JP3649265B2 - Thin film vapor deposition equipment - Google Patents

Thin film vapor deposition equipment Download PDF

Info

Publication number
JP3649265B2
JP3649265B2 JP21133997A JP21133997A JP3649265B2 JP 3649265 B2 JP3649265 B2 JP 3649265B2 JP 21133997 A JP21133997 A JP 21133997A JP 21133997 A JP21133997 A JP 21133997A JP 3649265 B2 JP3649265 B2 JP 3649265B2
Authority
JP
Japan
Prior art keywords
film forming
substrate
forming chamber
film
insulating member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21133997A
Other languages
Japanese (ja)
Other versions
JPH1143773A (en
Inventor
由紀夫 福永
邦明 堀江
弘行 篠崎
究 塚本
光直 柴崎
浩幸 上山
武司 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP21133997A priority Critical patent/JP3649265B2/en
Priority to US09/118,177 priority patent/US6176929B1/en
Priority to TW087111763A priority patent/TW565627B/en
Priority to KR1019980029197A priority patent/KR100573666B1/en
Priority to EP98113599A priority patent/EP0909836A3/en
Publication of JPH1143773A publication Critical patent/JPH1143773A/en
Application granted granted Critical
Publication of JP3649265B2 publication Critical patent/JP3649265B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、特に、チタン酸バリウム/ストロンチウム等の高誘電体又は強誘電体薄膜を基板上に気相成長させる薄膜気相成長装置に関する。
【0002】
【従来の技術】
近年、半導体産業における集積回路の集積度の向上はめざましく、現状のメガビットオーダから、将来のギガビットオーダを睨んだDRAMの研究開発が行われている。かかるDRAMの製造のためには、小さな面積で大容量が得られるキャパシタ素子が必要である。このような大容量素子の製造に用いる誘電体薄膜として、誘電率が10以下であるシリコン酸化膜やシリコン窒化膜に替えて、誘電率が20程度である五酸化タンタル(Ta25)薄膜、あるいは誘電率が300程度であるチタン酸バリウム(BaTiO3)、チタン酸ストロンチウム(SrTiO3)又はこれらの混合物であるチタン酸バリウムストロンチウム等の金属酸化物薄膜材料が有望視されている。
【0003】
このような金属酸化物薄膜を基板上に気相成長させる際には、気密な成膜室の内部に配置したサセプタ(加熱保持部)上に基板を載置し、このサセプタの内部に内蔵されたヒータ等の加熱手段によって基板を所定温度に加熱しつつ、成膜室の内部に設置したシャワヘッドから原料ガスと反応ガス(酸素含有ガス)との混合ガスを基板Wに向けて噴射する薄膜気相成長装置が用いられる。
【0004】
【発明が解決しようとする課題】
ところで、上記のような成膜原料の特徴として、気化後の気相維持温度範囲が狭く、気化温度より下がると凝結し、上がると分解してしまうことが挙げられる。これに対して、発明者らは反応室の内壁面を所定の温度(略気化温度)に維持制御しつつ成膜を行なう方法を提案し(特開平9−2896号公報)、その結果反応生成物の発生は効果的に抑制できるが、全くゼロにできる訳でなく、微細な生成物が少なからず発生付着してしまうことが判明した。
【0005】
そこで、上記原料に対して熱分析を行った結果、例えばBST・SBT等の液体原料では、3種が同時に気相状態を維持できる明確で完全な温度範囲は存在せず、一部は凝結または分解してしまうことが分かった。そして、分解した原料は洗浄が困難である一方、凝結した原料は洗浄が比較的容易であることも分かった。そこで一部凝結を許容しながらも、高温での分解は避ける方法を採用することにより、上記問題の現実的な解決を図った。
【0006】
この発明は上記に鑑み、成膜室内の壁面において成膜原料の高温での分解を避け、基板上に均一で品質の高い成膜処理を安定に行うことができるような薄膜気相成長装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
請求項1に記載の発明は、全体がほぼ筒状の気密な成膜室に、基板を保持し加熱する保持加熱手段と、該保持加熱手段を少なくとも成膜位置と搬送位置の間で昇降させる昇降機構と、成膜室の頂部より基板に向けて成膜原料ガスを噴射するガス噴射ヘッドと、成膜室の側壁の前記搬送位置に対応する高さに開口する基板搬送口と、成膜室の側壁の前記成膜位置と搬送位置の間の高さに開口する排気口とが設けられた薄膜気相成長装置において、成膜位置にある基板保持加熱手段の周囲を取り囲んで排気ガスの流路の一部を形成した略円筒状の断熱部材が設けられ、前記断熱部材には、内部に熱媒体を流通させる流路が形成されていて、外部からの熱媒体供給によりそれ自体を所定の温度に制御する温度制御手段が設けられ、前記断熱部材は、前記成膜室に脱着可能に設けられていることを特徴とする薄膜気相成長装置である。
【0008】
これにより、断熱部材が保持加熱手段からの熱の輻射を抑制し、成膜室の内壁等が原料の分解温度以上に加熱されるのを防止する。従って、原料がこれらの箇所で分解して付着することが防止される。これらの箇所に原料が凝結した場合には、所定の方法で洗浄してこれを除去し、装置の稼動を継続する。前記断熱部材は、石英、ステンレス、セラミックス等の断熱材により形成するのが好ましい。
【0009】
ここで、前記温度制御手段は、例えば、前記断熱部材に形成された媒体流路と、外部にて所定の温度に制御された媒体を供給する熱媒体供給手段とを有するように構成する。
【0010】
求項に記載の発明は、前記成膜室の外壁を所定の温度以下に冷却する冷却手段を有することを特徴とする請求項1に記載の薄膜気相成長装置である。前記成膜室には、排気口より下部で且つ搬送口より上部に前記断熱部材を支持するための支持部材を設けるとよい。
【0011】
【発明の実施の形態】
図1は、本発明の第1の実施の形態を示すもので、この薄膜気相成長装置は、全体がほぼ筒状の気密な成膜室10に、基板Wを保持し加熱する基板保持加熱手段12と、該基板保持加熱手段12を少なくとも成膜位置(上限)と搬送位置(下限)の間で昇降させる昇降機構14と、成膜室10の頂部より基板Wに向けて成膜原料ガスを噴射するガス噴射ヘッド16と、成膜室10の側壁18の搬送位置に対応する高さに開口する基板搬送口20と、成膜室10の側壁18の成膜位置と搬送位置の間の高さに開口する排気口22とが設けられて構成されている。排気口22と基板搬送口20はそれぞれ周方向所定の位置に1つづつが設けられている。
【0012】
基板保持加熱手段12は、内部にヒータ(加熱手段、図示略)を有する円板状のサセプタ24と、これを昇降機構14に連結する支柱26を有している。サセプタ24の基板外側の縁部にはここでの反応による付着を防止する環状の防着板28が取り付けられている。ガス噴射ヘッド16は、基板Wよりやや大きい円板状で複数のノズル孔30が均等に分散配置されたノズル盤32を有し、また、この例では内部に原料ガスと反応ガス(例えば酸化ガス)の混合空間を有しているとともに、ノズル孔30や混合空間を熱媒体により所定温度に維持するためのジャケット(温度制御手段)34が設けられている。
【0013】
成膜室10は、円筒状の側壁18と、中央に基板昇降機構14を取り付ける開口部が形成された底板36と、天板を兼ねるガス噴射ヘッド16及び、側壁18とヘッドの間のテーパ部を形成するテーパブロック38から気密に構成され、必要箇所にはシール部材であるOリング40やベローズ42が配され、搬送口20には図示しないゲートが設けられている。この例では、側壁18や底板36には温度制御手段である熱媒体流路は形成されていない。
【0014】
成膜室10には、基板保持加熱手段12の昇降経路を取り囲むように筒状の断熱部材44が設けられている。この断熱部材は、石英、ステンレス、セラミックス等の断熱材により、その下部に張り出して取り付けられた環状板46と一体に構成されている。そして、成膜室10の側壁18内面の、排気口より下部で且つ搬送口より上部の位置に形成された環状突起48に載せられて取り付けられている。従って、頂部のシャワヘッド16とテーパブロック38を取り外すことにより、これを持ち上げて簡単に成膜室10からの除去や交換等が行える。
【0015】
以上のように構成した薄膜気相成長装置の作用を説明する。サセプタ24を、図1において2点鎖線で示す搬送位置に置いて、これに基板搬送口20より基板Wを置き、昇降機構14によりこれを図1示す成膜位置まで上昇させる。サセプタ24により基板Wを成膜温度まで昇温し、熱媒体により所定温度に維持されたシャワヘッド16より原料ガスと反応ガスの混合ガスを噴射する。
【0016】
噴射された原料ガスと反応ガスは基板W上で反応して成膜し、反応済みガスは基板W上を放射状に流れて成膜室10の側壁18と断熱部材44により形成された排気流路Pに流れ、排気口22より排気される。ここで、断熱部材44及び環状板46により反応ガスの流路が限定され、サセプタ24の裏側や成膜室10下部の昇降機構14等には流れにくくなっているので、これらの箇所での付着やそれに起因する汚染等が防止される。
【0017】
成膜反応の間、断熱部材44が保持加熱手段12からの熱の輻射を抑制し、成膜室10の側壁18等が原料の分解温度以上に加熱されるのを防止する。従って、原料がこれらの箇所で分解して付着することが防止される。これらの箇所に原料が凝結した場合には、成膜室10の頂部のシャワヘッド16やテーパブロック38を外して、所定の方法で洗浄してこれらの箇所を除去し、装置の稼動を継続する。
【0018】
図2に示すのは、この発明の第2の実施の形態の薄膜気相成長装置である。この実施の形態では、断熱部材44を単純な筒状とし、成膜室10の側壁18内面に設けた支持板50の環状溝52に着脱自在に取り付けている。この実施の形態では、形状が単純・コンパクトになるため、断熱部材44の製作が容易になるばかりでなく、除去や交換も一層容易となる。特に、成膜条件に応じて断熱部材44の材質を変更する場合に便利である。
【0019】
図3に示すのは、この発明の他の実施の形態であり、ここでは、断熱部材44の内部にオイル等の熱媒体を流通させる流路54が形成されている。これには、成膜室10の側壁18を挿通して、外部の供給手段より所定温度の熱媒体を供給する熱媒体供給配管56及び戻り配管が連通して設けられている。この実施の形態においては、加熱保持部材から受ける輻射熱を熱媒体で吸収するので、成膜室10の側壁18の温度上昇抑制機能がより高い。
【0020】
図4に示すのは、この発明のさらに他の実施の形態であり、ここでは、側壁18や昇降フランジ60が保持加熱手段12によって加熱されるのを極力防止するために、冷却手段を構成する側壁18のジャケット58及び底板36に固定される昇降フランジ60にもジャケット59が形成されているものである。これにより、断熱部材44の遮熱機能に加え、より確実に成膜室10の内壁の温度を成膜反応以下に保つ機能が確保されている。更には、シール部品の耐久性や作業者の安全性等の向上にも寄与している。
【0021】
【発明の効果】
以上説明したように、この発明によれば、断熱部材が保持加熱手段からの熱の輻射を抑制し、成膜室の内壁等が原料の分解温度以上に加熱されるのを防止する。従って、原料がこれらの箇所で分解して付着することが防止され、基板上に均一で品質の高い成膜処理を安定に行うことができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の薄膜気相成長装置を示す断面図である。
【図2】本発明の第2の実施の形態の薄膜気相成長装置を示す断面図である。
【図3】本発明の第3の実施の形態の薄膜気相成長装置を示す断面図である。
【図4】本発明の第4の実施の形態の薄膜気相成長装置を示す断面図である。
【符号の説明】
10 成膜室
12 サセプタ(基板保持加熱手段)
14 昇降機構
16 ガス噴射ヘッド
18 側壁
20 基板搬送口
22 排気口
30 噴射ノズル
32 ノズル盤
44 断熱部材
59 ジャケット
60 昇降フランジ
P 流路
M 混合空間
W 基板
[0001]
BACKGROUND OF THE INVENTION
The present invention particularly relates to a thin film vapor phase growth apparatus for vapor phase growing a high dielectric or ferroelectric thin film such as barium titanate / strontium on a substrate.
[0002]
[Prior art]
In recent years, the degree of integration of integrated circuits in the semiconductor industry has been remarkably improved, and research and development of DRAMs with a gigabit order in the future from the current megabit order has been conducted. In order to manufacture such a DRAM, a capacitor element capable of obtaining a large capacity in a small area is required. As a dielectric thin film used for manufacturing such a large-capacity element, a tantalum pentoxide (Ta 2 O 5 ) thin film having a dielectric constant of about 20 instead of a silicon oxide film or a silicon nitride film having a dielectric constant of 10 or less. Alternatively, metal oxide thin film materials such as barium titanate (BaTiO 3 ) having a dielectric constant of about 300, strontium titanate (SrTiO 3 ), or a mixture thereof, such as barium strontium titanate, are promising.
[0003]
When vapor-depositing such a metal oxide thin film on a substrate, the substrate is placed on a susceptor (heating holding unit) arranged in an airtight film forming chamber and is built in the susceptor. A thin film in which a mixed gas of a source gas and a reactive gas (oxygen-containing gas) is jetted toward the substrate W from a shower head installed in the film forming chamber while the substrate is heated to a predetermined temperature by a heating means such as a heater. A vapor phase growth apparatus is used.
[0004]
[Problems to be solved by the invention]
By the way, as a characteristic of the film forming raw material as described above, the vapor phase maintenance temperature range after vaporization is narrow, and it is condensed when it falls below the vaporization temperature and decomposes when it rises. On the other hand, the inventors have proposed a method of forming a film while maintaining and controlling the inner wall surface of the reaction chamber at a predetermined temperature (substantially vaporization temperature) (Japanese Patent Laid-Open No. 9-2896). It was found that the generation of objects can be effectively suppressed, but it cannot be completely reduced to zero, and a small amount of fine products are generated and adhered.
[0005]
Therefore, as a result of performing a thermal analysis on the raw material, there is no clear and complete temperature range in which three kinds of liquid raw materials such as BST / SBT can simultaneously maintain a gas phase state, and some of the raw materials are condensed or It turns out that it breaks down. It was also found that the decomposed raw material is difficult to clean, while the condensed raw material is relatively easy to clean. Therefore, a practical solution to the above problem has been made by adopting a method that avoids decomposition at high temperatures while allowing partial condensation.
[0006]
In view of the above, the present invention provides a thin-film vapor phase growth apparatus capable of stably performing uniform and high-quality film formation processing on a substrate while avoiding decomposition of a film formation raw material at a high temperature on a wall surface in a film formation chamber. The purpose is to provide.
[0007]
[Means for Solving the Problems]
According to the first aspect of the present invention, a holding heating unit that holds and heats the substrate in a generally cylindrical airtight film forming chamber, and the holding heating unit is moved up and down at least between the film forming position and the transfer position. Elevating mechanism, gas injection head for injecting a film forming source gas from the top of the film formation chamber toward the substrate, a substrate transfer port opened to a height corresponding to the transfer position on the side wall of the film formation chamber, and film formation in the thin-film vapor deposition apparatus in which an opening for the exhaust port and is provided at a height between said film forming position and transport position of the side wall of the chamber, the exhaust gas enclose take around the substrate holding heating means at the film formation position A substantially cylindrical heat insulating member that forms a part of the flow path is provided, and the heat insulating member is provided with a flow path through which a heat medium is circulated. A temperature control means for controlling to a predetermined temperature is provided, and the heat insulating member is It is a thin film vapor deposition apparatus according to claim is provided detachably in KiNarumaku chamber.
[0008]
Thereby, the heat insulating member suppresses the radiation of heat from the holding heating means, and the inner wall of the film forming chamber is prevented from being heated above the decomposition temperature of the raw material. Therefore, the raw material is prevented from being decomposed and attached at these locations. When the raw material condenses in these places, it is washed and removed by a predetermined method, and the operation of the apparatus is continued. The heat insulating member is preferably formed of a heat insulating material such as quartz, stainless steel, or ceramics.
[0009]
Here, the temperature control means includes, for example, a medium flow path formed in the heat insulating member and a heat medium supply means for supplying a medium controlled to a predetermined temperature outside.
[0010]
The invention described in Motomeko 2 is a thin-film vapor deposition apparatus according to Motomeko 1 you further comprising a cooling means for cooling the outer wall of the deposition chamber to below a predetermined temperature. A support member for supporting the heat insulating member may be provided in the film formation chamber below the exhaust port and above the transfer port.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a first embodiment of the present invention. This thin-film vapor phase growth apparatus holds a substrate W in a substantially cylindrical airtight film forming chamber 10 and heats the substrate W. Means 12, a raising / lowering mechanism 14 for raising and lowering the substrate holding and heating means 12 at least between a film forming position (upper limit) and a transfer position (lower limit), and a film forming source gas from the top of the film forming chamber 10 toward the substrate W Between the film forming position and the transfer position of the side wall 18 of the film forming chamber 10, the substrate transfer port 20 opened to a height corresponding to the transfer position of the side wall 18 of the film forming chamber 10, An exhaust port 22 that opens to a height is provided. One exhaust port 22 and one substrate transport port 20 are provided at predetermined positions in the circumferential direction.
[0012]
The substrate holding / heating means 12 includes a disk-shaped susceptor 24 having a heater (heating means, not shown) therein, and a column 26 for connecting the susceptor 24 to the elevating mechanism 14. At the outer edge of the substrate of the susceptor 24, an annular deposition preventing plate 28 for preventing adhesion due to reaction here is attached. The gas injection head 16 has a nozzle plate 32 having a disk shape slightly larger than the substrate W and in which a plurality of nozzle holes 30 are evenly distributed, and in this example, a raw material gas and a reactive gas (for example, an oxidizing gas) are contained therein. ) And a jacket (temperature control means) 34 for maintaining the nozzle hole 30 and the mixing space at a predetermined temperature with a heat medium.
[0013]
The film forming chamber 10 includes a cylindrical side wall 18, a bottom plate 36 in which an opening for attaching the substrate lifting mechanism 14 is formed at the center, a gas jet head 16 that also serves as a top plate, and a tapered portion between the side wall 18 and the head. The O-ring 40 and the bellows 42, which are seal members, are disposed at necessary portions, and the transfer port 20 is provided with a gate (not shown). In this example, the side wall 18 and the bottom plate 36 are not formed with a heat medium flow path as temperature control means.
[0014]
In the film forming chamber 10, a cylindrical heat insulating member 44 is provided so as to surround the elevating path of the substrate holding heating means 12. The heat insulating member is integrally formed with an annular plate 46 that is protruded and attached to the lower part of the heat insulating material such as quartz, stainless steel, or ceramics. The inner surface of the side wall 18 of the film forming chamber 10 is mounted on an annular protrusion 48 formed at a position below the exhaust port and above the transfer port. Therefore, by removing the top shower head 16 and the taper block 38, they can be lifted and removed from the film forming chamber 10 or exchanged easily.
[0015]
The operation of the thin film vapor phase growth apparatus configured as described above will be described. The susceptor 24, at the transfer position indicated by the two-dot chain line in FIG. 1, this position the substrate W from the substrate transfer port 20 is raised to the deposition position shown in Figure 1 by the lifting mechanism 14. The substrate W is heated to the film forming temperature by the susceptor 24, and a mixed gas of the source gas and the reactive gas is sprayed from the shower head 16 maintained at a predetermined temperature by the heat medium.
[0016]
The injected source gas and the reactive gas react to form a film on the substrate W, and the reacted gas flows radially on the substrate W and is formed by the side wall 18 of the film forming chamber 10 and the heat insulating member 44. It flows into P and is exhausted from the exhaust port 22. Here, the flow path of the reaction gas is limited by the heat insulating member 44 and the annular plate 46 and is difficult to flow to the back side of the susceptor 24, the elevating mechanism 14 below the film forming chamber 10, and the like. Contamination and the like resulting from it are prevented.
[0017]
During the film formation reaction, the heat insulating member 44 suppresses the radiation of heat from the holding heating means 12 and prevents the side walls 18 and the like of the film formation chamber 10 from being heated above the decomposition temperature of the raw material. Therefore, the raw material is prevented from being decomposed and attached at these locations. When the raw material condenses in these places, the shower head 16 and the taper block 38 at the top of the film forming chamber 10 are removed, and these places are removed by cleaning by a predetermined method, and the operation of the apparatus is continued. .
[0018]
FIG. 2 shows a thin film vapor phase growth apparatus according to a second embodiment of the present invention. In this embodiment, the heat insulating member 44 has a simple cylindrical shape and is detachably attached to the annular groove 52 of the support plate 50 provided on the inner surface of the side wall 18 of the film forming chamber 10. In this embodiment, since the shape is simple and compact, not only the heat insulating member 44 is easily manufactured, but also removal and replacement are further facilitated. In particular, it is convenient when changing the material of the heat insulating member 44 according to the film forming conditions.
[0019]
FIG. 3 shows another embodiment of the present invention, in which a flow path 54 through which a heat medium such as oil flows is formed inside the heat insulating member 44. This is provided with a heat medium supply pipe 56 and a return pipe which are inserted through the side wall 18 of the film forming chamber 10 and supply a heat medium having a predetermined temperature from an external supply means. In this embodiment, since the radiant heat received from the heat holding member is absorbed by the heat medium, the function of suppressing the temperature rise of the side wall 18 of the film forming chamber 10 is higher.
[0020]
FIG. 4 shows still another embodiment of the present invention. Here, in order to prevent the side wall 18 and the elevating flange 60 from being heated by the holding heating means 12 as much as possible, the cooling means is configured. A jacket 59 is also formed on the jacket 58 of the side wall 18 and the elevating flange 60 fixed to the bottom plate 36. Thereby, in addition to the heat shielding function of the heat insulating member 44, the function of more reliably maintaining the temperature of the inner wall of the film forming chamber 10 below the film forming reaction is ensured. Furthermore, it contributes to the improvement of the durability of the sealing parts and the safety of workers.
[0021]
【The invention's effect】
As described above, according to the present invention, the heat insulating member suppresses heat radiation from the holding and heating means, and the inner wall of the film forming chamber is prevented from being heated above the decomposition temperature of the raw material. Therefore, it is possible to prevent the raw material from being decomposed and adhered at these places, and to perform a uniform and high quality film forming process on the substrate stably.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a thin film vapor phase growth apparatus according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a thin film vapor phase growth apparatus according to a second embodiment of the present invention.
FIG. 3 is a sectional view showing a thin film vapor phase growth apparatus according to a third embodiment of the present invention.
FIG. 4 is a sectional view showing a thin film vapor phase growth apparatus according to a fourth embodiment of the present invention.
[Explanation of symbols]
10 Deposition chamber 12 Susceptor (Substrate holding and heating means)
14 Lifting mechanism 16 Gas injection head 18 Side wall 20 Substrate transport port 22 Exhaust port 30 Injection nozzle 32 Nozzle panel 44 Heat insulation member 59 Jacket 60 Lifting flange P Flow path M Mixing space W Substrate

Claims (2)

全体がほぼ筒状の気密な成膜室に、基板を保持し加熱する保持加熱手段と、該保持加熱手段を少なくとも成膜位置と搬送位置の間で昇降させる昇降機構と、成膜室の頂部より基板に向けて成膜原料ガスを噴射するガス噴射ヘッドと、成膜室の側壁の前記搬送位置に対応する高さに開口する基板搬送口と、成膜室の側壁の前記成膜位置と搬送位置の間の高さに開口する排気口とが設けられた薄膜気相成長装置において、
成膜位置にある基板保持加熱手段の周囲を取り囲んで排気ガスの流路の一部を形成した略円筒状の断熱部材が設けられ、
前記断熱部材には、内部に熱媒体を流通させる流路が形成されていて、外部からの熱媒体供給によりそれ自体を所定の温度に制御する温度制御手段が設けられ、
前記断熱部材は、前記成膜室に脱着可能に設けられていることを特徴とする薄膜気相成長装置。
A holding heating means for holding and heating the substrate in a substantially cylindrical airtight film forming chamber, a lifting mechanism for raising and lowering the holding heating means at least between the film forming position and the transfer position, and the top of the film forming chamber A gas injection head for injecting a film forming raw material gas toward the substrate, a substrate transfer port opened to a height corresponding to the transfer position on the side wall of the film forming chamber, and the film forming position on the side wall of the film forming chamber. In the thin film vapor phase growth apparatus provided with an exhaust port opening at a height between the transfer positions,
Substantially cylindrical insulating member which forms a part of the flow path of the exhaust gas enclose take around the substrate holding heating means at the film formation position is provided,
The heat insulating member is formed with a flow path through which a heat medium flows, and is provided with temperature control means for controlling itself to a predetermined temperature by supplying the heat medium from the outside.
The thin-film vapor phase growth apparatus , wherein the heat insulating member is detachably provided in the film forming chamber .
前記成膜室の外壁を所定の温度以下に冷却する冷却手段を有することを特徴とする請求項1に記載の薄膜気相成長装置。Thin film vapor deposition apparatus according to Motomeko 1 further comprising a cooling means for cooling the outer wall of the deposition chamber to below a predetermined temperature.
JP21133997A 1997-07-22 1997-07-22 Thin film vapor deposition equipment Expired - Fee Related JP3649265B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP21133997A JP3649265B2 (en) 1997-07-22 1997-07-22 Thin film vapor deposition equipment
US09/118,177 US6176929B1 (en) 1997-07-22 1998-07-17 Thin-film deposition apparatus
TW087111763A TW565627B (en) 1997-07-22 1998-07-20 Thin-film deposition apparatus
KR1019980029197A KR100573666B1 (en) 1997-07-22 1998-07-21 Thin film deposition apparatus
EP98113599A EP0909836A3 (en) 1997-07-22 1998-07-21 Thin-film deposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21133997A JP3649265B2 (en) 1997-07-22 1997-07-22 Thin film vapor deposition equipment

Publications (2)

Publication Number Publication Date
JPH1143773A JPH1143773A (en) 1999-02-16
JP3649265B2 true JP3649265B2 (en) 2005-05-18

Family

ID=16604332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21133997A Expired - Fee Related JP3649265B2 (en) 1997-07-22 1997-07-22 Thin film vapor deposition equipment

Country Status (1)

Country Link
JP (1) JP3649265B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4567148B2 (en) * 2000-06-23 2010-10-20 東京エレクトロン株式会社 Thin film forming equipment
KR100425789B1 (en) * 2001-12-07 2004-04-06 주성엔지니어링(주) injector and heating apparatus for injector
KR100858934B1 (en) * 2007-05-04 2008-09-17 주식회사 에스에프에이 Chemical vapor deposition apparatus
JP4943407B2 (en) * 2008-11-17 2012-05-30 東京エレクトロン株式会社 CVD processing apparatus and CVD processing method
US10497606B2 (en) 2015-02-09 2019-12-03 Applied Materials, Inc. Dual-zone heater for plasma processing
CN116811088B (en) * 2023-08-31 2023-11-17 成都永益泵业股份有限公司 Carbon fiber composite material, forming process and pump overcurrent component

Also Published As

Publication number Publication date
JPH1143773A (en) 1999-02-16

Similar Documents

Publication Publication Date Title
KR100573666B1 (en) Thin film deposition apparatus
EP0738788B1 (en) Thin-Film vapor deposition apparatus
KR101557016B1 (en) Apparatus for processing substrate
US20090250008A1 (en) Gas treatment apparatus
KR20000076763A (en) Apparatus and method for processing substrate
JP2002222806A (en) Substrate processor
KR100605884B1 (en) Surface treatment method and surface treatment apparatus
CN104810306B (en) Vertical heat processing apparatus and heat treatment method
JP3649265B2 (en) Thin film vapor deposition equipment
KR100589821B1 (en) Mocvd system
JP3534940B2 (en) Thin film vapor deposition equipment
EP1156135B1 (en) Vacuum processing apparatus
KR100636036B1 (en) Method of forming a titanium nitride layer and apparatus for performing the same
JP4463583B2 (en) Film forming method and film forming apparatus
US20010055738A1 (en) Heat treatment apparatus and cleaning method of the same
JP2000192241A (en) Thin film deposition device, and its operating method
JP2001064777A (en) Gas jet head
JPH08325736A (en) Thin film vapor growth device
JPH11158632A (en) Thin film vapor phase growth apparatus
JP2002222805A (en) Substrate processor
JP2000252270A (en) Gas jetting head
KR20130027018A (en) Heat treatment method having a heating step, a treatment step, and a cooling step
KR20010107744A (en) Etching method, processing apparatus and etching apparatus
JP2001040480A (en) Equipment and method for wafer treatment
JP2001110794A (en) Thin-film gas phase growing apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050208

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees