JP3649601B2 - Ash melting furnace - Google Patents

Ash melting furnace Download PDF

Info

Publication number
JP3649601B2
JP3649601B2 JP25955998A JP25955998A JP3649601B2 JP 3649601 B2 JP3649601 B2 JP 3649601B2 JP 25955998 A JP25955998 A JP 25955998A JP 25955998 A JP25955998 A JP 25955998A JP 3649601 B2 JP3649601 B2 JP 3649601B2
Authority
JP
Japan
Prior art keywords
molten slag
pond
tap
furnace
beak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25955998A
Other languages
Japanese (ja)
Other versions
JP2000088233A (en
Inventor
忠八 五島
佳正 川見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP25955998A priority Critical patent/JP3649601B2/en
Publication of JP2000088233A publication Critical patent/JP2000088233A/en
Application granted granted Critical
Publication of JP3649601B2 publication Critical patent/JP3649601B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Gasification And Melting Of Waste (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、下水汚泥、都市ゴミや産業廃棄物などの焼却灰及び事業用火力発電プラント等の燃焼炉から排出される焼却灰を溶融するプラズマアーク式灰溶融炉に関する。
【0002】
【従来の技術】
従来より、下水汚泥、都市ゴミ及び産業廃棄物等の焼却灰は、資源化、減容化及び無害化を図るため、灰溶融炉によって溶融され、スラグとして取り出されている。
上記焼却灰の溶融には、例えば図5、図6に示すようなプラズマアーク式溶融炉51が使用され、炉本体52に灰フィーダ53を設け、該フィーダ53より焼却灰53aを投入し、プラズマアーク54で溶融される。溶融された溶融スラグ55は出滓口57から出滓樋58を経由してモールド54に排出され、排ガス60は出滓樋58の上部より炉本体外へ排出されている。
【0003】
上記炉本体52は耐火材52eで略円筒状容器に構成され、その上部には黒鉛製管状プラズマ電極(−電極)61が摺動可能に直立状に垂設され、下部には該プラズマ電極61の対向位置に炉底電極(+電極)62を配設し、図示してない直流電源により直流電圧を印加して中心温度が略1万℃程度のプラズマアーク54を発生させ焼却灰53aを溶融し溶融スラグ55を形成する。
該溶融スラグ55は溶融とともに導電性を持ち、電極間は導電性を帯びた溶融スラグ55を挟んで通電状態に置かれ導電性部材の通電によるジュール熱を発生する。該ジュール熱により、溶融スラグ55は炉底電極62の上部に溶融メタル56を沈殿させ、その上部に円形状の溶融スラグ池63を形成し、略1400℃程度の溶融スラグ55が前記炉本体52の側壁を貫通構成された出滓口57より、下部に傾斜状に設けた出滓樋58を介して連続出滓ができるようにしてある。なお、炉本体52の上部には窒素ガス発生装置により還元用の窒素ガス64を管状の前記プラズマ電極61を介して送気され、炉内を還元用雰囲気に保持して黒鉛電極の消耗を防止する構成にしてある。
【0004】
【発明が解決しようとする課題】
そして、上記炉本体52は、耐火材52eで略円筒状容器に構成され、その耐火材の外側底を覆う水冷ジャケット65が設けられ、図に見るように出滓口57近くまで配設されている。
ところが、図5に見るように、前記円形状溶融スラグ池63においては、溶融スラグ55が流入し且つ通過する出滓口57の入り口及び出滓口内部のU字底部を持つ通路は激しい侵食Kを受ける。また、前記侵食Kとともに図6に見るように出滓方向に対し略±60°の範囲にわたり、炉内側壁(液面位置)の耐火材も侵食Kを受ける。
【0005】
上記侵食が進むと、図5に示す場合は侵食部Kにより出滓樋58の下部に位置する水冷ジャケット65aへ溶融スラグ55の流れが間近に接近して運転の継続が困難となる。また、図6に示す場合は侵食部Kにより出滓口57両側の水冷ジャケット65bへ溶融スラグ55の流れが間近に接近して前記K同様運転の継続が困難となり、その都度運転を停止させ補修工事をする必要がある。
そのため、長期連続運転を実現するためには、上記のような耐火材の侵食を防ぐ何らかの対策が強く望まれている。
【0006】
上記侵食は、出滓のため出滓口57へ向け流動する高温溶融スラグ55と耐火材との接触部位に起きる反応と物理的擦過により起きるものであり、溶融スラグ55の温度が低温で流速が低い場合は起きないものであり、一に壁面近傍の溶融スラグ55の温度及び接触する溶融スラグ55の流速とに起因するものと考えられるため、下記に示す計測と分析を行なった。
即ち、従来の図6に示す円形状溶融スラグ池63における壁面近傍の溶融スラグ55の温度分布及び壁面温度分布について図7、図8に示す解析結果を求め、下記に示す結論を得た。
【0007】
図7には、液面温度に対して、炉心より半径方向位置における液面温度を出滓方向の中心角θが0°とし反時計周りに中心角θの値が20°、40°、180°のときの半径方向位置に対する液面温度分布を示してある。なお、当該略円形状溶融スラグ池の半径は0.55mで、炉壁近くの溶融スラグの温度は出滓口で略1470℃、θ=20、θ=40°の壁面近傍の温度は略1460〜1465℃で侵食を起し、θ=180°では略1400℃でこの温度では接触による侵食は起きないことを示している。
【0008】
図8には、溶融スラグの流れが接触する壁面の温度を、炉心よりの周方向位置を前記中心角が0°のときを出滓方向とし、それより反時計周り中心角を開きそれぞれ周方向位置θで対応させて計測し、周方向位置(中心角θ)に対する壁面温度分布を示してある。
図8からは、壁面温度は出滓方向を0°とする周方向位置が60°の場合は略1000℃を境に周方向位置の増大につれ下方に変動して90°以降は略950℃の安定値に落ち着いていることが示され、前記周方向位置が60°以内に入ると壁面温度は上昇し、1030℃より1200℃近い値を示している。
【0009】
即ち従来の円形状溶融スラグ池の場合は、出滓方向を中心に60°以内の壁面部分が1150〜1030℃でこの温度分布帯が大きな侵食が発生していることが理解される。
【0010】
本発明は、前記課題解決のため上記検討結果に基づきなされたもので、侵食部位の耐火壁面の温度低下と耐火材近傍部位の溶融スラグの流速低下を図るとともに、溶融スラグの出滓性を保持した灰溶融炉の提供を目的とするものである。
【0011】
【課題を解決するための手段】
そこで、本発明の灰溶融炉は、炉本体内で、直立状に設けたプラズマ電極と該電極に対向して設けた炉底電極との間でのプラズマアークにより焼却灰を溶融して得た溶融スラグを、該スラグの溜り池より出滓口を介して排出する灰溶融炉であって、炉本体を構成する耐火材の外側底を覆う水冷ジャケットが出滓口近くまで配設されている構造において、
前記溜り池の壁面の形状を、溜り池中心より出滓口へ向かうに連れ徐々に細幅化するくちばし形状に形成するとともに、前記くちばし形状のテーパ角を略40〜65°で且つ溜り池中心より出滓口入口端壁までの距離が、該中心より出滓口反対側壁面までの距離より大なる形状に構成したことを特徴とする。
【0012】
溶融スラグ池の高温溶融スラグが出滓口へ向け壁面を流動して流動面を激しく侵食する出滓口へのスラグ流入側の壁面の形状を、ジュール熱の発生中心である炉心より徐々に遠ざかるくちばし状(テーパ状)に形成する上記構成により、侵食を起こす流動開始点より出滓口に向け、壁面は遠ざかり、それに従い、側壁の冷却面積が増加することになり、くちばし部位の壁面温度が低下する。
【0013】
一方、上記くちばし状(テーパ状)に形成された壁面近傍の溶融スラグ温度は、炉心より距離の増大につれ低下する。このため、溶融スラグの粘度が増加し流速の低下も惹起され、侵食を低く抑えることができる。
上記温度低下は局所的なものであるため、熱効率は殆ど低下せずまた、出滓スラグ温度も殆ど変化しない。従って出滓性を保持した中で耐火材の長寿命化を図ることができる。
【0015】
上記請求項1記載の溶融スラグ池の形状は、前記図6、図7の従来の円筒状の灰溶融炉に見られる円形状溶融スラグ池について、壁面温度分布及び液面温度分布の検討結果に基づきなされたもので、テーパ角の略40〜65°の位置は、溶融スラグの出滓のための流動が開始され、侵食が始まる周方向位置を示す中心角が出滓方向を0°としたときの中心角40〜65°の位置に相当する。
【0016】
【発明の実施の形態】
以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載される構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載が無い限り、この発明の範囲をそれのみに限定する趣旨ではなく単なる説明例に過ぎない。
なお、従来例を示す図面に記載の部品と同一の品名と同一機能を持つ部品を使用する場合は同一符号を使用する。
【0017】
図1は、本発明の灰溶融炉の縦断面図、図2は図1のII−II視図で、くちばし状溶融スラグ池の形状を示す図、図3は図2に示すくちばし状スラグ池における半径方向位置に対する液面温度分布を示す図、図4は図2に示すくちばし状スラグ池における周方向位置に対する壁面温度分布を示す図である。
【0018】
図1に示すように、本発明の灰溶融炉は、炉本体10は耐火材10eで構成され、中心軸芯にプラズマ電極61と炉底電極62を備えた円筒部位10aと、出滓口12を備えたくちばし部位10bとよりなり、底部にくちばしの先端角を略60°とする断面略雫形状の溶融スラグ池11を備えた筒状容器より構成する。
上記筒状容器の天井の前記円筒部位10aの中心軸芯にプラズマ電極61を直立状に垂設し、筒状容器の下底10dには前記プラズマ電極61に対向させてプラズマアーク54を形成する炉底電極62を配設し、該炉底電極62の上部に沈殿する溶融メタル11a及びその上部に溶融スラグ11bを収納する雫型のくちばし状溶融スラグ池11を形成する。
上記筒状容器の円筒部位10aには灰フィーダ53を設け、くちばし部位10bの雫型のくちばし状溶融スラグ池11の先端に出滓口12を耐火材10eに貫通させる構成とする。
上記溶融スラグ池11の形状以外の構造は先に引用した従来例と同一であるの説明を省略する。
【0019】
上記炉本体10の構成は、断面略雫形状筒状容器に拘束されることなく、雫型のくちばし状溶融スラグ池11を含む下部構造を除く上部構造は、略雫形状に捉われるものでない。
【0020】
上記構成であるので、プラズマアーク54が形成する炉心を中心とし、出滓口12の方向を中心角0°とし、反時計周りに中心角40〜65°に対応する周方向位置θ=40〜65°に対する点Aより、周方向位置の角度が小になるに従い、熱発生源である炉心よりの距離が増大する。
【0021】
ところで、焼却灰がプラズマアーク54により溶融され始まると、前記したように溶融スラグ11bは導電性を持つようになり、プラズマ電極61と炉底電極62は導電性溶融スラグ11bを間に挟んで表皮電流による筒状通電状態を形成し、電極径に近い筒状部位にジュール熱を発生する。発生した熱は溶融スラグ11bを介して上昇流動させ炉心を中心に四方に拡散するが、拡散した熱は壁面及び水冷ジャケット13を介して周囲から冷却される。即ち熱発生源である炉心より遠ざかる程、溶融スラグ11bの温度は低下する。即ち、周方向位置が出滓口12に近い程、温度低下を起こす。
また、前記点Aより出滓口12まで冷却面積はくちばし状(テーパ状)にすることにより増大する。そのため、壁面の放熱面積も増加し壁面温度は低下する。上記壁面温度(耐火材温度)の低下は反応による侵食を抑え、壁周辺の溶融スラグ11bの粘度の増大を招来し、出滓口12における溶融スラグ11bの流出速度の低下を起し侵食防止を可能にする。
【0022】
図3は、図2に示すくちばし状スラグ池11における半径方向位置に対する液面温度分布を示す図、図4は図2に示すくちばし状スラグ池11における周方向位置に対する壁面温度分布を示す図である。
図3においての半径方向の位置は、炉心を形成するプラズマアーク54よりの距離を示し、図3、図4における周方向位置θは、前記炉心を中心とし出滓方向を0°として反時計周りに中心角の開き角度を周方向位置として表したものである。
【0023】
図3に見るように、出滓口12の液面温度は略1470℃を示しており、従来の円形状溶融スラグ池の液面温度分図(図7)に示す1490℃に比較して、20℃程度の温度低下を示しており、出滓性は保持されている。(入力熱量と放散熱の差に比例して温度低下が起きる。)
また、周囲方向位置20°、40°の溶融スラグ温度は1350〜1390℃を示し、従来の温度分布図(図8)に示す半径位置0.55mのスラグ温度1450〜1460℃に比較して明らかに温度低下を示し、接触のみでは侵食を起こさない1400℃以下である。
【0024】
一方、壁面温度は図4に見るように出滓口付近より略1050℃付近で推移し、周囲方向40°より60°までは1040〜1000℃を示し、60°を境にして900℃程度に低下している。
これに対し、従来の円形溶融スラグ池の場合の壁面温度分布は図6に見るように、出滓口より周方向位置30°までは1200〜1050℃、周囲方向位置30°より60°までは1050〜1030℃付近に終始し、本発明の場合の壁面温度は明らかに低下している。
上記図3、図4を図7、図8に示す解析結果に比較しても、本発明のくちばし型溶融スラグ池が出滓性を保持した中で侵食防止機能を持つことが示され、出滓性に影響を与えることなく侵食を防止できる。
【0025】
【発明の効果】
本発明は上記構成により、耐火材の温度低下、耐火材近傍の溶融スラグの流速の低下を図ることができ、出滓性を保持したなかで耐火材の耐久性を改善できる。
【図面の簡単な説明】
【図1】 本発明の灰溶融炉の一部破断した縦断面図である。
【図2】 図1のII−II視図で、くちばし状溶融スラグ池の形状を示す図である。
【図3】 図2に示すくちばし状溶融スラグ池における半径方向位置に対する液面温度分布を示す図である。
【図4】 図2に示すくちばし状溶融スラグ池における周方向位置に対する壁面温度分布を示す図である。
【図5】 従来の円筒状灰溶融炉の概略の構成及び出滓口における侵食状況を示す縦断面図である。
【図6】 図5のVI−VI視図で円形状溶融スラグ池における出滓口侵食状況を示す図である。
【図7】 図6に示す円形状スラグ池における半径方向位置に対する液面温度分布を示す図である。
【図8】 図6に示す円形状スラグ池における周方向位置に対する壁面温度分布を示す図である。
【符号の説明】
10 炉本体
10a 円筒部位
10b くちばし部位
10d 下底
10e 耐火材
11 くちばし状溶融スラグ池
11a 溶融メタル
11b 溶融スラグ
12 出滓口
13 水冷ジャケット
53 灰フィーダ
54 プラズマアーク
61 プラズマ電極
62 炉底電極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a plasma arc ash melting furnace for melting incineration ash such as sewage sludge, municipal waste and industrial waste, and incineration ash discharged from a combustion furnace such as a commercial thermal power plant.
[0002]
[Prior art]
Conventionally, incineration ash such as sewage sludge, municipal waste, and industrial waste has been melted by an ash melting furnace and taken out as slag in order to make it resource-saving, volume-reduction, and detoxification.
For the melting of the incineration ash, for example, a plasma arc melting furnace 51 as shown in FIGS. 5 and 6 is used, an ash feeder 53 is provided in the furnace body 52, and the incineration ash 53a is introduced from the feeder 53 to generate plasma. It is melted by the arc 54. The melted molten slag 55 is discharged from the tap 57 through the tap 58 to the mold 54, and the exhaust gas 60 is discharged from the top of the tap 58 to the outside of the furnace body.
[0003]
The furnace body 52 is formed of a refractory material 52e in a substantially cylindrical container, and a graphite tubular plasma electrode (-electrode) 61 is slidably erected on the upper part thereof, and the plasma electrode 61 is provided on the lower part thereof. A furnace bottom electrode (+ electrode) 62 is disposed at a position opposite to the center, and a DC voltage is applied by a DC power source (not shown) to generate a plasma arc 54 having a center temperature of about 10,000 ° C. to melt the incineration ash 53a. The molten slag 55 is formed.
The molten slag 55 has conductivity with melting, and the electrodes are placed in an energized state with the electroconductive molten slag 55 sandwiched between them to generate Joule heat due to energization of the conductive member. Due to the Joule heat, the molten slag 55 causes the molten metal 56 to precipitate on the upper part of the furnace bottom electrode 62, and a circular molten slag pond 63 is formed on the upper part of the molten slag 55. From the tap opening 57 that is configured to penetrate through the side wall, continuous taping can be performed via a tap bar 58 that is provided in an inclined shape at the bottom. In addition, nitrogen gas 64 for reduction is sent to the upper part of the furnace body 52 through the tubular plasma electrode 61 by a nitrogen gas generator, and the inside of the furnace is maintained in a reducing atmosphere to prevent the graphite electrode from being consumed. It is configured to do.
[0004]
[Problems to be solved by the invention]
The furnace main body 52 is formed in a substantially cylindrical container with a refractory material 52e, and is provided with a water cooling jacket 65 that covers the outer bottom of the refractory material. Yes.
However, as shown in FIG. 5, in the circular molten slag pond 63, the passage having the U-shaped bottom portion inside the outlet and the entrance of the outlet 57 through which the molten slag 55 flows and passes is severely eroded. Receive 1 . Also, along with the erosion K 1 over a range of approximately ± 60 ° with respect to tapping direction as seen in FIG. 6, the refractory material of the furnace sidewall (liquid level) also eroded K 2.
[0005]
When the erosion progresses, continued operation close to close the flow of the molten slag 55 to the water cooling jacket 65a located under the Dekasutoi 58 becomes difficult due to erosion portion K 1 is the case shown in FIG. Moreover, the the tapping port 57 on both sides of the water cooling jacket 65b flows of molten slag 55 approaches the close continuation of K 1 similar operation becomes difficult due to erosion unit K 2 the case shown in FIG. 6, stop the operation in each case It is necessary to perform repair work.
Therefore, in order to realize long-term continuous operation, some measures for preventing erosion of the refractory material as described above are strongly desired.
[0006]
The erosion is caused by a reaction and physical abrasion at the contact portion between the high-temperature molten slag 55 that flows toward the tap outlet 57 for brewing and the refractory material. The temperature of the molten slag 55 is low and the flow rate is low. When it is low, it does not occur. It is considered that it is caused by the temperature of the molten slag 55 in the vicinity of the wall surface and the flow velocity of the molten slag 55 in contact therewith, so the following measurement and analysis were performed.
That is, the analysis results shown in FIGS. 7 and 8 were obtained for the temperature distribution of the molten slag 55 near the wall surface and the wall surface temperature distribution in the conventional circular molten slag pond 63 shown in FIG. 6, and the following conclusions were obtained.
[0007]
In FIG. 7, the liquid surface temperature at a position in the radial direction from the core with respect to the liquid surface temperature is 0 ° as the central angle θ in the output direction, and the values of the central angle θ are 20 °, 40 °, 180 ° counterclockwise. The liquid surface temperature distribution with respect to the radial position at the time of ° is shown. The radius of the substantially circular molten slag pond is 0.55 m, and the temperature of the molten slag near the furnace wall is approximately 1470 ° C., θ = 20, θ = 40 ° near the wall surface at the outlet. Erosion occurs at ˜1465 ° C., and when θ = 180 °, it is approximately 1400 ° C., indicating that no contact erosion occurs at this temperature.
[0008]
In FIG. 8, the temperature of the wall surface in contact with the molten slag flow is defined as the output direction when the central position is 0 ° in the circumferential direction from the core, and the counterclockwise central angle is opened from there. The wall surface temperature distribution with respect to the circumferential position (center angle θ) is shown by measurement corresponding to the position θ.
From FIG. 8, the wall surface temperature fluctuates downward as the circumferential position increases from about 1000 ° C. when the circumferential position with the output direction being 0 ° is 60 °, and is about 950 ° C. after 90 °. It is shown that the stable value is settled, and when the circumferential position is within 60 °, the wall surface temperature rises and shows a value closer to 1200 ° C. than 1030 ° C.
[0009]
That is, in the case of the conventional circular molten slag pond, it is understood that the wall surface portion within 60 ° centering on the taping direction is 1150 to 1030 ° C. and this temperature distribution zone is greatly eroded.
[0010]
The present invention has been made on the basis of the above examination results in order to solve the above-mentioned problems. The temperature of the refractory wall at the erosion site and the flow rate of the molten slag near the refractory material are reduced, and the slag of the molten slag is maintained. The purpose is to provide an improved ash melting furnace.
[0011]
[Means for Solving the Problems]
Therefore, the ash melting furnace of the present invention was obtained by melting the incinerated ash by a plasma arc between a plasma electrode provided upright and a furnace bottom electrode provided facing the electrode in the furnace body. An ash melting furnace that discharges molten slag from a slag reservoir through a tap outlet, and a water-cooling jacket covering the outer bottom of the refractory material constituting the furnace body is disposed near the tap outlet. In structure
The shape of the wall surface of the basin is formed into a beak shape that gradually narrows from the center of the pond toward the tap mouth, and the taper angle of the beak shape is approximately 40 to 65 ° and the center of the pond Further, the distance from the entrance end wall of the tap opening is configured to be larger than the distance from the center to the opposite side wall surface of the tap opening.
[0012]
Gradually move the shape of the wall on the slag inflow side to the outlet where the high-temperature molten slag of the molten slag pond flows to the outlet and erodes the flow surface violently from the core that is the center of Joule heat generation. Due to the above-described configuration formed in the beak shape (tapered shape), the wall surface is moved away from the starting point of the flow causing erosion toward the tap hole, and accordingly, the cooling area of the side wall is increased, and the wall surface temperature of the beak portion is increased. descend.
[0013]
On the other hand, the molten slag temperature near the wall surface formed in the beak shape (tapered shape) decreases as the distance increases from the core. For this reason, the viscosity of the molten slag is increased and the flow velocity is lowered, and erosion can be kept low.
Since the above temperature decrease is local, the thermal efficiency hardly decreases and the output slag temperature hardly changes. Therefore, it is possible to extend the life of the refractory material while maintaining the brewing ability.
[0015]
The shape of the molten slag pond according to claim 1 is the result of examination of the wall surface temperature distribution and the liquid surface temperature distribution of the circular molten slag pond seen in the conventional cylindrical ash melting furnace of FIGS. The taper angle of about 40 to 65 ° is the position at which the flow of the molten slag begins to flow and the central angle indicating the circumferential position where erosion starts is 0 ° in the direction of the tap. It corresponds to a position with a central angle of 40 to 65 °.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are merely illustrative examples and not intended to limit the scope of the present invention unless otherwise specified. Absent.
In addition, the same code | symbol is used when using the components which have the same product name and the same function as the components described in drawing which shows a prior art example.
[0017]
1 is a longitudinal sectional view of an ash melting furnace according to the present invention, FIG. 2 is a view taken along the line II-II of FIG. 1, and shows a shape of a beak-like molten slag pond, and FIG. 3 is a beak-like slag pond shown in FIG. FIG. 4 is a diagram showing the wall surface temperature distribution with respect to the circumferential position in the beak-shaped slag pond shown in FIG.
[0018]
As shown in FIG. 1, in the ash melting furnace of the present invention, the furnace body 10 is composed of a refractory material 10e, a cylindrical part 10a having a plasma electrode 61 and a furnace bottom electrode 62 on the center axis, and a tap 12 It is comprised from the cylindrical container provided with the beak part 10b provided with, and the molten slag pond 11 of the cross-sectional substantially bowl shape which makes the front-end | tip angle of a beak substantially 60 degrees.
A plasma electrode 61 is vertically suspended from the central axis of the cylindrical portion 10a of the cylindrical container ceiling, and a plasma arc 54 is formed on the lower bottom 10d of the cylindrical container so as to face the plasma electrode 61. A furnace bottom electrode 62 is disposed, and a bowl-shaped beak-shaped molten slag pond 11 is formed in which the molten metal 11a that precipitates on the top of the furnace bottom electrode 62 and the molten slag 11b are accommodated on the molten metal 11a.
An ash feeder 53 is provided in the cylindrical part 10a of the cylindrical container, and the spout 12 is penetrated through the refractory material 10e at the tip of the bowl-shaped beak-shaped molten slag pond 11 of the beak part 10b.
Since the structure other than the shape of the molten slag pond 11 is the same as the conventional example cited above, the description thereof is omitted.
[0019]
The structure of the furnace body 10 is not constrained by a cylindrical container having a substantially bowl-shaped cross section, and the upper structure excluding the lower structure including the bowl-shaped beak-shaped molten slag pond 11 is not trapped in a generally bowl shape.
[0020]
With the above configuration, the circumferential position θ corresponding to the central angle of 40 to 65 ° counterclockwise with the central angle of 0 ° centering on the core formed by the plasma arc 54 and the direction of the tap hole 12 being 40 ° to 65 ° counterclockwise. As the angle of the circumferential position becomes smaller from the point A with respect to 65 °, the distance from the core that is the heat generation source increases.
[0021]
By the way, when the incineration ash starts to be melted by the plasma arc 54, the molten slag 11b becomes conductive as described above, and the plasma electrode 61 and the furnace bottom electrode 62 have the outer skin with the conductive molten slag 11b interposed therebetween. A cylindrical energization state by an electric current is formed, and Joule heat is generated in a cylindrical portion close to the electrode diameter. The generated heat is made to flow upward through the molten slag 11 b and diffuses in all directions around the core, but the diffused heat is cooled from the surroundings through the wall surface and the water cooling jacket 13. That is, the temperature of the molten slag 11b decreases as the distance from the core as the heat generation source increases. In other words, the closer the circumferential position is to the spout 12, the lower the temperature.
Further, the cooling area from the point A to the tap hole 12 is increased by making it a beak shape (tapered shape). Therefore, the heat radiation area of the wall surface increases and the wall surface temperature decreases. The decrease in the wall temperature (refractory material temperature) suppresses erosion due to the reaction, leading to an increase in the viscosity of the molten slag 11b around the wall, and a decrease in the outflow rate of the molten slag 11b at the spout 12 to prevent erosion. to enable.
[0022]
3 is a diagram showing a liquid surface temperature distribution with respect to a radial position in the beak-shaped slag pond 11 shown in FIG. 2, and FIG. 4 is a diagram showing a wall surface temperature distribution with respect to a circumferential position in the beak-shaped slag pond 11 shown in FIG. is there.
The radial position in FIG. 3 indicates the distance from the plasma arc 54 forming the core, and the circumferential position θ in FIGS. 3 and 4 is counterclockwise with the output direction as 0 ° centered on the core. The opening angle of the central angle is expressed as the circumferential position.
[0023]
As shown in FIG. 3, the liquid surface temperature of the spout 12 shows approximately 1470 ° C., compared to 1490 ° C. shown in the liquid surface temperature distribution diagram of the conventional circular molten slag pond (FIG. 7), A temperature drop of about 20 ° C. is shown, and the brewing ability is maintained. (Temperature drop occurs in proportion to the difference between input heat and heat dissipation.)
Further, the molten slag temperatures at the circumferential direction positions of 20 ° and 40 ° are 1350 to 1390 ° C., which is apparent in comparison with the slag temperature 1450 to 1460 ° C. at the radial position of 0.55 m shown in the conventional temperature distribution diagram (FIG. 8). The temperature decreases to 1400 ° C. or lower, which does not cause erosion by contact alone.
[0024]
On the other hand, as shown in FIG. 4, the wall surface temperature changes from about 1050 ° C. from the vicinity of the tap, shows 1040 to 1000 ° C. from 40 ° to 60 ° in the peripheral direction, and reaches about 900 ° C. with 60 ° as a boundary. It is falling.
In contrast, as shown in FIG. 6, the wall surface temperature distribution in the case of the conventional circular molten slag pond is 1200 to 1050 ° C. from the tap outlet to the circumferential position 30 °, and from the circumferential position 30 ° to 60 °. From around 1050 to 1030 ° C., the wall temperature in the present invention is clearly reduced.
3 and 4 are compared with the analysis results shown in FIGS. 7 and 8, it is shown that the beak-type molten slag pond of the present invention has an erosion prevention function while maintaining the fertility. Erosion can be prevented without affecting the inertia.
[0025]
【The invention's effect】
With the above-described configuration, the present invention can reduce the temperature of the refractory material and the flow rate of the molten slag near the refractory material, and can improve the durability of the refractory material while maintaining the spout.
[Brief description of the drawings]
FIG. 1 is a partially cutaway longitudinal sectional view of an ash melting furnace of the present invention.
FIG. 2 is a view showing the shape of a beak-shaped molten slag pond as viewed from II-II in FIG.
FIG. 3 is a view showing a liquid surface temperature distribution with respect to a radial position in the beak-shaped molten slag pond shown in FIG. 2;
4 is a diagram showing a wall surface temperature distribution with respect to a circumferential position in the beak-shaped molten slag pond shown in FIG. 2. FIG.
FIG. 5 is a vertical cross-sectional view showing a schematic configuration of a conventional cylindrical ash melting furnace and an erosion situation at a tap outlet.
FIG. 6 is a view showing the state of erosion of tapholes in a circular molten slag pond as viewed from VI-VI in FIG. 5;
7 is a diagram showing a liquid surface temperature distribution with respect to a radial position in the circular slag pond shown in FIG. 6. FIG.
8 is a diagram showing a wall surface temperature distribution with respect to a circumferential position in the circular slag pond shown in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Furnace main body 10a Cylindrical part 10b Beak part 10d Lower bottom 10e Refractory material 11 Beak-like molten slag pond 11a Molten metal 11b Molten slag 12 Outlet 13 Water cooling jacket 53 Ash feeder 54 Plasma arc 61 Plasma electrode 62 Furnace bottom electrode

Claims (1)

炉本体内で、直立状に設けたプラズマ電極と該電極に対向して設けた炉底電極との間でのプラズマアークにより焼却灰を溶融して得た溶融スラグを、該スラグの溜り池より出滓口を介して排出する灰溶融炉であって、炉本体を構成する耐火材の外側底を覆う水冷ジャケットが出滓口近くまで配設されている構造において、
前記溜り池の壁面の形状を、溜り池中心より出滓口へ向かうに連れ徐々に細幅化するくちばし形状に形成するとともに、前記くちばし形状のテーパ角を略40〜65°で且つ該溜り池中心より出滓口入口端壁までの距離が、該中心より出滓口反対側壁面までの距離より大なる形状に構成したことを特徴とする灰溶融炉。
In the furnace body, molten slag obtained by melting incinerated ash by a plasma arc between a plasma electrode provided upright and a furnace bottom electrode provided facing the electrode is obtained from the slag reservoir. In an ash melting furnace that discharges through a tap outlet, a structure in which a water-cooling jacket that covers the outer bottom of the refractory material that constitutes the furnace body is arranged close to the tap outlet,
The shape of the wall surface of the pond is formed into a beak shape that gradually narrows from the center of the pond toward the tap port, and the beak shape has a taper angle of approximately 40 to 65 ° and the pond. An ash melting furnace characterized in that the distance from the center to the tap wall entrance end wall is larger than the distance from the center to the side wall opposite the tap port.
JP25955998A 1998-09-14 1998-09-14 Ash melting furnace Expired - Fee Related JP3649601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25955998A JP3649601B2 (en) 1998-09-14 1998-09-14 Ash melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25955998A JP3649601B2 (en) 1998-09-14 1998-09-14 Ash melting furnace

Publications (2)

Publication Number Publication Date
JP2000088233A JP2000088233A (en) 2000-03-31
JP3649601B2 true JP3649601B2 (en) 2005-05-18

Family

ID=17335815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25955998A Expired - Fee Related JP3649601B2 (en) 1998-09-14 1998-09-14 Ash melting furnace

Country Status (1)

Country Link
JP (1) JP3649601B2 (en)

Also Published As

Publication number Publication date
JP2000088233A (en) 2000-03-31

Similar Documents

Publication Publication Date Title
US7730745B2 (en) Vitrification furnace with dual heating means
US5606925A (en) Process for the incineration and vitrification of waste in a crucible
HU183077B (en) Apparatus for refining melted metals
JPS58113309A (en) Steel producer
JP3649601B2 (en) Ash melting furnace
US4423512A (en) Plasma melting furnace
JP3723100B2 (en) Furnace window structure
JPS6047513B2 (en) Water cooling structure of furnace wall
JP4667665B2 (en) Plasma ash melting furnace and operating method thereof
TWI418260B (en) An improved plasma torch for use in a waste processing chamber
JP2007071509A (en) Bottom electrode structure for electric melting furnace
JP2002048317A (en) Interruption method for melting furnace and its apparatus
JP2020139180A (en) Slag discharging method and molten metal producing method in an arc-type electric furnace
JPH10147822A (en) Crucible type aluminum melting apparatus
KR101011071B1 (en) The support sturcture of an outlet useing the graphite
JP4095774B2 (en) How to restart the plasma ash melting furnace
JP3764641B2 (en) Electric melting furnace operation control method
JP2002317917A (en) Gas cooling type waste melting furnace
JP3712621B2 (en) Refractory structure of melting furnace
JP3714383B2 (en) Ash melting furnace and method of operating the same
JPH0875364A (en) Steelmaking electric furnace
JP3325480B2 (en) Plasma melting furnace
JP2020139661A (en) Arc type electric furnace, slag-off method for the same and molten metal manufacturing method
JP4185667B2 (en) Operating method of plasma ash melting furnace
JPH09280536A (en) Electric melting furnace and extracting method of molten metal in electric melting furnace

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees