素電極107を形成した。その後、この基板108上に、配向剤としてオプトマーAL3046(日本合成ゴム社製)をフレキソ印刷した後、180℃にて1時間焼成して、ポリイミド膜106を形成した。
つづいて、マスクラビング法による2方向のラビング処理について説明する。まず、上記の基板108に、レジスト膜を形成した後、第2A図に示したマスク1て露光し、現像を行った。次に、回転ラビング装置によりラビング処理を行った後、レジスト膜を剥離し、マスクラビングの1サイクルを終了した。なお、ラビング方向は、第1B図中、109である。その後、再び基板108に、レジスト膜を形成した後、第2B図に示したマスク2にて露光、現像を行った。つづいて、回転ラビング装置によりラビング処理を行った後、レジスト剥離を行い、マスクラビングの2サイクル目の工程を完了した。なお、ラビング方向は、第1Bにて、110である。
上側の基板101上には、ITO(Indium Tin Oxide)をスパッタリングにより約1500オングストローム形成後、パターニングし、透明画素電極102を形成した。基板101上に、配向剤としてオプトマーAL3046(日本合成ゴム社製)をフレキソ印刷した後、180℃にて1時間焼成して、ポリイミド膜103を形成した。つづいて、回転ラビング装置により、ポリイミド膜103を全面にわたって同一方向に配向処理した。なお、ラビング方向は、第1B図中、111である。
つづいて、2枚の基板を、空隙5μmにて、基板周囲を貼り合わせ、固定することにより、空パネルを得た。
なお、下基板ラビング方向109と、上基板ラビング方向111のなす角度は89゜、また、下基板ラビング方向110と、上基板ラビング方向111のなす角度は89゜に設定した。
次に、この空パネルに封入した、液晶及び高分子前駆体混合物について説明する。液晶としてTL−213(メルク社製)とMJ92786(メルク社製)を7:3で混合(以下、液晶Aとする。)して用い、これに、二色性色素としてM361、SI512、M137(すべて、三井東圧染料社製)を、それぞれ1.4重量%、1・7重量%、0.4重量%混合して用いた。なお、液晶材料には、カイラル剤は添加しなかった。また、高分子前駆体として、ビフェニルメタクリレートを、先の液晶混合物に対して7重量%用いた。以上を加熱混合して液晶状態とした後、先に説明した空パネルに真空封入した。
パネルに封入された液晶性混合材料は、マスクパターンに対応して、左89゜ツイスト配向112の領域L、及び右89゜ツイスト配向113の領域Rに分割された。その後、パネルに、照度5mW/cm2(波長350nm)の紫外線を7分間照射して高分子を重合させることにより、液晶性混合材料中から高分子を析出させて、第1A図、第1B図に示す本実施例の液晶表示素子を完成させた。
液晶105は、紫外線照射前と同様に、左89゜ツイスト配向状態の領域L、及び、右89゜ツイスト配向状態の領域Rに分割された状態を示した。また、基板間にて、高分子104及び液晶105は、互いに配向し、分散した構造をとることが、偏光顕微鏡にて確認された。
第3図に、本実施例で得られた液晶表示素子の電気光学特性を示した。電気光学特性は閾特性を示し、電圧印加により反射率が増加するノーマリーブラック特性が得られた。すなわち、電圧オフ時で、二色性色素の吸収による黒表示が得られ、電圧を十分に印加した場合は、液晶105が電界方向に配向するので高分子と液晶との配向方向が異なるようになって媒体内で屈折率の不連続点が発生するために、光散乱状態となった。この時、二色性色素も電界方向に配向するので吸収が非常に小さくなり、白表示が得られた。
つづいて、本実施例の液晶表示素子の電気光学特性の測定結果を示す。電気光学特性は、キセノンランプリング光源を用い、液晶表示素子に100Hzの矩形波を印加して、液晶表示素子表面の法線(パネル法線)方向から30゜傾いた方向(入射角30゜)から全方位(360゜)にわたって光りを入射させて、入射光の法線方向への応答反射光を検出した。検出面積は、2mmφとした。反射率100%は、完全拡散板表面の輝度にて規格化した。以下、閾電圧値V10は、(最大反射率一最小反射率)=100と規格化した際の反射率が10での電圧値、飽和電圧値V90は、反射率が90での電圧値と定義した。また、散乱指向性は、平行光線を使用して、平行光線とパネル法線のなす角ψと、パネル回転角φをパラメーターとして、パネル法線方向の反射率の変化を測定した。本実施例の液晶表示素子は、V10が1.7V、V90が3.2V、最大反射率が79%であった。また、散乱指向性について、第4図に、飽和電圧3.2V印加時の測定結果を示した。また、本実施例と同様の構造を有するが、配向分割を行わず一方向のみラビングして左右のいずれか一方向のみツイスト配向させた従来の液晶表示素子の散乱指向性を、左89゜ツイストセルおよび右89゜ツイストセルについて、それぞれ第5図に示した。なお、配向分割を行わず一方向のみラビングして左右のいずれか一方向のみツイスト配向させた従来の液晶表示素子にて、本実施例と同等の散乱特性を得るためには、360゜以上ツイストさせる必要があり、この場合、V10が3.8V、V90が6.5Vであった。
以上に示した通り、本実施例では、同一画素内を液晶の左右の捻れ方向が異なる領域に分割する構成により、液晶と高分子が互いに配向分散した高分子分散液晶を用いた液晶表示素子において、大幅に駆動電圧が低下した。さらに、明るさの指標となる最大反射率が高く、良好な明るさとなった。また、本実施例の液晶表示素子では、第4図に示したように、散乱指向性が小さく、良好であった。したがって、ある特定方向からの光が強いような環境や、均一照明下において、パネルの配置方法による明るさの変化がなくなり、視覚特性、携帯性、視認性が向上した。
【0006】
(実施例2)
以下、本実施例では、実施例1と同じく画素内を配向分割した構成において、画素電極毎に2端子素子(MIM)が形成され、画素間及び配向分割境界部に対応する位置の上基板に光遮光層が形成された構成について例示する。第6A図および第6B図には、本実施例の液晶表示素子の断面図及び平面図をそれぞれ示した。
下側の基板610を、2フォトプロセスにより作製されたMIM基板とした。基板工程では、Taをスパッタした後、所望の形状にパターニングし(フォト1工程目)、次にTaを陽極酸化し、Ta表面に絶縁膜Ta2O5を形成する。つづいて、Crをスパッタした後、所望の形状にパターニングして(フォト2工程目)、Ta−Ta2O5−Crより構成されるMIM素子608、およびCrからなる反射画素電極609を形成した。
一方、上基板601には、ITOをスパッタし、ストライプ状にパターニングし、ITO電極802を形成した。つづいて、カラーフィルターに使用されるブラックのカレーレジストを塗布し所望の形状にパターニングして、反射画素電極609間および反射画素電極内の配向境界部に対応する位置にブラックストライプ603を形成した。なお、配向境界部のブラックストライプは10μm幅とした。
つづいて、両基板601、610上にオプトマーAL3046(日本合成ゴム社製)をフレキソ印刷し、180℃にて1時間焼成し、ポリイミド膜604、607をそれぞれ形成した。実施例1と同様にして、上側基板801のラビング方向を1方向(図中、613)とし、下側MIM基板810をマスクラビングにより2方向にラビングして、ラビング方向を2分割した(図中611および612)。なお、分割ピッチは、画素2分割に対応し、画素ピッチは、140×100μmである。このようにして得られた2枚の基板を、空隙5μmにて、基板周囲を貼り合わせ、固定し、対角5インチの空パネルを作製した。尚、上下の基板801、810でラビング軸は、それぞれ89゜に設定されている。
つづいて、実施例1と同じ二色性色素を含有した液晶および高分子前駆体からなる液晶性混合材料を上記の空パネルに真空注入した。パネルに封入された液晶性混合材料は、実施例1と同様に、1画素毎に、マスクパターンに対応して、左89゜ツイスト配向614の領域L、及び右89゜ツイスト配向615の領域Rに分割された。その後、パネルに、照度5mW/cm2(波長350nm)の紫外線を7分間照射して、液晶中から高分子を析出させて、第6A図、第6B図に示す本実施例の液晶表示素子を完成させた。
液晶606は、紫外線照射前と同様に、左89゜ツイスト配向状態の領域L、及び右89゜ツイスト配向状態の領域Rに分割された状態を示した。また、基板間にて、高分子605及び液晶606は、互いに配向し、分散した構造をとることが、偏光顕微鏡にて確認された。
こうして得られた液晶表示素子を1/480デュディーにてMIM駆動したところ、実施例1の測定条件にて、最大反射率が62%、コントラスト比が13であった。また、ブラックストライプ603によって、配線上の液晶応答による光リークが遮光され、さらに、配向境界のディスクリネーションラインが遮光され、均一な表示が得られた。また、電圧印加時の散乱の指向性がなく、携帯性、視覚特性および視認性に優れた液晶表示素子が得られた。さらに、この液晶表示素子の表面に、ノングレア処理と無反射コートを施すと、風景の写り込みが減少して視認性が極めて向上した。
また、本実施例では、MIM基板上に反射電極を配置したが、対向基板側に反射電極を形成することも可能である。
【0007】
(実施例3)
以下、本実施例では、実施例2の構成において、反射電極上にカラーフィルターが形成された構成を例示する。第7図に、本実施例の液晶表示素子の断面図を示した。下側の基板711は、実施例2と同様にして、配線及びMIM素子709、反射画素電極710が形成されている。この反射画素電極710上には、顔料カラーフィルター708(赤、緑、青)が画素毎にそれぞれ形成されている。一方、上基板701には、実施例2と同様に、ITO電極702、ブラックストライプ703が形成されている。配向境界部のブラックストライプは、10μm幅とした。以上の基板701、711を使用して、実施例2と同様にして、本発明の液晶表示素子を完成させた。なお、ラビング方向、配向分割ピッチについても、実施例2と同条件としている。
こうして得られた液晶表示素子は、電圧オフ時で二色性色素の吸収による黒表示が得られ、各カラー画素に電圧を印加することによりカラー表示が得られた。
また、1/480デュディーにてMIM駆動したところ、実施例1の測定条件にて、最大反射率が31%、コントラスト比が12であった。また、8階調表示、512色表示が可能であった。また、ブラックストライプによって、配線上の液晶応答による光リークが遮光され、さらに、配向境界のディスクリネーションラインが遮光され、均一な表示が得られた。また、電圧印加時の散乱の指向性がなく、携帯性、視覚特性および視認性に優れた液晶表示素子が得られた。さらに、この液晶表示素子の表面に、ノングレア処理と無反射コートを施すと、風景の写り込みが減少して視認性が極めて向上した。
なお、本実施例では、MIM基板に反射電極を配置したが、反射電極を対向基板に配置し、その上にカラーフィルターを形成することも可能である。
また、本実施例で使用されるカラーフィルターの構成は、赤、緑、青に限定されず、自然色を再現できる構成であれば同様に使用することができる。また、カラーフィルターは、上基板側に配置することも可能である。
【0008】
以上本発明の実施例を説明したが、本発明は上記実施例に限定されるものではない。
例えば、上記実施例1乃至3では、液晶に2色性色素を添加した構成としたが、もちろん無添加としてもよい。無添加の場合、電圧無印加時に黒レベルが若干上昇するものの、電圧印加時には色素の光吸収がなくなるために最大反射率が増加し、明るさが向上する。また、反射率の低い反射電極を使用した場合、あるいは、反射電極上に光吸収層を設けた場合は、特に2色性色素添加の必要はない。
また、上記実施例1乃至3では、ツイスト角89゜の構成について示したが、これに限定されない。ツイスト角は、好ましくは45゜〜90゜であり、特に好ましくは、70〜90゜である。ツイスト角が45゜より小さいと、散乱指向性が強く、視覚特性が悪い。また90゜を越えると、リバースツイストドメインが発生する。
上記実施例1乃至3では、平行配向処理に用いる配向膜として、ポリイミド膜を用いたが、他に、ポリアミド膜、SiO斜方蒸着膜、ポリビニルアルコール等が好適に使用できる。
基板に使用される材料としては、ソーダガラス、石英、無アルカリガラス、シリコン単結晶、サファイア基板、熱硬化型高分子、熱可塑性高分子などが好ましく使用される。基板に使用される高分子材料は、基板間に扶持される液晶及び高分子に悪影響を及ぼさなければ特に制限されることばなく、PET、ポリエーテルスルホン、エポキシ硬化樹脂、フェノキシ樹脂、ポリアリルエーテル等が好ましく使用される。
反射電極は、Crとしたが、Al、Cr、Mg、Ag、Au、Ptなどの金属単体、あるいはそれらの合金が好ましく使用できる。特に、安定性、反射率の点からCrあるいは、Al−Mg合金がより好ましく、Al−Mg合金の場合にはMgの添加量は、0.1〜10重量%が望ましい。
液晶は、通常の液晶表示素子に使用されているものが好ましく使用できるが、散乱度を良好にするためには、液晶の複屈折率異方性Δnが、0.15以上であることが望ましい。また、非線形素子で駆動するためには、液晶単体の比抵抗値が1.0×109Ωcm以上、特に好ましくは、1.0×1010Ωcm以上であることが、保持率を高く保ち表示品質を良好にするためには望ましい。
2色性色素としては、通常のGH(ゲストーホスト)表示方式に使用されているアゾ系、アントラキノン系、ナフトキノン系、ペリレン系、キノフタロン系、アゾメチン系などが好ましく使用される。その中でも、耐光性の点からアントラキノン系単独、あるいは必要に応じて他の色素との混合したものが特に好ましい。これらの2色性色素は、必要な色によって、混合され使用される。
高分子前駆体としては、重合後、屈折率異方性を示し、液晶と配向分散するものであればなんでもよいが、液晶表示素子製造の簡便性から紫外線硬化型モノマーが望ましい。紫外線硬化型モノマーとしては、単官能メタクリレート、2官能メタクリレートあるいは多官能メタクリレートなどが好ましく使用される。散乱度を向上するために、これらモノマーは最低1個のベンゼン環をその分子構造中に含むことが望ましい。特に、ビフェニル、ターフェニル、クオーターフェニル骨格を含む材料が好ましく使用される。これらのモノマーには、カイラル性の成分を含むものでも良い。また、これらのモノマーは単独あるいは他のモノマーと混合した後、紫外線を照射し重合しても良い。
また、上記実施例2および3では、2端子の非線形素子としてMIM素子を使用したが、MIM素子以外に、ラテラル型MIM素子、バックトゥバック型MIM素子、MSI素子、ダイオードリング素子、パリスタ素子などが使用可能である。また、3端子非線形素子も、勿論使用でき、3端子非線形素子として、ポリシリコンTFT素子、アモルファスシリコンTFT素子、Cd−SeTFT素子などが使用可能である。
【0009】
以上説明したように、本発明により、偏光板を不要とする明るく、ダブルイメージのない高分子分散型液晶表示素子において、特に、従来問題となっていた駆動電圧、及び散乱指向性による視認性の問題点を、高分子と互いに分散し、ツイスト配向した液晶の捻れ方向を、画素内で左右に分割する構成によって、解決することが可能となった。
とくに、本発明の液晶表示素子の駆動電圧は、TNモードなみにまで低減できたため、MIM素子、TFT素子にて十分に駆動することが可能となり、明るさ、コントラストを大幅に向上することが可能となった。このことにより、反射型カラー液晶表示素子とした場合の表示色数、視認性を向上することが可能となった。また、高耐圧ドライバーの必要性がなくなり、消費電力、コストを低減できた。従って、本発明は、表示色数および視認性が向上し、低消費電力、低コストの反射型カラー液晶表示素子に利用できる。
さらに、本発明の液晶表示素子では、散乱指向性を抑えることにより、明るさ、視覚特性、視認性が向上した。
その結果、本発明は、多様な環境が想定される携帯用途に適した液晶表示素子に利用できる。また、本発明は、アクティブマトリクス駆動であり、低消費電力、かつ表示品質の優れた反射型大容量ディスプレイに利用できる。
【図面の簡単な説明】
【図1】第1A図および第1B図は、それぞれ本発明の実施例1の液晶表示素子の断面図および平面図。
【図2】第2A図および第2B図は、本発明の実施例1に用いたマスクを示す図。
【図3】第3図は、本発明の実施例1の液晶表示素子の電気光学特性を示す図。
【図4】第4図は、本発明の実施例1の液晶表示素子の散乱指向性を示す図。
【図5】第5図は、従来の液晶表示素子の散乱指向性を示す図。
【図6】第6A図および第6B図は、それぞれ本発明の実施例2の液晶表示素子の断面図および平面図。
【図7】第7図は、本発明の実施例3の液晶表示素子の断面図。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid crystal display element and a manufacturing method thereof, and particularly relates to a liquid crystal display element constituting a display unit of an information equipment terminal, a television, a home appliance, and the manufacturing method thereof.
[0002]
[Prior art]
In recent years, information devices have been reduced in size and weight, and displays mounted thereon are required to save power. A liquid crystal display element using a TN mode is used for a small display capacity device, and a liquid crystal display element using an FTN mode is used as a reflective display for a medium display capacity device. Furthermore, the application of combining an information input device such as a tablet on a reflective display has been expanded, and the reflective liquid crystal display element is required to have good brightness and visibility.
However, TN and FTN liquid crystal display elements that use conventional polarizing plates have low light utilization efficiency, so they become dark when they are of the reflective type, and they are extremely dark when combined with an information input device such as a tablet. It was an issue. In addition, when the reflective type is the TN method or FTN method, the reflector is placed over the polarizing plate on the back side of the backside of the substrate, so there is a double image of the display, fine characters are unclear, and visibility is a problem. It was.
On the other hand, recently, bright reflective displays that do not use polarizing plates are being developed. For example, liquid crystal display elements (such as Japanese Examined Patent Publication No. Sho 58-501631) that are controlled to be transparent when an electric field is applied and light scattering when no electric field is applied, using a polymer-dispersed liquid crystal in which liquid crystal and polymer are dispersed, Liquid crystal display elements (EPO488116A2, European Patent Laid-Open No. 4-227684, Japanese Patent Laid-Open No. 5-119302, etc.) that are controlled to be scattered, transparent when no electric field is applied, or light absorption have been developed.
In particular, in a polymer-dispersed liquid crystal display element using a polymer-dispersed liquid crystal in which a liquid crystal and a polymer are aligned and dispersed with each other, disclosed in European published patent EPO488116A2, etc., a polarizing plate is not used, so the electrode is also used as a light reflecting surface. In such a case, it is possible to obtain a reflective display with excellent display quality, which provides visibility, high definition, and brightness that cannot be achieved in TN and FTN modes that require polarizing plates. It was.
[0003]
[Problems to be solved by the invention]
However, the conventional technology disclosed for the polymer dispersed liquid crystal display element using the polymer dispersed liquid crystal in which the liquid crystal and the polymer are aligned and dispersed can solve the problem of the liquid crystal display element using the polarizing plate, but is sufficient. In order to obtain the scattering characteristics and ensure the brightness, it is necessary to twist the liquid crystal by 360 ° or more, and as a result, there is a problem that the driving voltage becomes high. For example, large-capacity display is possible by forming active elements such as TFT (Thin Film Transistor) and MIM (Metal-Insulator-Metal) elements for each pixel and controlling the electrical signal for each pixel. Since the driving voltage of the dispersed liquid crystal is high, it is difficult to drive the liquid crystal so that it responds sufficiently from the viewpoint of the breakdown voltage of the active element, which causes a reduction in contrast ratio, and also requires a high breakdown voltage driving driver. There was a problem.
In addition, there is a problem that directivity exists in scattering due to the structure of orientation dispersion. This directivity means that the light scattering efficiency changes depending on the direction of the external incident light. For example, the brightness changes when the panel is rotated, and the visibility is easily affected by the usage environment. . This directivity increases as the twist of the liquid crystal decreases. Accordingly, in order to solve this problem, the twist of the liquid crystal may be increased. However, since the drive voltage becomes high in that case, it is impossible to increase the twist from the viewpoint of the drive voltage.
Furthermore, when a large amount of a chiral agent is added to generate a large twisting force, there is a problem that hysteresis occurs in electro-optical characteristics.
The present invention has been made in order to solve such a problem, and its purpose is that low voltage driving is possible by controlling the alignment state of liquid crystals that are aligned and dispersed with each other. The object of the present invention is to provide a liquid crystal display element that is bright, has a high contrast ratio, has improved scattering directivity, has a small dependence on the use environment, and is excellent in portability, and a method for manufacturing the same.
[0004]
[Means for Solving the Problems]
In order to solve the above problem, according to the present invention, a first substrate in which a pixel electrode is formed for each pixel and the surface is subjected to an alignment treatment, and an electrode facing the pixel electrode is formed and the surface is subjected to an alignment treatment. In a liquid crystal display element in which a liquid crystal and a polymer having refractive index anisotropy are sandwiched between a second substrate and capable of reflective display by scattering of transmitted light, the inside of the pixel includes the liquid crystal. The liquid crystal is divided at least in two into a right-twisted alignment region that is twisted clockwise when viewed from the second substrate side, and a left-twisted alignment region that is twisted counterclockwise when viewed from the second substrate side, The liquid crystal is right-twisted between the first substrate and the second substrate in the right-twisted alignment region, and the left-twisted alignment between the first substrate and the second substrate in the left-twisted alignment region. The liquid crystal and the photomolecule The liquid crystals in the left-twisted alignment region are aligned and dispersed between the substrates, and the twist angle of the liquid crystal in the right-twisted alignment region suppresses the scattering directivity of the left-twisted alignment region. There is provided a liquid crystal display element characterized in that it has a size substantially equal to the twist angle.
As described above, the inside of the pixel is divided into a right-twisted alignment region and a left-twisted alignment region, and the liquid crystal is right-twisted in the right-twisted alignment region and left-twisted in the left-twisted alignment region. , Scattering directivity is reduced. Therefore, it is not necessary to increase the twist of the liquid crystal in order to solve the directivity problem, and as a result, it can be driven with a small voltage. Further, it is not necessary to add a large amount of chiral agent in order to increase the twist of the liquid crystal, and as a result, the occurrence of hysteresis in the electro-optical characteristics is suppressed.
It is preferable that the magnitude of the twist angle of the liquid crystal in the right twist alignment region is substantially equal to the magnitude of the twist angle of the liquid crystal in the left twist orientation region. In this way, the scattering directivity becomes very small.
The orientation direction of one of the first substrate and the second substrate in the right twist orientation region is the same as the one orientation direction of the first substrate and the second substrate in the left twist orientation region. The other alignment direction of the first substrate and the second substrate in the right twist alignment region is opposite to the other alignment direction of the first substrate and the second substrate in the left twist alignment region. Preferably there is.
The twist angle of the liquid crystal is preferably 45 to 90 °. If it is less than 45 °, the scattering directivity is strong and the declination characteristic is poor. When the angle exceeds 90 °, a reverse twist domain occurs.
It is preferable that a light shielding layer is formed on at least one of the first substrate and the second substrate at the boundary between the right twist orientation region and the left twist orientation region. In this way, the disclination line at the alignment boundary is shielded from light and a uniform display can be obtained.
It is preferable that a light shielding layer is formed on at least one of the first substrate and the second substrate for the pixel. In this way, light leakage due to the liquid crystal response on the wiring is shielded.
Further, one of the pixel electrode of the first substrate and the electrode of the second substrate is preferably formed of a reflective material, and the present invention is preferably applied to a reflective liquid crystal display element.
The liquid crystal preferably does not contain a chiral agent. This is because if a chiral agent is included, the twisting direction is aligned to either the left or right.
In addition, according to the present invention, a step of forming a pixel electrode on a first substrate, a step of forming an electrode opposite to the pixel electrode on a second substrate, and the step in the first region of the pixel electrode Aligning one of the first substrate and the second substrate in a first direction, the first substrate in a second region different from the first region of the pixel electrode, and the Aligning one of the second substrates in a second direction opposite to the first direction, and twisting the liquid crystal clockwise in the pixel as viewed from the second substrate side. In order to divide into two into a right-twisted alignment region to be aligned and a left-twisted alignment region in which the liquid crystal is twisted counterclockwise as viewed from the second substrate side, the first substrate and the second substrate A process for orienting the other in a third direction different from the first direction and the second direction. Disposing a liquid crystalline mixed material of a polymer or a polymer precursor and a liquid crystal composition between the first substrate and the second substrate; and depositing the polymer from the liquid crystalline mixed material. And a step of phase-separating the liquid crystal and the polymer, and a method for producing a liquid crystal display element is provided. Furthermore, an information device provided with the above-described liquid crystal display element according to the present invention is provided.
In this way, one of the first substrate and the second substrate in the first region of the pixel electrode is oriented in the first direction, and the second region is a region different from the first region of the pixel electrode. Aligning the one of the first substrate and the second substrate in the region in a second direction opposite to the first direction, aligning the other of the first substrate and the second substrate, An empty panel is formed by the first substrate and the second substrate, and a liquid crystalline mixed material of a polymer or a polymer precursor and a liquid crystal composition is interposed between the first and second substrates of the empty panel. By disposing the pixel electrode, the inside of the pixel electrode is divided into two parts, that is, a first alignment region and a second alignment region, and the liquid crystalline mixed material is right between the first substrate and the second substrate in the first alignment region. Twist orientation, and in the second orientation region, left twist orientation between the first substrate and the second substrate. To become. After that, by depositing a polymer from the liquid crystalline mixed material and phase-separating the liquid crystal and the polymer, the alignment state of the liquid crystal can be maintained in the alignment state of the liquid crystalline mixed material before the phase separation. In the first alignment region so as to be right-twisted between the first substrate and the second substrate, and in the second alignment region so as to be left-twisted between the first substrate and the second substrate. Become.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
(Example 1)
A cross-sectional view of the liquid crystal display device of the present invention is shown in FIG. 1A. A plan view seen from the upper substrate 101 is shown in FIG. 1B.
A reflective pixel electrode 107 having a pixel area of 15 mm □ was formed on the lower substrate 108 by patterning after chromium was formed to about 2000 Å by sputtering. Thereafter, Optomer AL3046 (manufactured by Nippon Synthetic Rubber Co., Ltd.) as an alignment agent was flexographically printed on the substrate 108, and then baked at 180 ° C. for 1 hour to form a polyimide film 106.
Next, rubbing processing in two directions by the mask rubbing method will be described. First, a resist film was formed on the substrate 108, and then exposed and developed with the mask 1 shown in FIG. 2A. Next, after performing a rubbing process with a rotary rubbing apparatus, the resist film was peeled off and one cycle of mask rubbing was completed. The rubbing direction is 109 in FIG. 1B. Thereafter, after a resist film was formed again on the substrate 108, exposure and development were performed with the mask 2 shown in FIG. 2B. Subsequently, after performing a rubbing treatment with a rotary rubbing apparatus, the resist was peeled off, and the process of the second cycle of the mask rubbing was completed. The rubbing direction is 110 in the first 1B.
On the upper substrate 101, ITO (Indium Tin Oxide) was formed by sputtering to form about 1500 Å, followed by patterning to form a transparent pixel electrode 102. On the substrate 101, Optomer AL3046 (manufactured by Nippon Synthetic Rubber Co., Ltd.) was flexographically printed as an aligning agent, and then baked at 180 ° C. for 1 hour to form a polyimide film 103. Subsequently, the polyimide film 103 was oriented in the same direction over the entire surface by a rotary rubbing apparatus. The rubbing direction is 111 in FIG. 1B.
Subsequently, two substrates were bonded together around the substrate with a gap of 5 μm and fixed to obtain an empty panel.
The angle formed between the lower substrate rubbing direction 109 and the upper substrate rubbing direction 111 was set to 89 °, and the angle formed between the lower substrate rubbing direction 110 and the upper substrate rubbing direction 111 was set to 89 °.
Next, the liquid crystal and polymer precursor mixture sealed in the empty panel will be described. TL-213 (manufactured by Merck) and MJ92786 (manufactured by Merck) were mixed at a ratio of 7: 3 (hereinafter referred to as liquid crystal A), and M361, SI512, M137 (dichroic dyes) were used as the dichroic dye. All of them were used by mixing 1.4% by weight, 1.7% by weight and 0.4% by weight, respectively. Note that no chiral agent was added to the liquid crystal material. Further, 7% by weight of biphenyl methacrylate was used as a polymer precursor with respect to the liquid crystal mixture. The above was heated and mixed to obtain a liquid crystal state, and then vacuum-sealed in the empty panel described above.
The liquid crystal mixed material sealed in the panel was divided into a region L having a left 89 ° twist alignment 112 and a region R having a right 89 ° twist alignment 113 corresponding to the mask pattern. After that, illuminance 5mW / cm on the panel 2 By polymerizing the polymer by irradiating with ultraviolet rays (wavelength 350 nm) for 7 minutes, the polymer is precipitated from the liquid crystalline mixed material, and the liquid crystal display element of this embodiment shown in FIGS. 1A and 1B is obtained. Completed.
The liquid crystal 105 was divided into a region 89 in the left 89 ° twist alignment state and a region R in the right 89 ° twist alignment state as before the ultraviolet irradiation. In addition, it was confirmed with a polarization microscope that the polymer 104 and the liquid crystal 105 had a structure in which they were aligned and dispersed between the substrates.
FIG. 3 shows the electro-optical characteristics of the liquid crystal display element obtained in this example. The electro-optical characteristic showed a threshold characteristic, and a normally black characteristic in which the reflectance increased with voltage application was obtained. That is, when the voltage is off, a black display is obtained by absorption of the dichroic dye, and when the voltage is sufficiently applied, the liquid crystal 105 is aligned in the electric field direction so that the alignment direction of the polymer and the liquid crystal is different. As a result, discontinuous points of the refractive index are generated in the medium, resulting in a light scattering state. At this time, since the dichroic dye was also oriented in the electric field direction, the absorption was very small and a white display was obtained.
Next, measurement results of electro-optical characteristics of the liquid crystal display element of this example will be shown. The electro-optical characteristics are as follows: A xenon lamp ring light source is used, a rectangular wave of 100 Hz is applied to the liquid crystal display element, and the liquid crystal display element surface is inclined by 30 ° (incident angle 30 °) from the normal (panel normal) direction. Then, light was incident from all directions (360 °), and response reflected light in the normal direction of the incident light was detected. The detection area was 2 mmφ. The reflectance of 100% was normalized by the brightness of the complete diffuser surface. Hereinafter, the threshold voltage value V10 is defined as (the maximum reflectance minus the minimum reflectance) = 100, the voltage value when the reflectance is 10, and the saturation voltage value V90 is defined as the voltage value when the reflectance is 90 did. Further, the scattering directivity was measured by using parallel rays and measuring the change in reflectance in the panel normal direction using the angle ψ formed by the parallel rays and the panel normal and the panel rotation angle φ as parameters. In the liquid crystal display element of this example, V10 was 1.7 V, V90 was 3.2 V, and the maximum reflectance was 79%. As for scattering directivity, FIG. 4 shows the measurement results when a saturation voltage of 3.2 V is applied. In addition, the scattering directivity of a conventional liquid crystal display element having the same structure as that of the present embodiment, which is rubbed only in one direction without being divided into alignment and twisted only in one of the left and right directions, is twisted by 89 ° to the left. The cell and the right 89 ° twist cell are shown in FIG. In order to obtain a scattering characteristic equivalent to that of the present example in a conventional liquid crystal display element in which only one direction of the left and right is rubbed in one direction without performing alignment division, a twist of 360 ° or more is required. In this case, V10 was 3.8V and V90 was 6.5V.
As described above, in the present embodiment, in the liquid crystal display element using the polymer dispersed liquid crystal in which the liquid crystal and the polymer are aligned and dispersed with each other in the configuration in which the same pixel is divided into regions where the right and left twist directions of the liquid crystal are different. The drive voltage has dropped significantly. Furthermore, the maximum reflectivity as an index of brightness was high, and the brightness was favorable. Further, in the liquid crystal display element of this example, the scattering directivity was small and good as shown in FIG. Therefore, in an environment where the light from a specific direction is strong or under uniform illumination, there is no change in brightness due to the panel arrangement method, and visual characteristics, portability, and visibility are improved.
[0006]
(Example 2)
Hereinafter, in this embodiment, in the configuration in which the inside of the pixel is aligned and divided as in Embodiment 1, a two-terminal element (MIM) is formed for each pixel electrode, and the upper substrate is positioned on the upper substrate at a position corresponding to the boundary between the pixels and the alignment division. A configuration in which a light shielding layer is formed will be exemplified. 6A and 6B show a cross-sectional view and a plan view of the liquid crystal display element of this example, respectively.
The lower substrate 610 was an MIM substrate manufactured by a two-photo process. In the substrate process, Ta is sputtered and then patterned into a desired shape (first photo process), then Ta is anodized, and an insulating film Ta is formed on the Ta surface. 2 O Five Form. Subsequently, after sputtering Cr, patterning into a desired shape (second photo step), Ta-Ta 2 O Five A MIM element 608 made of -Cr and a reflective pixel electrode 609 made of Cr were formed.
On the other hand, ITO was sputtered on the upper substrate 601 and patterned in a stripe shape to form an ITO electrode 802. Subsequently, a black curry resist used for a color filter was applied and patterned into a desired shape to form black stripes 603 at positions corresponding to the alignment boundary portions between the reflective pixel electrodes 609 and within the reflective pixel electrodes. The black stripe at the alignment boundary was 10 μm wide.
Subsequently, Optomer AL3046 (manufactured by Nippon Synthetic Rubber) was flexographically printed on both substrates 601 and 610 and baked at 180 ° C. for 1 hour to form polyimide films 604 and 607, respectively. In the same manner as in Example 1, the rubbing direction of the upper substrate 801 is set to one direction (613 in the figure), the lower MIM substrate 810 is rubbed in two directions by mask rubbing, and the rubbing direction is divided into two (in the figure). 611 and 612). The division pitch corresponds to pixel division, and the pixel pitch is 140 × 100 μm. The two substrates thus obtained were bonded and fixed around the substrate with a gap of 5 μm to produce a 5-inch diagonal empty panel. The rubbing axes of the upper and lower substrates 801 and 810 are set to 89 °.
Subsequently, a liquid crystal mixed material composed of a liquid crystal and a polymer precursor containing the same dichroic dye as in Example 1 was vacuum-injected into the empty panel. As in the first embodiment, the liquid crystal mixed material sealed in the panel corresponds to the mask pattern for each pixel, corresponding to the mask pattern, the region L of the left 89 ° twist alignment 614 and the region R of the right 89 ° twist alignment 615. It was divided into. After that, illuminance 5mW / cm on the panel 2 The liquid crystal display element of this example shown in FIGS. 6A and 6B was completed by irradiating ultraviolet rays (wavelength 350 nm) for 7 minutes to precipitate a polymer from the liquid crystal.
The liquid crystal 606 showed a state divided into a region L in the left 89 ° twist alignment state and a region R in the right 89 ° twist alignment state as before the ultraviolet irradiation. In addition, it was confirmed with a polarization microscope that the polymer 605 and the liquid crystal 606 were aligned with each other and had a dispersed structure between the substrates.
When the liquid crystal display element thus obtained was driven by MIM at 1/480 Dudy, the maximum reflectance was 62% and the contrast ratio was 13 under the measurement conditions of Example 1. Also, the black stripe 603 shields light leakage due to the liquid crystal response on the wiring, and further shields the disclination line at the alignment boundary, thereby obtaining a uniform display. In addition, a liquid crystal display element having no scattering directivity when a voltage was applied and having excellent portability, visual characteristics, and visibility was obtained. Furthermore, when non-glare treatment and non-reflective coating were applied to the surface of the liquid crystal display element, the reflection of the scenery was reduced and the visibility was greatly improved.
In this embodiment, the reflective electrode is disposed on the MIM substrate, but it is also possible to form the reflective electrode on the counter substrate side.
[0007]
(Example 3)
Hereinafter, in the present embodiment, a configuration in which a color filter is formed on the reflective electrode in the configuration of the second embodiment will be exemplified. FIG. 7 shows a cross-sectional view of the liquid crystal display element of this example. On the lower substrate 711, wiring, MIM elements 709, and reflective pixel electrodes 710 are formed in the same manner as in the second embodiment. On the reflective pixel electrode 710, a pigment color filter 708 (red, green, blue) is formed for each pixel. On the other hand, the ITO electrode 702 and the black stripe 703 are formed on the upper substrate 701 as in the second embodiment. The black stripe at the alignment boundary was 10 μm wide. Using the above substrates 701 and 711, the liquid crystal display element of the present invention was completed in the same manner as in Example 2. The rubbing direction and the alignment division pitch are also the same as those in Example 2.
The liquid crystal display element thus obtained was able to obtain a black display by absorption of a dichroic dye when the voltage was turned off, and a color display was obtained by applying a voltage to each color pixel.
Further, when MIM driving was performed at 1/480 Dudy, the maximum reflectance was 31% and the contrast ratio was 12 under the measurement conditions of Example 1. In addition, 8-tone display and 512-color display were possible. Further, the black stripe shields light leakage due to the liquid crystal response on the wiring, and further shields the disclination line at the alignment boundary, thereby obtaining a uniform display. In addition, a liquid crystal display element having no scattering directivity when a voltage was applied and having excellent portability, visual characteristics, and visibility was obtained. Furthermore, when non-glare treatment and non-reflective coating were applied to the surface of the liquid crystal display element, the reflection of the scenery was reduced and the visibility was greatly improved.
In this embodiment, the reflective electrode is disposed on the MIM substrate, but it is also possible to dispose the reflective electrode on the counter substrate and form a color filter thereon.
The configuration of the color filter used in this embodiment is not limited to red, green, and blue, and any configuration that can reproduce a natural color can be used similarly. The color filter can also be disposed on the upper substrate side.
[0008]
As mentioned above, although the Example of this invention was described, this invention is not limited to the said Example.
For example, in Examples 1 to 3 described above, the dichroic dye is added to the liquid crystal. In the case of no addition, the black level slightly increases when no voltage is applied, but the maximum reflectance is increased and the brightness is improved because the light absorption of the dye is lost when the voltage is applied. In addition, when a reflective electrode having a low reflectance is used, or when a light absorption layer is provided on the reflective electrode, it is not particularly necessary to add a dichroic dye.
In the first to third embodiments, the configuration with a twist angle of 89 ° is shown, but the present invention is not limited to this. The twist angle is preferably 45 ° to 90 °, and particularly preferably 70 to 90 °. When the twist angle is less than 45 °, scattering directivity is strong and visual characteristics are poor. When the angle exceeds 90 °, a reverse twist domain occurs.
In Examples 1 to 3, the polyimide film is used as the alignment film used for the parallel alignment treatment. However, a polyamide film, a SiO oblique deposition film, polyvinyl alcohol, or the like can be preferably used.
As a material used for the substrate, soda glass, quartz, alkali-free glass, silicon single crystal, sapphire substrate, thermosetting polymer, thermoplastic polymer, and the like are preferably used. The polymer material used for the substrate is not particularly limited as long as it does not adversely affect the liquid crystal and polymer held between the substrates, such as PET, polyethersulfone, epoxy cured resin, phenoxy resin, polyallyl ether, etc. Are preferably used.
The reflective electrode is Cr, but a simple metal such as Al, Cr, Mg, Ag, Au, Pt, or an alloy thereof can be preferably used. In particular, Cr or an Al-Mg alloy is more preferable from the viewpoint of stability and reflectance. In the case of an Al-Mg alloy, the amount of Mg added is preferably 0.1 to 10% by weight.
As the liquid crystal, those used in ordinary liquid crystal display elements can be preferably used, but in order to improve the scattering degree, it is desirable that the birefringence anisotropy Δn of the liquid crystal is 0.15 or more. In addition, in order to drive with a non-linear element, the specific resistance value of the liquid crystal alone is 1.0 × 10 9 Ωcm or more, particularly preferably 1.0 × 10 Ten It is desirable that it is Ωcm or more in order to keep the retention ratio high and to improve the display quality.
As the dichroic dye, azo, anthraquinone, naphthoquinone, perylene, quinophthalone, azomethine, and the like used in a normal GH (guest-host) display system are preferably used. Among these, from the viewpoint of light resistance, anthraquinone type alone or a mixture with other dyes as required is particularly preferable. These dichroic dyes are mixed and used depending on the required color.
Any polymer precursor may be used as long as it exhibits refractive index anisotropy after polymerization and is oriented and dispersed with liquid crystal. However, an ultraviolet curable monomer is desirable from the viewpoint of simplicity of manufacturing a liquid crystal display element. As the ultraviolet curable monomer, monofunctional methacrylate, bifunctional methacrylate or polyfunctional methacrylate is preferably used. In order to improve the degree of scattering, these monomers preferably contain at least one benzene ring in their molecular structure. In particular, a material containing a biphenyl, terphenyl or quarterphenyl skeleton is preferably used. These monomers may contain a chiral component. These monomers may be polymerized by irradiating with ultraviolet rays after being mixed alone or with other monomers.
In Examples 2 and 3, the MIM element is used as the two-terminal nonlinear element. In addition to the MIM element, a lateral MIM element, a back-to-back MIM element, an MSI element, a diode ring element, a paristor element, etc. It can be used. Of course, a three-terminal nonlinear element can also be used. As the three-terminal nonlinear element, a polysilicon TFT element, an amorphous silicon TFT element, a Cd-Se TFT element, or the like can be used.
[0009]
As described above, according to the present invention, in a bright polymer dispersion type liquid crystal display element that does not require a polarizing plate and does not have a double image, the visibility due to the driving voltage and the scattering directivity, which has been a problem in the past, is particularly important. The problem can be solved by a configuration in which the twist direction of the twisted liquid crystal dispersed with the polymer is divided into left and right within the pixel.
In particular, the drive voltage of the liquid crystal display element of the present invention can be reduced to the level of the TN mode, so it can be driven sufficiently by the MIM element and TFT element, and the brightness and contrast can be greatly improved. It became. This makes it possible to improve the number of display colors and the visibility when a reflective color liquid crystal display element is used. In addition, the need for a high-voltage driver has been eliminated, reducing power consumption and cost. Accordingly, the present invention improves the number of display colors and visibility, and can be used for a reflective color liquid crystal display element with low power consumption and low cost.
Furthermore, in the liquid crystal display element of the present invention, brightness, visual characteristics, and visibility are improved by suppressing the scattering directivity.
As a result, the present invention can be used for a liquid crystal display element suitable for portable use in various environments. Further, the present invention is active matrix driving, and can be used for a reflective large-capacity display with low power consumption and excellent display quality.
[Brief description of the drawings]
FIGS. 1A and 1B are a cross-sectional view and a plan view, respectively, of a liquid crystal display element according to Embodiment 1 of the present invention.
2A and 2B are diagrams showing a mask used in Example 1 of the present invention. FIG.
FIG. 3 is a diagram showing electro-optical characteristics of the liquid crystal display element of Example 1 of the present invention.
FIG. 4 is a diagram showing the scattering directivity of the liquid crystal display element of Example 1 of the present invention.
FIG. 5 is a diagram showing the scattering directivity of a conventional liquid crystal display element.
6A and 6B are a cross-sectional view and a plan view, respectively, of a liquid crystal display element according to Example 2 of the present invention.
FIG. 7 is a cross-sectional view of a liquid crystal display element according to Example 3 of the present invention.

Claims (9)

画素ごとに画素電極が形成され表面が配向処理された第1の基板と、前記画素電極と対向する電極が形成され表面が配向処理された第2の基板との間に、液晶及び屈折率異方性を有した高分子が挟持されてなり、透過光の散乱による反射表示が可能な液晶表示素子において、
前記画素内が、前記液晶が前記第2の基板側から見て右 回りに捻れ配向する右捻れ配向領域および、前記液晶が 前記第2の基板側から見て左回りに捻れ配向する左捻れ配向領域に少なくとも2分割され、
前記液晶が前記右捻れ配向領域内においては前記第1の基板および第2の基板間で右捻れ配向し、前記左捻れ配向領域内においては前記第1の基板および第2の基板間で左捻れ配向しており、前記液晶と前記高分子とが前記両基板間で互いに配向し、分散され、前記右捻れ配向領 域内の液晶の捻れ角が、前記左捻れ配向領域の散乱指向 性を抑えるために該左捻れ配向領域内の液晶の捻れ角と ほぼ等しい大きさとされていることを特徴とする液晶表示素子。
A liquid crystal and a different refractive index are provided between a first substrate in which a pixel electrode is formed for each pixel and the surface is aligned and a second substrate in which an electrode facing the pixel electrode is formed and the surface is aligned. In a liquid crystal display element in which a polymer having directionality is sandwiched and reflection display by scattering of transmitted light is possible,
It said pixels, right twist alignment regions aligned twisted clockwise the liquid crystal when viewed from the second substrate side and twist left the liquid crystal is aligned twisted counterclockwise as viewed from the second substrate side alignment Divided into at least two areas,
The liquid crystal is right-twisted between the first substrate and the second substrate in the right-twisted alignment region, and left-twisted between the first substrate and the second substrate in the left-twisted alignment region. oriented and the liquid crystal and said polymer are oriented to each other between the two substrates, is dispersed, twist angle of the liquid crystal of the right twist oriented territory region is, for suppressing the scattering directivity of the left twist oriented region The liquid crystal display element is characterized in that the liquid crystal display element has a size substantially equal to the twist angle of the liquid crystal in the left twist orientation region .
前記右捻れ配向領域内の前記第1の基板および前記第2の基板のうちの一方の配向方向と、前記左捻れ配向領域内の前記第1の基板および前記第2の基板のうちの前記一方の配向方向とが同じであり、前記右捻れ配向領域内の前記第1の基板および前記第2の基板の他方の配向方向と、前記左捻れ配向領域内の前記第1の基板および前記第2の基板の前記他方の配向方向とが反対であることを特徴とする請求の範囲第1項に記載の液晶表示素子。One orientation direction of the first substrate and the second substrate in the right twist orientation region, and one of the first substrate and the second substrate in the left twist orientation region The orientation direction of the first substrate and the second substrate in the right twist orientation region, and the first substrate and the second orientation in the left twist orientation region. 2. The liquid crystal display element according to claim 1, wherein the other alignment direction of the substrate is opposite. 前記液晶の捻れ角が、45〜90゜であることを特徴とする請求の範囲第1項記載の液晶表示素子。The liquid crystal display element according to claim 1, wherein the twist angle of the liquid crystal is 45 to 90 °. 前記右捻れ配向領域と前記左捻れ配向領域との境界部の前記第1の基板および前記第2の基板の少なくとも一方に遮光層が形成されていることを特徴とする請求の範囲第1項記載の液晶表示素子。The light shielding layer is formed on at least one of the first substrate and the second substrate at a boundary portion between the right twist orientation region and the left twist orientation region. Liquid crystal display element. 前記画素間の前記第1の基板および前記第2の基板の少なくとも一方に遮光層が形成されていることを特徴とする請求の範囲第1項記載の液晶表示素子。The liquid crystal display element according to claim 1, wherein a light shielding layer is formed on at least one of the first substrate and the second substrate between the pixels. 前記第1の基板の前記画素電極および前記第2の基板の前記電極の一方が、反射性材料により形成されていることを特徴とする請求の範囲第1項記載の液晶表示素子。2. The liquid crystal display element according to claim 1, wherein one of the pixel electrode of the first substrate and the electrode of the second substrate is formed of a reflective material. 前記液晶がカイラル剤を含んでいないことを特徴とする請求の範囲第1項記載の液晶表示素子。The liquid crystal display element according to claim 1, wherein the liquid crystal does not contain a chiral agent. 第1の基板に画素電極を形成する工程と、
第2の基板に前記画素電極と対向する電極を形成する工程と、
前記画素電極の第1の領域内の前記第1の基板および前記第2の基板のうちの一方を第1の方向に配向処理する工程と、
前記画素電極の前記第1の領域と異なる第2の領域内の前記第1の基板および前記第2の基板の前記一方を、前記第1の方向とは反対の第2の方向に配向処理する工程と、
前記画素内を、前記液晶が前記第2の基板側から見て右 回りに捻れ配向する右捻れ配向領域と、前記液晶が前記 第2の基板側から見て左回りに捻れ配向する左捻れ配向 領域とに2分割するために、前記第1の基板および前記第2の基板の他方を、前記第1の方向及び前記第2の方 向とは異なる第3の方向に配向処理する工程と、
前記第1の基板および前記第2の基板間に、高分子または高分子前駆体と液晶組成物との液晶性混合材料を配置する工程と、
前記液晶性混合材料から高分子を析出させて液晶と高分子とを相分離する工程と、を有することを特徴とする液晶表示素子の製造方法。
Forming a pixel electrode on a first substrate;
Forming an electrode facing the pixel electrode on a second substrate;
Aligning one of the first substrate and the second substrate in the first region of the pixel electrode in a first direction;
The one of the first substrate and the second substrate in a second region different from the first region of the pixel electrode is subjected to an alignment process in a second direction opposite to the first direction. Process,
In the pixel, the liquid crystal is twisted in the clockwise direction when viewed from the second substrate side, and the liquid crystal is twisted in the counterclockwise direction as viewed from the second substrate side. to 2 divided into a region, a step of orientation treatment in a third direction different to the other of the first substrate and the second substrate, the direction toward the first direction and the second,
Disposing a liquid crystalline mixed material of a polymer or a polymer precursor and a liquid crystal composition between the first substrate and the second substrate;
Depositing a polymer from the liquid crystalline mixed material to phase-separate the liquid crystal from the polymer.
請求の範囲第1〜項のうちのいずれか1項に記載の液晶表示素子を備えた電子機器。Electronic apparatus comprising the liquid crystal display device according to any one of the range first to 7 of claims.
JP51859896A 1994-12-12 1995-12-12 Liquid crystal display element, manufacturing method thereof, and electronic apparatus Expired - Lifetime JP3651004B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP30799394 1994-12-12
PCT/JP1995/002536 WO1996018929A1 (en) 1994-12-12 1995-12-12 Liquid crystal display element and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP3651004B2 true JP3651004B2 (en) 2005-05-25

Family

ID=17975620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51859896A Expired - Lifetime JP3651004B2 (en) 1994-12-12 1995-12-12 Liquid crystal display element, manufacturing method thereof, and electronic apparatus

Country Status (4)

Country Link
US (1) US5867237A (en)
EP (1) EP0750210A4 (en)
JP (1) JP3651004B2 (en)
WO (1) WO1996018929A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5831700A (en) * 1995-05-19 1998-11-03 Kent State University Polymer stabilized four domain twisted nematic liquid crystal display
EP0844293B1 (en) * 1996-11-21 2002-01-16 Rolic AG Bistable ferroelectric liquid crystal cell
GB9704623D0 (en) * 1997-03-06 1997-04-23 Sharp Kk Liquid crytal optical element and liquid crystal device incorporating same
GB2325530A (en) * 1997-05-22 1998-11-25 Sharp Kk Liquid crystal device
GB9802158D0 (en) * 1997-06-28 1998-04-01 Sharp Kk Method of making a patterned retarder and patterned retarder
US6624863B1 (en) 1997-06-28 2003-09-23 Sharp Kabushiki Kaisha Method of making a patterned retarder, patterned retarder and illumination source
JP3874920B2 (en) * 1998-03-06 2007-01-31 株式会社アドバンスト・ディスプレイ Liquid crystal display
GB9811579D0 (en) 1998-05-30 1998-07-29 Sharp Kk Surface mode liquid crystal device
US6233033B1 (en) 1999-03-29 2001-05-15 National Semiconductor Corp. Pixel array for LC silicon light valve featuring pixels with overlapping edges
US6356327B1 (en) 1999-03-29 2002-03-12 National Semiconductor Corporation Pixel array for silicon LC light valve featuring reflective metal surface underlying inter-pixel regions
US6577362B1 (en) 1999-05-24 2003-06-10 National Semiconductor Corporation Pixel cell for silicon LC light valve having enhanced storage capacitance
US6373543B1 (en) 1999-07-16 2002-04-16 National Semiconductor Corporation Process for forming silicon LC pixel cell having planar alignment layers of uniform thickness
US7324182B2 (en) * 2003-03-31 2008-01-29 Kochi University Of Technology Object rotating mechanism using liquid crystal flow
JP4504626B2 (en) 2003-03-31 2010-07-14 シャープ株式会社 Liquid crystal display device and manufacturing method thereof
CN101290410B (en) * 2007-04-17 2011-06-15 北京京东方光电科技有限公司 LCD panel array structure

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4084884A (en) * 1974-02-21 1978-04-18 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Liquid crystal devices
US4435047A (en) * 1981-09-16 1984-03-06 Manchester R & D Partnership Encapsulated liquid crystal and method
NL9000808A (en) * 1990-04-06 1991-11-01 Koninkl Philips Electronics Nv LIQUID CRYSTALLINE MATERIAL AND IMAGE DISPLAY CELL CONTAINING THIS MATERIAL.
US5680185A (en) * 1990-11-26 1997-10-21 Seiko Epson Corporation Polymer dispersed liquid crystal (PDLC) display apparatus
JP3060656B2 (en) * 1990-11-26 2000-07-10 セイコーエプソン株式会社 Liquid crystal display device
JP2801102B2 (en) * 1991-02-01 1998-09-21 富士通株式会社 Liquid crystal display
JPH0511246A (en) * 1991-07-01 1993-01-19 Seiko Epson Corp Display device
JP2888017B2 (en) * 1992-02-20 1999-05-10 日本電気株式会社 Liquid crystal display device
JP3156332B2 (en) * 1992-01-22 2001-04-16 セイコーエプソン株式会社 Display device
JPH06265903A (en) * 1993-03-15 1994-09-22 Sharp Corp Color liquid crystal display device and its production
US5579140A (en) * 1993-04-22 1996-11-26 Sharp Kabushiki Kaisha Multiple domain liquid crystal display element and a manufacturing method of the same
JPH07294934A (en) * 1994-04-22 1995-11-10 Seiko Epson Corp Liquid crystal device

Also Published As

Publication number Publication date
WO1996018929A1 (en) 1996-06-20
EP0750210A4 (en) 1998-01-07
US5867237A (en) 1999-02-02
EP0750210A1 (en) 1996-12-27

Similar Documents

Publication Publication Date Title
US5680185A (en) Polymer dispersed liquid crystal (PDLC) display apparatus
US6175399B1 (en) Reflective type liquid crystal display device having a diffusion layer of phase separated liquid crystal and polymer
US5493430A (en) Color, reflective liquid crystal displays
TW536688B (en) Liquid crystal display element
JP3651004B2 (en) Liquid crystal display element, manufacturing method thereof, and electronic apparatus
JP3659975B2 (en) Liquid crystal display element and manufacturing method thereof
TW522273B (en) Reflection type liquid crystal display element
JP3310569B2 (en) Reflective liquid crystal display
JP2000066195A (en) Reflection type liquid crystal display device
JP2775769B2 (en) Projection active matrix liquid crystal display device and method of manufacturing the same
JP3012421B2 (en) Reflective liquid crystal display
JP3416947B2 (en) Liquid crystal display device and method of manufacturing the same
JPH08106087A (en) Reflection type liquid crystal display device
JPH05297382A (en) Color liquid crystal display device
JP2001183644A (en) Liquid crystal display device
JP3526250B2 (en) Liquid crystal display
JPH08211369A (en) Liquid crystal display element
WO1996017273A1 (en) Liquid crystal display element and method of manufacturing the same
JPH06235931A (en) Reflection type liquid crystal display device
JP3219733B2 (en) Reflective liquid crystal display
JP2000111912A (en) Reflection type liquid crystal display device
JPH0667185A (en) Liquid crystal display element
JP2852387B2 (en) Liquid crystal electro-optical device
JPH0829757A (en) Display element
JPH0743741A (en) Liquid crystal display element

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040129

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041210

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080304

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8