JP3649223B2 - Heat treatment method and heat treatment apparatus for piping system - Google Patents

Heat treatment method and heat treatment apparatus for piping system Download PDF

Info

Publication number
JP3649223B2
JP3649223B2 JP2003001696A JP2003001696A JP3649223B2 JP 3649223 B2 JP3649223 B2 JP 3649223B2 JP 2003001696 A JP2003001696 A JP 2003001696A JP 2003001696 A JP2003001696 A JP 2003001696A JP 3649223 B2 JP3649223 B2 JP 3649223B2
Authority
JP
Japan
Prior art keywords
pipe
heating coil
heat treatment
heating
piping system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003001696A
Other languages
Japanese (ja)
Other versions
JP2004211187A5 (en
JP2004211187A (en
Inventor
信義 柳田
昇 齋藤
英世 齋藤
章二 林
邦夫 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003001696A priority Critical patent/JP3649223B2/en
Publication of JP2004211187A publication Critical patent/JP2004211187A/en
Application granted granted Critical
Publication of JP3649223B2 publication Critical patent/JP3649223B2/en
Publication of JP2004211187A5 publication Critical patent/JP2004211187A5/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、配管系の熱処理方法および熱処理装置に係り、特に原子力発電プラントに用いられる配管に好適な配管系の熱処理方法および熱処理装置に関する。
【0002】
【従来の技術】
構造材に応力腐食割れが発生するのを抑制するために、腐食環境に曝される領域の引張残留応力を低減する例が、特公昭53−38246号公報に記載されている。この公報では、既設配管溶接部位の配管内面の引張残留応力を低減するために、プラントの配管系を組立てた後に配管系が有する配管の内部に冷却流体を流すとともに配管の外部を加熱し、配管の内面と配管の外面間に温度差を発生させている。そして、内面を引張降伏させ外面を圧縮降伏させて、応力腐食割れを防止している。
【0003】
また、特開2001−262235号公報には、容器の溶接部の残留応力を除去するために、パーソナルコンピュータなどを用いて配管・容器局部熱処理装置を構成し、パソコンの指示に従い段取りし、熱処理プログラムパターンに従い自動運転することが記載されている。さらに、特開2001−3120号公報には、容易に施工が可能で、溶接継手の強度を高めて信頼性を向上させるために、耐熱鋼と枝管の溶接において母管と同一鋼種の短管を耐熱鋼と同等組成の溶接材料を用いて母管に接続し、溶接後に耐熱鋼の焼きならし温度および焼き戻し温度で熱処理し、その後短管の先端に枝管を溶接することが記載されている。
【特許文献1】
特公昭53−38246号公報
【特許文献2】
特開2001−262235号公報
【特許文献3】
特開2001−3120号公報
【0004】
【発明が解決しようとする課題】
上記従来の技術に記載の各公報では、溶接金属部位に発生するおそれのある応力腐食割れについては、十分には配慮されていない。一般に溶接金属は、配管母材と比較して降伏応力が高く、したがって溶接により発生する引張残留応力も、降伏応力程度になっている可能性が高い。そのため、引張降伏を起こすためには、内面に発生させる引張応力を十分に大きくする必要がある。
【0005】
本発明は上記従来の技術の不具合に鑑みなされたものであり、その目的は、原子力プラント等に用いられる配管系の接続部の信頼性を熱処理により向上させることにある。また、簡単な構成で熱処理を実現することにある。
【0006】
【課題を解決するための手段】
上記目的を達成する本発明の特徴は、管を有する配管系を組立てた後に配管の内部に冷却流体を流し、その後加熱コイルを有する高周波加熱装置を用いて配管を加熱して配管の内面と配管の外面との間に温度差を発生させる熱処理方法において、配管の軸方向に延びたスペーサを、配管の周方向に複数個分散して配置し、配管の軸方向で2分割された加熱コイルをそれぞれ複数個のスペーサを挟んで接続して通電の経路を形成し、配管表面と加熱コイルとの距離をスペーサにより保って、配管の内面と配管の外面との間に温度差を発生させ、内面を引張降伏させ、外面を圧縮降伏させることを特徴とするものである。
【0007】
そしてこの特徴において、冷却流体が純水であってもよく、また配管系は原子炉配管であり、冷却流体は炉水であってもよい。また、配管の外表面から加熱コイルの内表面までの距離を、加熱コイルの長手方向に変化させるのが好ましく、加熱コイルの中心を配管の中心から偏心させることにより、加熱コイルと配管外表面間距離を周方向に変化させるようにしてもよい。
【0008】
好ましくは、配管と加熱コイル間の隙間を周方向にほぼ一定にし、この形成された隙間内の空気の流動を防止するか、加熱コイルの巻き数は少なくとも2巻きを超えており、この巻き間隔を変化させる。また好ましくは、加熱コイルを少なくとも2個備え、各加熱コイル毎に電流を制御可能とする。
【0009】
そして、加熱コイルに供給する高周波電流の周波数を、時間とともに変化させてもよく、加熱コイルが加熱する配管表面の温度を測定し、この測定した温度に基づいて加熱コイルに供給する電流を制御してもよく、加熱コイルが加熱する部分の配管の強度または材質の少なくともいずれかが配管軸に沿って変化する場合には、この配管の強度または材質に応じて加熱コイルを配置して加熱度を変化させてもよい。
【0010】
また好ましくは、加熱コイルが加熱する配管表面の電流または電圧の少なくともいずれかを検出し、この検出値に基づいて加熱コイルに供給する電流を制御するものであり、加熱するコイルを設置する前に配管系内面の欠陥の有無を非破壊検査で確認し、欠陥が検出された場合は加熱コイルを用いて欠陥が検出されない場合とは異なる加熱を欠陥近傍に施すのがよい。
【0011】
さらに、配管の外表面を全周にわたり冷却する冷却部の軸方向前後方向に加熱部を形成し、この加熱部を加熱コイルにより配管の全周にわたり加熱するとか、配管外表面を全周にわたり加熱コイルにより加熱する加熱部の軸方向前後方向に配管の全周にわたり冷却する冷却部を形成するようにしてもよい。
【0012】
上記目的を達成するための本発明の他の特徴は、配管系の外表面側に配置され、配管系の軸方向で2分割された高周波誘導加熱用の加熱コイルと、配管系の軸方向に延びたスペーサを配管の周方向に複数個分散させ、分割された加熱コイル毎に配置させるスペーサ周方向取付治具と、加熱コイルに取り付けられ内部を冷却水が循環する冷却水配管と、接続された高周波誘導加熱用の加熱コイルに高周波電流を供給する手段と、加熱コイルが加熱した配管系の外表面の温度を検出する温度測定装置と、この温度測定装置が検出した温度に基づいて加熱コイルを制御する制御装置とを備え、スペーサを介して配管系の表面と加熱コイルとの距離を保って、加熱コイルにより配管系を加熱して配管系の内面に圧縮残留応力を発生させることを特徴とするものである。
【0013】
【発明の実施の形態】
以下、本発明のいくつかの実施例を図面を用いて説明する。図1ないし図5は本発明に係る配管系の熱処理装置の一実施例の図である。図1では、配管の外周部に熱処理装置を取付けた様子を模式的に示している。配管の中心軸が水平になるように設置された直管1aと直管1bを溶接部位2で溶接し、溶接部内面に圧縮残留応力を発生させている。配管外面の溶接金属部位に、溶接部表面の温度を測定するための熱電対22が取付けられている。熱電対22はケーブル23を介して温度計測機21aに接続されている。温度計測機21aは、熱電対22による熱起電力による電圧をADコンバーター(図示していない)によりデジタル値に変換し、制御装置18に送っている。
【0014】
配管には、スペーサー12を介して加熱コイル11が螺旋状に取付けられている。加熱コイル11の加熱コイル端部10a、10bには、高周波電流が高周波発信器17からトランス16およびケーブル14を介して供給される。ケーブル14の途中には、二次電流検出用の電流検出器20が取付けられており、二次電流計測機21bとADコンバータ(図示していない)を介して制御装置18に送る。制御装置18は、トランスで発生させる高周波電流の実効値と周波数とを制御する図示しない制御手段を有している。さらに、加熱コイル11およびトランス16、高周波発信器17には、冷却水循環機構19よりホース15を介して冷却水が供給される。
【0015】
次に、装着する部品である加熱コイル11、および加熱コイルを支持するスペーサー12、およびスペーサー周方向取付治具について順次説明する。
【0016】
図2に加熱コイル11構造の詳細を示す。加熱コイルは高周波電流が流れる帯状の銅板11aと、銅板11aを冷却するための管11bから構成される。
【0017】
図3に配管1の中心軸を法線とするような平面で仮想的に切ったときの断面を示す。スペーサー12は、スペーサー周方向取付治具13aと13bのそれぞれに約45°間隔で取付けられている。また、スペーサー12は、配管周方向の上側と、配管周方向の下側とを比較すると、下側の方がスペースが小さくなるように設定されている。スペーサー周方向取付治具13a、13bの2つの部分をボルトおよびナット24で固定して、配管1に取付ける。
【0018】
図4に熱処理装置を配管に設置するために、分離した状態を示す。半円弧上のスペーサー周方向取付治具13aと13bには、スペーサー12が周上に取付けられている。スペーサー周方向取付治具13aと13bの曲率半径は配管1の外面の曲率半径と等しくなるようにしてある。そのため、設置に際しては、半円弧上のスペーサー周方向取付治具を管表面に合わせて取付けるのみで配管表面と加熱コイルの間の隙間を適切にとることが可能となる。スペーサー12とスペーサー12の間には、断熱材25が設置されている。
【0019】
加熱に際して、管表面が空気に曝されていると空気との熱伝達により管表面の加熱が進まない。一方、断熱材25により配管表面から周囲への熱伝達を小さくすることにより効率良く配管を加熱できる。また、断熱材はスペーサーおよび加熱コイルと一体となっているため工数の増加は伴わず、短時間で設置することが可能である。断熱材25は、周囲の空気への熱伝達を小さくするものであれば何でも適用できるが、例えば電気的絶縁性を有し、不燃性の繊維からなる綿状の材料を用いる。
【0020】
次に熱処理の施工の手順について説明する。図1において、装置を図示される状態に準備した後に、溶接継手2で接合されている配管1aと配管1bの内部を冷却流体で満たし、また、冷却水循環装置19を起動して加熱コイル11およびトランス16、高周波発信器17に冷却水を供給した後に、加熱コイル11に高周波電流を流す。加熱コイル11を流れる高周波電流により、配管外表面には誘導電流が誘起され、それにより配管の電気抵抗により発熱する。配管表面の温度は熱電対22により測定され、制御装置18により外表面が所定の温度になるに加熱コイルに供給する電流が制御される。一方、配管の内面は冷却材と接しているため、外面よりも低い温度となる。そのため、配管の外面と内面で温度差が発生する。
【0021】
配管溶接部に発生している溶接残留応力は、周上の位置によらずほぼ一定である。そのため、全周にわたって配管内面に圧縮残留応力を発生させるためには、配管の全周にわたって、配管の外面と内面の温度差が周上の位置によらず一定になるように発生させるのが好ましい。そこで、配管の外面と内面に発生する温度差について説明する。
【0022】
配管内面の溶接残留応力を低減するのに好適な管厚さ方向の温度分布は、例えば、材料の鋭敏化が発生するタイプ304ステンレス鋼では最高温度が550℃以下、内外表面の温度差は220℃以上であるとされている。これらの最高温度の値、および内外表面の温度差の値は、材料の鋭敏化の発生の有無および材料の物性値(ヤング率、ポアソン比、降伏応力、線膨張係数)から求められたものである。また、タイプ316Lステンレス鋼では、材料の鋭敏化が発生しにくいため、最高温度を550℃よりも高い温度に設定しても問題ない。
【0023】
図5に、配管の外面を加熱中の内面から外面までの温度分布を示す。配管1の外表面と加熱コイル11との距離が周方向にわたって一定の場合条件と、配管1の外表面と加熱コイル11との距離が下側で小さく上側で大きい場合について、配管の下側の評価ライン(図中の41aまたは42a)、中間位置の評価ライン(図中の41bまたは42b)、および上側の評価ライン(図中の41cまたは42c)のそれぞれについて示す。
【0024】
図5に示すグラフでは、配管内面からの距離を横軸にとっている。原点Oは管内面を表しており、破線43で示す位置は管外面を表している。水平方向に設置された配管では、加熱により内部の水が対流を起こす。そのため、加熱コイルが管の全周にわたって配管表面と等距離に設置されていたとすると、高周波誘導加熱による発熱量は全周にわたって等しいのに対して、管内面では冷却材である水が対流を起こすため、結果として管上部と比較して管底部の方が温度が上昇しにくくなる。そのため、配管の下側の評価ライン41a、中間位置の評価ライン41b、および上側の評価ライン41cに沿った温度分布を示すと、曲線44a、44bおよび44cのようになり、配管の周方向において、上側と比較して下側になるほど内面と外面の温度差は小さくなる。
【0025】
一方、配管の上側と比較して下側の方が加熱コイルと管表面の距離が小さくなるように設定されていると、下側の方が発熱量が大きくなる。そのため、配管内に満たされた冷却材が対流を起こしても、上側と比較して下側の方が発熱量が大きいため、配管の下側の評価ライン42a、中間位置の評価ライン42b、および上側の評価ライン42cに沿った温度分布を示すと、いずれの評価ラインにおいても曲線45のようになり、内面と外面の温度差は、配管の周方向全体にわたって均一にすることができる。
【0026】
このように、図4に示した周方向に2分割されるスペーサー周方向取付治具に、配管の周方向の位置で上側と比較して下側になるほど配管外表面とコイルとの隙間が小さくなるようなスペーサーを設置して、そのスペーサー上に加熱コイルを設置することにより、配管に加熱コイルを設置する際に配管外面と加熱コイルの隙間を短時間に精度よく設定することが容易になる。さらに、配管の全周にわたって内面と外面の温度差が一様になるように配管を加熱することが可能となる。本加熱方法を用いることにより配管内面の引張残留応力を圧縮応力化できる。
【0027】
なお、本実施例では、加熱コイルを支持するスペーサーの周方向の間隔を約45℃として、スペーサーとスペーサーの間に断熱材を設置して隙間内の空気の流動を防止することにより、配管の表面を高温に保つようにした。断熱材を設置する代わりに、スペーサーの数を増やし、スペーサーの周方向の間隔を密にすることにより、隙間内の空気の流動は防止しても良い。
【0028】
本発明に係る熱処理装置の他の実施例を、図6を用いて説明する。本実施例の熱処理装置は、配管の中心軸が鉛直になるように設置された直管と直管の溶接部位に適用されている。図1に示した実施例の場合とは、スペーサー12の形状が異なり、加熱コイル11と配管1の外面の距離は、配管の中心軸に沿って下方の方が、上方と比較して小さくなる形状になっている。
【0029】
図6において、スペーサー12と、それに固定された加熱コイル11を配管溶接部位2を軸方向に挟む位置に設置し、図1に示した実施例と同様に冷却水循環装置により加熱コイルに冷却水を循環しながら、加熱コイルに高周波の電圧を負荷する。加熱コイルに高周波電流が供給されることにより配管の外表面では誘導電流が誘起され、配管の電気抵抗により発熱が起きる。配管の下方の方が上方と比較して管外表面と加熱コイルとの間隔は小さくなるように加熱コイルが設置されている。そのため、発熱量は、相対的に下方の方が上方よりも大きくなる。
【0030】
高周波誘導加熱により管の温度が上昇し配管内部の水の温度が上昇すると、温度が上昇した水は上方に移動する。すなわち、対流が起きる。対流により、高周波誘導加熱で発生した熱のうち、管内表面から水に伝達される熱の一部分は上方に移動する。
【0031】
仮に、加熱コイルと配管の外表面の距離が配管の軸方向全体にわたって一様であれば、加熱コイルから負荷される高周波誘導により配管で発生する熱量は、軸方向で一様となる。また、配管内面で管から水に伝達される熱量は、上方と比較して下方の方が大きいため、管の上方と下方とで断面内の温度分布が異なる結果になり、配管内面に発生している引張残留応力を均一に低減できない可能性がある。
【0032】
一方、本実施例で示したように、管の外表面と加熱コイルとの距離を、下方の方が上方よりも小さく設置した場合では、下方の方が発熱量が大きくなるため、下方において管内面から水に伝達される熱量が、上方よりも大きい場合に、配管全体では軸方向のどの位置でも内外表面の温度差は一様にすることができる。結果として配管内面の溶接部位に圧縮残留応力を発生させることができる。
【0033】
なお、図1に示した実施例と同様に、本実施例においてもスペーサーとスペーサーの間に断熱材を入れることにより、配管の加熱を効率良く行うことが可能であるため、断熱材を入れた構成としても良い。
【0034】
また、スペーサーにより保持される加熱コイルと配管の表面の距離を軸方向において一定とし、加熱コイルの間隔を下側の方を密にした構成として、下側の発熱量を大きくすることにより配管の軸方向の温度分布を制御しても良い。
【0035】
上記の各実施例において、配管内面に接触している水が沸騰して熱伝達が低下することや対流が起こることを防止するために、配管の内部を流れている冷却流体を加圧し、その加圧された流体を配管内部に流して冷却しても良い。
【0036】
上記各実施例において、加熱コイルに供給する高周波電流の周波数は、時間によらず一定とした。次に、図7に示すような時間とともに高周波電流の周波数が変化する方法について説明する。
【0037】
加熱コイルに供給される高周波電流の周波数と、配管の外面に誘導電流が発生する深さとの関係は、周波数が高いほど浅くなる。図8に配管1の周囲に加熱コイル11を設置して周波数fhおよびfl(fh>fl)で加熱したときの配管の評価ライン41bに沿った温度分布を示す。図中のグラフの横軸には配管内面からの距離をとっており、原点Oが配管内面を示し、破線43で示す位置が配管外面を示す。周波数がfhの場合とflの場合を比較すると、発熱する領域は周波数が低い領域の方が深い。そのため、評価ライン41bに沿った分布は、周波数が高い場合と低い場合について相対的に示すとそれぞれ曲線51aおよび51bのようになる。コイルの周波数を図7に示すように、周波数fhの時間をthとし、周波数flの時間をtlとして、このサイクルを繰返すことにより、配管の表面付近が加熱される場合と深い領域が加熱される場合とが重畳し、図8の実線52で示す温度分布となる。配管内面の近傍における温度分布の勾配は、周波数がfhまたはflを単独で負荷した場合である51aまたは51bと比較して、52の方が大きい。厚さが厚い場合には、内面で発生する熱応力は温度分布の勾配に依存して大きくなる。そのため、負荷する周波数をfhとflを交互に用いることにより、配管内面に発生する熱応力を引張側で大きくすることができ、結果として配管内面の残留応力を圧縮にすることができる。
【0038】
本発明のさらに他の実施例を図9を用いて説明する。上記各実施例では、配管内面の残留応力を改善する部位に対して1個の加熱コイルを配置しいた。本実施例では、ノズル101および配管102の軸方向の位置において、複数の加熱コイル111、112、113を用いて行い、それぞれの加熱コイルにおいて、加熱コイルが面する配管の外面の温度を、配管外面に取付けれた熱電対131、132、133により測定し、図中に図示していない熱電対の起電力をケーブルを介して温度測定装置に伝え、次にADコンバーターを介して制御装置に送り、加熱コイルに負荷する電流を制御しながら配管を加熱することを特徴としている。
【0039】
図9に示すユニット141、142、143は加熱コイル111、112、113のそれぞれに電流を負荷するための制御装置、電源、トランス、および冷却水循環装置をまとめて示している。
【0040】
本実施例は、溶接部位の配管の管厚さが溶接部位近傍で変化する配管に適用した例である。溶接部位とその周囲の管厚さを比較したときに、周囲の管厚さが大きく変化する部位を1組の加熱コイル110で加熱した場合の温度分布を図10を用いて説明する。ノズル101に配管102が溶接部位2で接合されている場合であり、1組の加熱コイル110で加熱した場合である。100℃、300℃、および500℃の等温線を図注に実線151、実線152、および実線153で示す。溶接部位近傍で発熱した熱が熱伝導により管厚さが厚い領域に移動していく。そのため、溶接部位では所定の温度差を発生させることができない。なお、図示していないが、管厚さが厚い部位で所定の温度差を発生させようとすると、逆に溶接部位の温度が過度に高くなる。そのため、溶接部位に圧縮残留応力を発生させることができない。
【0041】
一方、図9に示すような3組の独立した制御系を有する加熱コイルにより加熱した場合の温度分布を図11を用いて説明する。加熱コイル111と112により溶接部位2およびその近傍と配管102が加熱される。また、厚さが配管102と比較して厚くなるノズル101の部分は、加熱コイル113により、加熱コイル111および112よりも強い出力で加熱される。そのため、ノズル101の領域の100℃、300℃、および500℃の等温線である実線151、152、および153の形は、図10の場合と異なり深くまで高温域を広げることが可能となる。結果として、1組の加熱コイルで加熱した場合と比較して、3組の加熱コイルで加熱した場合の方が絶対値の大きい圧縮残留応力を配管の内面に発生させることができる。
【0042】
なお、本実施例では、電源とトランスを各組のコイル毎に設けたが、電源とトランスを1組として、1組の電源とトランスと、各コイルとの間にリレー機構を有する制御盤を介する構成としても良い。
【0043】
また、本実施例では、加熱コイルに供給する電流を制御するために配管表面の温度を熱電対により測定する構成としたが、配管表面に誘起されている誘導電流または電圧を測定し、その値を求めて加熱コイルに供給する電流を制御しても良いし、1個のコイルを配管の軸方向に移動させ、移動した部位毎に発熱量を変化させるようにしても良い。
【0044】
次に、配管の材料特性が配管の中心軸に沿う方向で変化する場合について説明する。図9において、溶接部位2の強度が配管102の強度よりも大きい場合である。配管の材質は、タイプ304ステンレス鋼である。溶接金属部位と配管の母材を比較すると、強度は溶接部位のほうが高い。このように材強度が異なる領域に、配管の内面と外面に発生する温度差が等しくなるように加熱を行うと、配管側の強度の方が溶接金属側と比較して小さいため、配管側では溶接金属部から引張の熱荷重を受けることにより降伏し引張の塑性ひずみが発生する。溶接金属部においても引張の塑性ひずみが発生するが、配管側と比較すると小さい。加熱を停止し、全体が均一な温度になった時点で、管内面に発生している塑性ひずみは配管側の方が溶接金属部よりも大きくなっている。そのため、溶接金属部と配管の境界では、溶接金属部位に引張残留応力を付与してしまう。このように、溶接金属部に引張残留応力を発生させてしまうのを防止するために、図9において、独立に高周波電流を制御できる構成において、加熱コイル132を溶接部位2に設置し、また、加熱コイル131を配管側に設置して、溶接部位2で発生する内外面の温度差の方が、配管側で発生する内外面の温度差と比較して小さくなるように設定すれば良い。発生する温度差を小さくする割合としては、配管と溶接部位の強度の比から見積もれば良い。タイプ304ステンレス鋼では、母材の強度は270MPaであり、溶接部位は400MPaであるので、約0.67倍となるように調節すれば良い。このように、配管の材料特性が配管上の範囲により異なる場合には、材料特性が異なる範囲ごとに加熱コイルを設置し、それぞれの領域に対して高周波電流の制御を行えば良い。
【0045】
本発明のさらに他の実施例を、図12を用いて説明する。本実施例は、突合せ溶接部位の管内表面の軸方向の引張残留応力を低減させるのに有効な方法である。2組の加熱コイル211と加熱コイル212を溶接部2を挟む領域に設置する。また、配管の溶接部2の外面には、加熱中に配管の溶接部2の外面を冷却するための水噴射用のノズル221と水の回収機構222からなる冷却機構を設けている。このような配置で、加熱コイル211と加熱コイル212と冷却機構を溶接部の周囲に設置した後に、冷却機構の水回収機構222を作動させ、次に水噴射用のノズル221から冷却水を噴射させる。冷却機構を配管の軸方向に挟む配置で設置した2組の加熱コイルのそれぞれに高周波電流を負荷する。
【0046】
冷却機構による溶接部位表面の冷却と、2組の加熱コイルによる加熱を行ったときの配管断面の変形および等温線を図13に示す。図13において、実線251、実線252、実線253、および実線254はそれぞれ100℃、200℃、300℃、および400℃の等温線を示している。加熱コイル211および加熱コイル212から配管の外面近傍に誘導される誘導電流により、コイルに面する領域の温度が上昇し、また、高温域は熱伝導により配管内部に広がっていく。また、溶接部位は水冷却されているため、加熱している領域と比較すると温度上昇は小さい。このとき、加熱領域は温度上昇により径方向に膨張する変形が起きる。一方、溶接部位は冷却脚機構により冷却されているため径方向の変形は加熱領域と比較すると小さい。そのため、溶接部位は内外表面ともに内側に凸の変形を起こす。このような変形の形態では、配管の軸方向応力は、内面で引張、外表面で圧縮となる。また、周方向応力は、内面および外面でともに圧縮となる。
【0047】
溶接残留応力が発生している配管に対して、上記に記載したような熱応力が加えられ、その後に加熱を停止し全体が均一な温度になったときに、配管の溶接部位の内面の軸方向応力は圧縮となる。
【0048】
本発明のさらに他の実施例を図14を用いて説明する。本実施例は、突合せ溶接部位の管内表面の周方向の引張残留応力を低減させるのに有効な方法である。水噴射用のノズル221と水回収機構222から構成される2組の急冷機構を溶接部2を挟む領域に設置する。また、配管201の溶接部位2の外面には、配管の溶接部位2の外面を加熱するための加熱コイル211を設けている。このような配置で、冷却機構と加熱コイル211を溶接部の周囲に設置した後に、冷却機構の水回収機構を作動させ、次に水噴射用のノズルから冷却水を噴射させる。2組の冷却機構に軸方向で挟まれる配置で設置した加熱コイル211に高周波電流を負荷する。
【0049】
2組の冷却機構による溶接部位表面の冷却と、加熱コイルによる加熱を行ったときの配管断面の変形および等温線を図15に示す。図15において、実線251、実線252、実線253、および実線254はそれぞれ100℃、200℃、300℃、および400℃の等温線を示している。加熱コイル211から配管の外面近傍に誘導される誘導電流により、コイルに面する領域の温度が上昇し、また、高温域は熱伝導により配管内部に広がっていく。また、その周囲では冷却機構により水冷却されているため、加熱している領域と比較すると温度上昇は小さい。このとき、加熱領域は温度上昇により径方向に膨張する変形が起きる。一方、溶接部位は冷却脚機構により冷却されているため径方向の変形は加熱領域と比較すると小さい。そのため、溶接部位は内外表面ともに外側に凸の変形を起こす。このような変形の形態では、配管の軸方向応力は、内面で圧縮、外表面で引張となる。また、周方向応力は内外面で引張となる。
【0050】
溶接残留応力が発生している配管に対して、上記に記載したような熱応力が加えられ、その後に加熱を停止し全体が均一な温度になったときに、配管の内面の溶接部位の周方向応力は圧縮となる。
【0051】
本発明のさらに他の実施例を図16と図17を用いて説明する。本実施例は、配管内表面の溶接部位に割れがある継手の場合である。本実施例では、最初に配管溶接部の溶接金属、溶接熱影響部に割れの有無を検査する。検査方法は、既設配管の内面の欠陥を検出する必要があるため超音波探傷を用いる。
【0052】
検査の結果、割れが検出された場合に、割れの進展を抑制させるのに好ましい温度分布を図16を用いて説明する。図16は、溶接部位の欠陥先端から配管外表面までの評価ライン371、および欠陥がない部分の配管の内面から外面までの評価ライン372に沿った、割れの進展を抑制するのに好ましい温度分布である。図中のグラフの横軸は配管内面からの距離をとっており、破線381は配管の内面を基準としたときの欠陥の先端の位置である。また、破線382は配管の外面の位置である。
【0053】
上記のような温度分布を発生させるためには、配管の欠陥部位の外面の加熱を周囲と比較して浅くなるように調節する必要がある。そのような温度分布を与える加熱方法を図17を用いて説明する。図17では、3組の加熱コイルを用いて加熱を行っている。割れが検出された溶接部の加熱は周波数を高くして温度分布を発生させる。このような施工装置により割れ先端部分に所定の温度分布を付与することにより、発生している割れに対してその先端部分に圧縮残留応力を発生させることができ、その結果、割れの進展を遅くすることが可能となる。
【0054】
本実施例では、3組の加熱コイルを用いる場合を示したが、1組の加熱コイルで、割れが検出された部位の加熱コイルとの間隔だけを広くしたり、加熱コイルの巻き間隔を割れが検出された部位のみ広くしても良い。
【0055】
本発明のさらに他の実施例を図18を用いて説明する。本実施例は、沸騰水型原子炉発電プラントの場合である。原子炉圧力容器700に取付けられた配管710と、循環ポンプ720と、ライザー管730によって、沸騰水型原子炉発電プラントの一つの配管系である再循環系が構成される。多数の曲管および直管等を溶接にて接合することによって、再循環系配管が組立てられる。
【0056】
原子炉圧力容器700と再循環系配管の組立てが完了した後に、再循環系配管に水を流しながら配管外面を加熱コイルにより加熱する。直管と直管の溶接部位として図18中に示した溶接継手741、ノズル形状の部位として溶接継手742、配管の形状が変化する部位として溶接継手743などに適用できる。
【0057】
配管の中心軸が鉛直方向になる直管どうしの継手741に対しては、図6に示したように、配管内面の残留応力を圧縮応力化できる。また、ノズル形状の部位である溶接継手742に対しては、図示した方法により配管内面の残留応力を圧縮にすることができる。溶接継手743に対しては、配管表面の形状に沿ったスペーサーおよびスペーサー治具を予め製作しておき、スペーサーに加熱コイルを取付けた加熱コイルユニットを予め製作しておき、それを溶接継手743の部位に取付けて配管内に炉水を満たしておいて外面を加熱コイルにより加熱することによって、配管内面に圧縮残留応力を発生させることができる。
【0058】
沸騰水型原子炉発電プラントの再循環系配管に、本実施例の方法を適用する場合は、配管内に炉水が満たされているため、配管内面に新たに冷却材を準備する必要がない。なお、上記説明では沸騰水型原子炉プラントを例にとっているが、加圧水型原子炉プラントおよび重水炉プラント等の他の原子力発電プラント、火力プラントおよび化学プラント等の配管系に対しても同様に本発明を適用することができる。
【0059】
【発明の効果】
以上述べたように本発明によれば、プラントの配管系を組立てた後に、配管系が有する配管内面に圧縮残留応力を発生させることができるので、配管系の応力腐食割れを防止することができる。さらに、熱処理に必要な加熱コイルを容易に設置できる。また、配管内面の溶接金属部位に圧縮残留応力を発生させることができ、配管系の信頼性が向上する。
【図面の簡単な説明】
【図1】本発明に係る熱処理装置の一実施例の模式図である。
【図2】本発明に係る加熱コイルの一実施例の部分斜視図である。
【図3】本発明に係る加熱装置の一実施例の横断面図である。
【図4】本発明に係る加熱装置の一実施例の横断面図である。
【図5】配管の管厚さ方向の温度分布を説明する図である。
【図6】本発明に係る熱処理装置の他の実施例の模式図である。
【図7】加熱コイルに負荷する高周波電流の例を説明する図である。
【図8】加熱コイルによる温度分布を説明する図である。
【図9】本発明に係る熱処理装置のさらに他の実施例の模式図である。
【図10】従来の配管熱処理を説明する図である。
【図11】本発明に係る配管熱処理を説明する図である。
【図12】本発明に係る配管熱処理装置のさらに他の実施例の模式図である。
【図13】配管の変形を説明する図である。
【図14】本発明に係る熱処理装置のさらに他の実施例の模式図である。
【図15】配管の変形を説明する図である。
【図16】配管の温度分布を説明する図である。
【図17】本発明に係る熱処理装置のさらに他の実施例の模式図である。
【図18】本発明に係る熱処理装置の適用例の斜視図である。
【符号の説明】
1、1a、1b…配管、2…溶接部位、11…加熱コイル、12…スペーサー、13…スペーサー周方向取付治具、14…電流ケーブル、15…冷却水循環ホース、16…トランス、17…電源、18…制御装置、19…冷却水循環装置、20…電流検出器、21a…温度計測機、21b…二次電流計測機、22…熱電対、23…ケーブル、24…ボルト、25…断熱材、101…ノズル厚肉部、102…配管、110…加熱コイル、120…スペーサー、131…温度測定用熱電対、141…電源・冷却水循環装置・制御装置、151…等温線、201…配管、211…加熱コイル、221…水シャワー機構、222…水回収機構、360…割れ、700…沸騰水型原子炉圧力容器、720…循環ポンプ、730…ライザー管。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a piping system heat treatment method and a heat treatment apparatus, and more particularly to a piping system heat treatment method and a heat treatment apparatus suitable for piping used in a nuclear power plant.
[0002]
[Prior art]
Japanese Patent Publication No. 53-38246 discloses an example of reducing the tensile residual stress in a region exposed to a corrosive environment in order to suppress the occurrence of stress corrosion cracking in a structural material. In this publication, in order to reduce the tensile residual stress on the inner surface of the pipe at the existing pipe welding site, after assembling the pipe system of the plant, the cooling fluid is flowed into the pipe of the pipe system and the outside of the pipe is heated, A temperature difference is generated between the inner surface of the pipe and the outer surface of the pipe. The inner surface is tensile yielded and the outer surface is compressed and yielded to prevent stress corrosion cracking.
[0003]
Japanese Patent Application Laid-Open No. 2001-262235 discloses a pipe / container local heat treatment apparatus using a personal computer or the like in order to remove residual stress in a welded part of a container. It describes that automatic driving is performed according to a pattern. Furthermore, Japanese Patent Laid-Open No. 2001-3120 discloses a short pipe of the same steel type as the main pipe in welding of a heat-resistant steel and a branch pipe in order to increase the strength of the weld joint and improve the reliability. Is connected to the mother pipe using a welding material of the same composition as heat resistant steel, heat treated at the normalizing temperature and tempering temperature of the heat resistant steel after welding, and then the branch pipe is welded to the tip of the short pipe. ing.
[Patent Document 1]
Japanese Patent Publication No.53-38246
[Patent Document 2]
JP 2001-262235 A
[Patent Document 3]
Japanese Patent Laid-Open No. 2001-3120
[0004]
[Problems to be solved by the invention]
In each of the publications described in the above prior arts, stress corrosion cracking that may occur in a weld metal part is not sufficiently considered. In general, the weld metal has a higher yield stress than the pipe base material, and therefore, the tensile residual stress generated by welding is likely to be about the yield stress. Therefore, in order to cause the tensile yield, it is necessary to sufficiently increase the tensile stress generated on the inner surface.
[0005]
The present invention has been made in view of the above-mentioned problems of the prior art, and an object thereof is to improve the reliability of a connection portion of a piping system used in a nuclear power plant or the like by heat treatment. Another object is to realize heat treatment with a simple configuration.
[0006]
[Means for Solving the Problems]
  The feature of the present invention that achieves the above object is as follows.After assembling the piping system having a pipe, a cooling fluid is allowed to flow inside the pipe, and then the pipe is heated using a high-frequency heating device having a heating coil to generate a temperature difference between the inner surface of the pipe and the outer surface of the pipe. In the heat treatment method, a plurality of spacers extending in the axial direction of the pipe are distributed and arranged in the circumferential direction of the pipe, and the heating coils divided in two in the axial direction of the pipe are connected with the plurality of spacers interposed therebetween. Form an energization path, maintain the distance between the pipe surface and the heating coil with a spacer, generate a temperature difference between the inner surface of the pipe and the outer surface of the pipe, cause the inner surface to tensile yield, and compress the outer surface. It is characterized by.
[0007]
In this feature, the cooling fluid may be pure water, the piping system may be a reactor piping, and the cooling fluid may be reactor water. Further, it is preferable to change the distance from the outer surface of the pipe to the inner surface of the heating coil in the longitudinal direction of the heating coil, and by decentering the center of the heating coil from the center of the pipe, The distance may be changed in the circumferential direction.
[0008]
Preferably, the gap between the pipe and the heating coil is made substantially constant in the circumferential direction to prevent the flow of air in the formed gap, or the number of turns of the heating coil exceeds at least two, and this winding interval To change. Preferably, at least two heating coils are provided, and the current can be controlled for each heating coil.
[0009]
The frequency of the high-frequency current supplied to the heating coil may be changed with time, the temperature of the pipe surface heated by the heating coil is measured, and the current supplied to the heating coil is controlled based on the measured temperature. In the case where at least one of the strength or material of the pipe where the heating coil is heated changes along the pipe axis, the heating coil is arranged according to the strength or material of the pipe to increase the degree of heating. It may be changed.
[0010]
Preferably, at least one of the current and voltage on the pipe surface heated by the heating coil is detected, and the current supplied to the heating coil is controlled based on the detected value. Before installing the heating coil, The presence or absence of a defect on the inner surface of the piping system is confirmed by nondestructive inspection, and when a defect is detected, heating near the defect is preferably performed using a heating coil, which is different from the case where the defect is not detected.
[0011]
Furthermore, a heating part is formed in the longitudinal direction of the cooling part that cools the outer surface of the pipe over the entire circumference, and this heating part is heated over the entire circumference of the pipe with a heating coil, or the outer surface of the pipe is heated over the entire circumference. You may make it form the cooling part cooled over the perimeter of piping in the axial direction front-back direction of the heating part heated with a coil.
[0012]
  Another feature of the present invention for achieving the above object is as follows:Distribute by dividing a plurality of heating coils for high-frequency induction heating arranged on the outer surface side of the piping system in the axial direction of the piping system and spacers extending in the axial direction of the piping system in the circumferential direction of the piping system A spacer circumferential mounting jig arranged for each heating coil, a cooling water pipe which is attached to the heating coil and in which cooling water circulates, and means for supplying a high frequency current to the connected heating coil for high frequency induction heating A temperature measuring device that detects the temperature of the outer surface of the piping system heated by the heating coil, and a control device that controls the heating coil based on the temperature detected by the temperature measuring device, and the piping system via a spacer While maintaining the distance between the surface and the heating coil, the piping system is heated by the heating coil to generate compressive residual stress on the inner surface of the piping system.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, some embodiments of the present invention will be described with reference to the drawings. 1 to 5 are views of an embodiment of a heat treatment apparatus for a piping system according to the present invention. FIG. 1 schematically shows a state in which a heat treatment apparatus is attached to the outer periphery of the pipe. The straight pipe 1a and the straight pipe 1b installed so that the central axis of the pipe is horizontal are welded at the welding site 2 to generate compressive residual stress on the inner surface of the welded portion. A thermocouple 22 for measuring the temperature of the surface of the welded portion is attached to a weld metal portion on the outer surface of the pipe. The thermocouple 22 is connected to the temperature measuring device 21 a via the cable 23. The temperature measuring device 21 a converts the voltage generated by the thermoelectromotive force generated by the thermocouple 22 into a digital value using an AD converter (not shown), and sends the digital value to the control device 18.
[0014]
A heating coil 11 is spirally attached to the pipe via a spacer 12. A high frequency current is supplied from the high frequency transmitter 17 through the transformer 16 and the cable 14 to the heating coil end portions 10 a and 10 b of the heating coil 11. In the middle of the cable 14, a current detector 20 for detecting a secondary current is attached and sent to the control device 18 via a secondary current measuring device 21b and an AD converter (not shown). The control device 18 has control means (not shown) for controlling the effective value and frequency of the high-frequency current generated by the transformer. Further, cooling water is supplied from the cooling water circulation mechanism 19 to the heating coil 11, the transformer 16, and the high-frequency transmitter 17 via the hose 15.
[0015]
Next, the heating coil 11, which is a component to be mounted, the spacer 12 that supports the heating coil, and the spacer circumferential mounting jig will be sequentially described.
[0016]
FIG. 2 shows details of the heating coil 11 structure. The heating coil is composed of a strip-shaped copper plate 11a through which high-frequency current flows, and a tube 11b for cooling the copper plate 11a.
[0017]
FIG. 3 shows a cross section when virtually cut by a plane having the normal axis as the central axis of the pipe 1. The spacers 12 are attached to the spacer circumferential attachment jigs 13a and 13b at intervals of about 45 °. Further, the spacer 12 is set so that the space on the lower side becomes smaller when the upper side in the pipe circumferential direction is compared with the lower side in the pipe circumferential direction. The two parts of the spacer circumferential mounting jigs 13 a and 13 b are fixed with bolts and nuts 24 and mounted on the pipe 1.
[0018]
FIG. 4 shows a separated state in order to install the heat treatment apparatus in the pipe. Spacers 12 are mounted on the circumference of spacer circumferential mounting jigs 13a and 13b on a semicircular arc. The curvature radii of the spacer circumferential mounting jigs 13 a and 13 b are made equal to the curvature radii of the outer surface of the pipe 1. Therefore, at the time of installation, it is possible to appropriately take a gap between the pipe surface and the heating coil only by attaching the spacer circumferential mounting jig on the semicircular arc according to the pipe surface. A heat insulating material 25 is installed between the spacer 12 and the spacer 12.
[0019]
During heating, if the tube surface is exposed to air, heating of the tube surface does not proceed due to heat transfer with air. On the other hand, the pipe can be efficiently heated by reducing the heat transfer from the pipe surface to the surroundings by the heat insulating material 25. Further, since the heat insulating material is integrated with the spacer and the heating coil, the man-hour is not increased and can be installed in a short time. Any material can be used as the heat insulating material 25 as long as heat transfer to the surrounding air is reduced. For example, a cotton-like material having electrical insulation and made of nonflammable fibers is used.
[0020]
Next, the procedure of the heat treatment construction will be described. In FIG. 1, after preparing the apparatus in the state shown in the figure, the inside of the pipe 1a and the pipe 1b joined by the welded joint 2 is filled with the cooling fluid, and the cooling water circulation device 19 is activated to start the heating coil 11 and After supplying the cooling water to the transformer 16 and the high frequency transmitter 17, a high frequency current is passed through the heating coil 11. An induction current is induced on the outer surface of the pipe by the high-frequency current flowing through the heating coil 11, and thereby heat is generated by the electric resistance of the pipe. The temperature of the pipe surface is measured by the thermocouple 22, and the current supplied to the heating coil is controlled by the control device 18 until the outer surface reaches a predetermined temperature. On the other hand, since the inner surface of the pipe is in contact with the coolant, the temperature is lower than that of the outer surface. Therefore, a temperature difference occurs between the outer surface and the inner surface of the pipe.
[0021]
The welding residual stress generated in the pipe welded portion is substantially constant regardless of the circumferential position. Therefore, in order to generate compressive residual stress on the inner surface of the pipe over the entire circumference, it is preferable that the temperature difference between the outer surface and the inner surface of the pipe be constant over the entire circumference regardless of the position on the circumference. . Then, the temperature difference which generate | occur | produces on the outer surface and inner surface of piping is demonstrated.
[0022]
The temperature distribution in the pipe thickness direction suitable for reducing the welding residual stress on the inner surface of the pipe is, for example, that the maximum temperature is 550 ° C. or less in type 304 stainless steel in which material sensitization occurs, and the temperature difference between the inner and outer surfaces is 220. It is said that it is over ℃. These maximum temperature values and the temperature difference between the inner and outer surfaces were determined from the presence of material sensitization and the physical properties of the material (Young's modulus, Poisson's ratio, yield stress, linear expansion coefficient). is there. Moreover, in type 316L stainless steel, since material sensitization hardly occurs, there is no problem even if the maximum temperature is set to a temperature higher than 550 ° C.
[0023]
FIG. 5 shows the temperature distribution from the inner surface to the outer surface while heating the outer surface of the pipe. In the case where the distance between the outer surface of the pipe 1 and the heating coil 11 is constant in the circumferential direction, and in the case where the distance between the outer surface of the pipe 1 and the heating coil 11 is smaller on the lower side and larger on the upper side, An evaluation line (41a or 42a in the figure), an intermediate evaluation line (41b or 42b in the figure), and an upper evaluation line (41c or 42c in the figure) are shown.
[0024]
In the graph shown in FIG. 5, the horizontal axis represents the distance from the inner surface of the pipe. The origin O represents the inner surface of the tube, and the position indicated by the broken line 43 represents the outer surface of the tube. In piping installed in the horizontal direction, the internal water causes convection by heating. Therefore, if the heating coil is installed at the same distance from the pipe surface over the entire circumference of the pipe, the amount of heat generated by the high-frequency induction heating is the same over the entire circumference, whereas water as a coolant causes convection on the inner surface of the pipe. Therefore, as a result, the temperature at the bottom of the tube is less likely to rise compared to the top of the tube. Therefore, the temperature distribution along the evaluation line 41a on the lower side of the pipe, the evaluation line 41b at the middle position, and the evaluation line 41c on the upper side becomes curves 44a, 44b and 44c, and in the circumferential direction of the pipe, The temperature difference between the inner surface and the outer surface becomes smaller as it becomes lower than the upper side.
[0025]
On the other hand, when the lower side is set so that the distance between the heating coil and the pipe surface is smaller than the upper side of the pipe, the lower side has a larger amount of heat generation. Therefore, even if the coolant filled in the pipe causes convection, the lower side has a larger calorific value than the upper side, so the lower evaluation line 42a, the middle evaluation line 42b, and When the temperature distribution along the upper evaluation line 42c is shown, it becomes a curve 45 in any evaluation line, and the temperature difference between the inner surface and the outer surface can be made uniform over the entire circumferential direction of the pipe.
[0026]
As described above, the spacer circumferential mounting jig divided into two in the circumferential direction shown in FIG. 4 is such that the gap between the outer surface of the pipe and the coil becomes smaller as it is lower than the upper side in the circumferential position of the pipe. By installing such a spacer and installing a heating coil on the spacer, it becomes easy to accurately set the gap between the outer surface of the pipe and the heating coil in a short time when installing the heating coil in the pipe. . Furthermore, the pipe can be heated so that the temperature difference between the inner surface and the outer surface becomes uniform over the entire circumference of the pipe. By using this heating method, the tensile residual stress on the inner surface of the pipe can be made compressive.
[0027]
In this embodiment, the circumferential spacing of the spacer supporting the heating coil is set to about 45 ° C., and a heat insulating material is installed between the spacers to prevent the flow of air in the gap. The surface was kept at a high temperature. Instead of installing a heat insulating material, the flow of air in the gap may be prevented by increasing the number of spacers and increasing the distance between the spacers in the circumferential direction.
[0028]
Another embodiment of the heat treatment apparatus according to the present invention will be described with reference to FIG. The heat treatment apparatus of the present embodiment is applied to a welded portion of a straight pipe and a straight pipe installed so that the central axis of the pipe is vertical. The shape of the spacer 12 is different from the case of the embodiment shown in FIG. 1, and the distance between the heating coil 11 and the outer surface of the pipe 1 is smaller in the lower part along the central axis of the pipe than in the upper part. It has a shape.
[0029]
In FIG. 6, a spacer 12 and a heating coil 11 fixed to the spacer 12 are installed at a position sandwiching the pipe welding site 2 in the axial direction, and the cooling water is supplied to the heating coil by the cooling water circulation device as in the embodiment shown in FIG. While circulating, a high frequency voltage is applied to the heating coil. When a high frequency current is supplied to the heating coil, an induced current is induced on the outer surface of the pipe, and heat is generated due to the electric resistance of the pipe. The heating coil is installed so that the distance between the outer surface of the pipe and the heating coil is smaller in the lower part of the pipe than in the upper part. Therefore, the amount of heat generation is relatively larger in the lower part than in the upper part.
[0030]
When the temperature of the pipe rises due to high frequency induction heating and the temperature of the water inside the pipe rises, the water whose temperature has risen moves upward. That is, convection occurs. Of the heat generated by high-frequency induction heating, a part of the heat transferred from the inner surface of the tube to the water moves upward due to convection.
[0031]
If the distance between the heating coil and the outer surface of the pipe is uniform over the entire axial direction of the pipe, the amount of heat generated in the pipe by high-frequency induction loaded from the heating coil is uniform in the axial direction. In addition, the amount of heat transferred from the pipe to the water on the pipe inner surface is larger in the lower part than in the upper part, so the temperature distribution in the cross section is different between the upper part and the lower part of the pipe, and is generated on the pipe inner face. There is a possibility that the residual tensile stress cannot be reduced uniformly.
[0032]
On the other hand, as shown in this example, when the distance between the outer surface of the tube and the heating coil is set smaller in the lower direction than in the upper direction, the heat generation amount is lower in the lower direction. When the amount of heat transferred from the surface to the water is larger than above, the temperature difference between the inner and outer surfaces can be made uniform at any position in the axial direction in the entire pipe. As a result, compressive residual stress can be generated at the welded portion on the inner surface of the pipe.
[0033]
As in the example shown in FIG. 1, in this example, it is possible to efficiently heat the pipe by inserting a heat insulating material between the spacers. It is good also as a structure.
[0034]
In addition, the distance between the heating coil held by the spacer and the surface of the pipe is constant in the axial direction, and the distance between the heating coils is made closer to the lower side so that the lower heating value is increased. The temperature distribution in the axial direction may be controlled.
[0035]
In each of the above embodiments, in order to prevent the water in contact with the inner surface of the pipe from boiling to reduce heat transfer and convection, the cooling fluid flowing inside the pipe is pressurized, The pressurized fluid may be cooled by flowing inside the pipe.
[0036]
In the above embodiments, the frequency of the high-frequency current supplied to the heating coil is constant regardless of time. Next, a method for changing the frequency of the high-frequency current with time as shown in FIG. 7 will be described.
[0037]
The relationship between the frequency of the high-frequency current supplied to the heating coil and the depth at which the induced current is generated on the outer surface of the pipe becomes shallower as the frequency is higher. FIG. 8 shows the temperature distribution along the evaluation line 41b of the pipe when the heating coil 11 is installed around the pipe 1 and heated at the frequencies fh and fl (fh> fl). The horizontal axis of the graph in the figure indicates the distance from the inner surface of the pipe, the origin O indicates the inner surface of the pipe, and the position indicated by the broken line 43 indicates the outer surface of the pipe. When comparing the case where the frequency is fh and the case where the frequency is fl, the region where heat is generated is deeper in the region where the frequency is low. Therefore, the distributions along the evaluation line 41b are as shown by curves 51a and 51b, respectively, when the frequency is relatively high and the frequency is low. As shown in FIG. 7, when the frequency fh is set to th and the frequency fl is set to tl, by repeating this cycle, the vicinity of the surface of the pipe is heated and a deep region is heated. And the temperature distribution shown by the solid line 52 in FIG. The gradient of the temperature distribution in the vicinity of the inner surface of the pipe is larger in 52 than in 51a or 51b in which the frequency is when fh or fl is loaded alone. When the thickness is large, the thermal stress generated on the inner surface increases depending on the gradient of the temperature distribution. Therefore, by alternately using fh and fl as the loading frequency, the thermal stress generated on the inner surface of the pipe can be increased on the tension side, and as a result, the residual stress on the inner surface of the pipe can be compressed.
[0038]
Still another embodiment of the present invention will be described with reference to FIG. In each of the above-described embodiments, one heating coil is arranged for a portion that improves the residual stress on the inner surface of the pipe. In this embodiment, the heating is performed using a plurality of heating coils 111, 112, and 113 at the positions of the nozzle 101 and the pipe 102 in the axial direction. In each heating coil, the temperature of the outer surface of the pipe facing the heating coil is set to the pipe. Measured by thermocouples 131, 132, 133 attached to the outer surface, and the electromotive force of thermocouples not shown in the figure is transmitted to the temperature measuring device via the cable, and then sent to the control device via the AD converter. The piping is heated while controlling the current applied to the heating coil.
[0039]
Units 141, 142, and 143 shown in FIG. 9 collectively indicate a control device, a power source, a transformer, and a cooling water circulation device for applying a current to each of the heating coils 111, 112, and 113.
[0040]
The present embodiment is an example applied to a pipe in which the pipe thickness of the pipe at the welded part changes in the vicinity of the welded part. A temperature distribution when a portion where the surrounding tube thickness greatly changes is heated by one set of heating coils 110 when the welding portion and the surrounding tube thickness are compared will be described with reference to FIG. This is a case where the pipe 102 is joined to the nozzle 101 at the welding site 2, and a case where the nozzle 102 is heated by a set of heating coils 110. The isotherms at 100 ° C., 300 ° C., and 500 ° C. are shown as solid lines 151, 152, and 153 in the figure. The heat generated in the vicinity of the welded part moves to a region where the tube thickness is thick due to heat conduction. Therefore, a predetermined temperature difference cannot be generated at the welding site. Although not shown, if a predetermined temperature difference is generated in a portion where the tube thickness is thick, the temperature of the welded portion is excessively increased. Therefore, compressive residual stress cannot be generated in the welded part.
[0041]
On the other hand, the temperature distribution when heated by a heating coil having three sets of independent control systems as shown in FIG. 9 will be described with reference to FIG. The welding site 2 and its vicinity and the pipe 102 are heated by the heating coils 111 and 112. Further, the portion of the nozzle 101 whose thickness is thicker than that of the pipe 102 is heated by the heating coil 113 with a stronger output than the heating coils 111 and 112. Therefore, the shapes of solid lines 151, 152, and 153, which are isotherms of 100 ° C., 300 ° C., and 500 ° C. in the region of the nozzle 101, can expand the high temperature region deeply unlike the case of FIG. As a result, a compressive residual stress having a larger absolute value can be generated on the inner surface of the pipe when heated with three sets of heating coils than when heated with one set of heating coils.
[0042]
In this embodiment, a power source and a transformer are provided for each set of coils. However, a control panel having a relay mechanism between the power source and the transformer and each coil is provided. It is good also as a structure which goes through.
[0043]
In this embodiment, the temperature of the pipe surface is measured by a thermocouple in order to control the current supplied to the heating coil, but the induced current or voltage induced on the pipe surface is measured and the value is measured. The current supplied to the heating coil may be controlled, or one coil may be moved in the axial direction of the pipe, and the heat generation amount may be changed for each moved part.
[0044]
Next, the case where the material characteristics of the piping change in the direction along the central axis of the piping will be described. In FIG. 9, the strength of the welded part 2 is greater than the strength of the pipe 102. The material of the piping is type 304 stainless steel. Comparing the weld metal part and the pipe base material, the weld part has higher strength. When heating is performed so that the temperature difference generated between the inner surface and the outer surface of the pipe is equal to the region where the material strength is different, the strength on the pipe side is smaller than that on the weld metal side. When a tensile thermal load is received from the weld metal part, it yields and tensile plastic strain occurs. Tensile plastic strain also occurs in the weld metal part, but it is small compared to the pipe side. When the heating is stopped and the entire temperature reaches a uniform temperature, the plastic strain generated on the inner surface of the pipe is larger on the pipe side than on the weld metal part. For this reason, tensile residual stress is applied to the weld metal part at the boundary between the weld metal part and the pipe. Thus, in order to prevent the generation of tensile residual stress in the weld metal part, in FIG. 9, the heating coil 132 is installed at the welding site 2 in a configuration in which the high-frequency current can be controlled independently. The heating coil 131 may be installed on the pipe side, and the temperature difference between the inner and outer surfaces generated at the welding site 2 may be set to be smaller than the temperature difference between the inner and outer surfaces generated on the pipe side. What is necessary is just to estimate from the ratio of the intensity | strength of piping and a welding site | part as a ratio which makes small the temperature difference to generate | occur | produce. In type 304 stainless steel, the strength of the base material is 270 MPa, and the welded part is 400 MPa, so adjustment may be made to be about 0.67 times. In this way, when the material characteristics of the piping differ depending on the range on the piping, a heating coil may be installed for each range where the material characteristics differ, and the high-frequency current may be controlled for each region.
[0045]
Still another embodiment of the present invention will be described with reference to FIG. The present embodiment is an effective method for reducing the axial tensile residual stress on the inner surface of the pipe at the butt weld site. Two sets of the heating coil 211 and the heating coil 212 are installed in a region sandwiching the weld 2. Further, a cooling mechanism including a water jet nozzle 221 and a water recovery mechanism 222 for cooling the outer surface of the welded part 2 of the pipe during heating is provided on the outer surface of the welded part 2 of the pipe. With such an arrangement, after the heating coil 211, the heating coil 212, and the cooling mechanism are installed around the welded portion, the water recovery mechanism 222 of the cooling mechanism is operated, and then the cooling water is injected from the nozzle 221 for water injection. Let A high frequency current is applied to each of the two sets of heating coils installed in such a manner as to sandwich the cooling mechanism in the axial direction of the pipe.
[0046]
FIG. 13 shows the deformation of the cross section of the pipe and the isotherm when the surface of the welded part is cooled by the cooling mechanism and heated by two sets of heating coils. In FIG. 13, a solid line 251, a solid line 252, a solid line 253, and a solid line 254 indicate isotherms of 100 ° C., 200 ° C., 300 ° C., and 400 ° C., respectively. Due to the induction current induced in the vicinity of the outer surface of the pipe from the heating coil 211 and the heating coil 212, the temperature of the area facing the coil rises, and the high temperature area spreads inside the pipe due to heat conduction. Moreover, since the welding site is water-cooled, the temperature rise is small compared to the heated region. At this time, the heating region is deformed to expand in the radial direction due to a temperature rise. On the other hand, since the welded part is cooled by the cooling leg mechanism, the radial deformation is small compared to the heating region. For this reason, the welded part causes a convex deformation inward on both the inner and outer surfaces. In such a deformation mode, the axial stress of the pipe is tensile on the inner surface and compressed on the outer surface. Further, the circumferential stress is compressed on both the inner surface and the outer surface.
[0047]
When the thermal stress as described above is applied to the pipe where the welding residual stress is generated, and then the heating is stopped and the entire temperature reaches a uniform temperature, the axis of the inner surface of the welded part of the pipe Directional stress is compression.
[0048]
Still another embodiment of the present invention will be described with reference to FIG. This embodiment is an effective method for reducing the tensile residual stress in the circumferential direction of the inner surface of the pipe at the butt weld site. Two sets of quenching mechanisms composed of a water jet nozzle 221 and a water recovery mechanism 222 are installed in a region sandwiching the weld 2. Further, a heating coil 211 for heating the outer surface of the welded part 2 of the pipe is provided on the outer surface of the welded part 2 of the pipe 201. In such an arrangement, after the cooling mechanism and the heating coil 211 are installed around the welded portion, the water recovery mechanism of the cooling mechanism is operated, and then cooling water is jetted from the water jet nozzle. A high frequency current is applied to the heating coil 211 installed in an arrangement sandwiched between two sets of cooling mechanisms in the axial direction.
[0049]
FIG. 15 shows the deformation of the pipe cross section and the isotherm when the surface of the welded part is cooled by two sets of cooling mechanisms and the heating coil is heated. In FIG. 15, a solid line 251, a solid line 252, a solid line 253, and a solid line 254 indicate isotherms of 100 ° C., 200 ° C., 300 ° C., and 400 ° C., respectively. Due to the induced current induced from the heating coil 211 in the vicinity of the outer surface of the pipe, the temperature of the area facing the coil rises, and the high temperature area spreads inside the pipe by heat conduction. Moreover, since the water is cooled by the cooling mechanism in the periphery, the temperature rise is small compared with the heated area. At this time, the heating region is deformed to expand in the radial direction due to a temperature rise. On the other hand, since the welded part is cooled by the cooling leg mechanism, the radial deformation is small compared to the heating region. For this reason, the welded part causes a convex deformation outward both on the inner and outer surfaces. In such a deformation mode, the axial stress of the pipe is compressed on the inner surface and tensile on the outer surface. Further, the circumferential stress is tensile on the inner and outer surfaces.
[0050]
When the thermal stress as described above is applied to the pipe where the residual welding stress is generated, and then the heating is stopped and the entire temperature reaches a uniform temperature, the circumference of the welded part on the inner surface of the pipe is Directional stress is compression.
[0051]
Still another embodiment of the present invention will be described with reference to FIGS. This example is a case of a joint having a crack in the welded portion on the inner surface of the pipe. In this embodiment, first, the presence of cracks in the weld metal and weld heat affected zone of the pipe weld is inspected. The inspection method uses ultrasonic flaw detection because it is necessary to detect defects on the inner surface of the existing piping.
[0052]
When cracks are detected as a result of the inspection, a preferable temperature distribution for suppressing the progress of cracks will be described with reference to FIG. FIG. 16 is a temperature distribution preferable for suppressing the progress of cracks along the evaluation line 371 from the defect tip of the welded part to the outer surface of the pipe and the evaluation line 372 from the inner surface to the outer surface of the pipe where there is no defect. It is. The horizontal axis of the graph in the figure is the distance from the inner surface of the pipe, and the broken line 381 is the position of the tip of the defect when the inner surface of the pipe is used as a reference. A broken line 382 is the position of the outer surface of the pipe.
[0053]
In order to generate the temperature distribution as described above, it is necessary to adjust the heating of the outer surface of the defective portion of the piping so as to be shallower than the surroundings. A heating method for providing such a temperature distribution will be described with reference to FIG. In FIG. 17, heating is performed using three sets of heating coils. Heating the weld where a crack has been detected raises the frequency and generates a temperature distribution. By applying a predetermined temperature distribution to the crack tip with such a construction device, it is possible to generate a compressive residual stress at the tip with respect to the crack that has occurred, and as a result, slow the progress of the crack. It becomes possible to do.
[0054]
In this embodiment, the case where three sets of heating coils are used has been shown. However, with one set of heating coils, only the interval between the heating coil at the part where the crack is detected is widened, or the winding interval of the heating coil is broken. Only the part where the stagnation is detected may be widened.
[0055]
Still another embodiment of the present invention will be described with reference to FIG. This embodiment is a case of a boiling water reactor power plant. The piping 710 attached to the reactor pressure vessel 700, the circulation pump 720, and the riser pipe 730 constitute a recirculation system that is one piping system of the boiling water reactor power plant. A recirculation system pipe is assembled by joining a large number of bent pipes and straight pipes by welding.
[0056]
After the assembly of the reactor pressure vessel 700 and the recirculation system pipe is completed, the outer surface of the pipe is heated by the heating coil while flowing water through the recirculation system pipe. It can be applied to the welded joint 741 shown in FIG. 18 as the welded part of the straight pipe and the straight pipe, the welded joint 742 as the nozzle-shaped part, the welded joint 743 as the part where the shape of the pipe changes.
[0057]
For the straight pipe joint 741 in which the central axis of the pipe is in the vertical direction, as shown in FIG. For the weld joint 742 that is a nozzle-shaped part, the residual stress on the inner surface of the pipe can be compressed by the illustrated method. For the welded joint 743, a spacer and a spacer jig along the shape of the pipe surface are manufactured in advance, and a heating coil unit in which a heating coil is attached to the spacer is manufactured in advance. It is possible to generate a compressive residual stress on the inner surface of the pipe by attaching to the site and filling the reactor water in the pipe and heating the outer surface with a heating coil.
[0058]
When applying the method of this embodiment to the recirculation system piping of a boiling water reactor power plant, the reactor water is filled in the piping, so there is no need to prepare a new coolant on the inner surface of the piping. . In the above description, the boiling water reactor plant is taken as an example. The invention can be applied.
[0059]
【The invention's effect】
As described above, according to the present invention, since the compressive residual stress can be generated on the pipe inner surface of the piping system after the plant piping system is assembled, the stress corrosion cracking of the piping system can be prevented. . Furthermore, a heating coil necessary for heat treatment can be easily installed. Moreover, a compressive residual stress can be generated in the weld metal part on the inner surface of the pipe, and the reliability of the pipe system is improved.
[Brief description of the drawings]
FIG. 1 is a schematic view of an embodiment of a heat treatment apparatus according to the present invention.
FIG. 2 is a partial perspective view of an embodiment of a heating coil according to the present invention.
FIG. 3 is a cross-sectional view of an embodiment of a heating device according to the present invention.
FIG. 4 is a cross-sectional view of an embodiment of a heating device according to the present invention.
FIG. 5 is a diagram for explaining a temperature distribution in a pipe thickness direction of a pipe.
FIG. 6 is a schematic view of another embodiment of the heat treatment apparatus according to the present invention.
FIG. 7 is a diagram illustrating an example of a high-frequency current loaded on a heating coil.
FIG. 8 is a diagram illustrating a temperature distribution by a heating coil.
FIG. 9 is a schematic view of still another embodiment of the heat treatment apparatus according to the present invention.
FIG. 10 is a diagram for explaining conventional pipe heat treatment.
FIG. 11 is a diagram illustrating pipe heat treatment according to the present invention.
FIG. 12 is a schematic view of still another embodiment of the pipe heat treatment apparatus according to the present invention.
FIG. 13 is a diagram illustrating deformation of piping.
FIG. 14 is a schematic view of still another embodiment of the heat treatment apparatus according to the present invention.
FIG. 15 is a diagram illustrating deformation of piping.
FIG. 16 is a diagram illustrating a temperature distribution of piping.
FIG. 17 is a schematic view of still another embodiment of the heat treatment apparatus according to the present invention.
FIG. 18 is a perspective view of an application example of a heat treatment apparatus according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 1a, 1b ... Piping, 2 ... Welded part, 11 ... Heating coil, 12 ... Spacer, 13 ... Spacer circumferential mounting jig, 14 ... Current cable, 15 ... Cooling water circulation hose, 16 ... Transformer, 17 ... Power supply, DESCRIPTION OF SYMBOLS 18 ... Control apparatus, 19 ... Cooling water circulation apparatus, 20 ... Current detector, 21a ... Temperature measuring machine, 21b ... Secondary current measuring machine, 22 ... Thermocouple, 23 ... Cable, 24 ... Bolt, 25 ... Thermal insulation, 101 ... Nozzle thick part, 102 ... piping, 110 ... heating coil, 120 ... spacer, 131 ... thermocouple for temperature measurement, 141 ... power supply / cooling water circulation device / control device, 151 ... isothermal line, 201 ... piping, 211 ... heating Coil, 221 ... water shower mechanism, 222 ... water recovery mechanism, 360 ... crack, 700 ... boiling water reactor pressure vessel, 720 ... circulation pump, 730 ... riser pipe.

Claims (18)

配管を有する配管系を組立てた後に前記配管の内部に冷却流体を流し、その後加熱コイルを有する高周波加熱装置を用いて配管を加熱して配管の内面と配管の外面との間に温度差を発生させる熱処理方法において、
前記配管の軸方向に延びたスペーサを、配管の周方向に複数個分散して配置し、前記配管の軸方向で2分割された加熱コイルをそれぞれ前記複数個のスペーサを挟んで接続して通電の経路を形成し、
前記配管表面と加熱コイルとの距離を前記スペーサにより保って、前記配管の内面と前記配管の外面との間に温度差を発生させ、前記内面を引張降伏させ、前記外面を圧縮降伏させることを特徴とする熱処理方法。
The interior of the pipe after assembly of the piping system having a pipe flowing a cooling fluid, then generating a temperature difference between using a high frequency heating apparatus having a heating coil to heat the piping and the inner surface of the pipe and the outer surface of the pipe In the heat treatment method
A plurality of spacers extending in the axial direction of the pipe are distributed in the circumferential direction of the pipe, and heating coils divided in two in the axial direction of the pipe are connected with the plurality of spacers interposed therebetween to energize. Form the path of
The distance between the pipe surface and the heating coil is maintained by the spacer, a temperature difference is generated between the inner surface of the pipe and the outer surface of the pipe, the inner surface is tensile yielded, and the outer surface is compressed yielded. A heat treatment method characterized .
前記冷却流体が純水であることを特徴とする請求項1に記載の配管系の熱処理方法。  The piping system heat treatment method according to claim 1, wherein the cooling fluid is pure water. 前記配管系は原子炉配管であり、前記冷却流体は原子炉で供給可能な原子炉水であることを特徴とする請求項1に記載の配管系の熱処理方法。  The heat treatment method for a piping system according to claim 1, wherein the piping system is a reactor piping, and the cooling fluid is reactor water that can be supplied by the reactor. 配管の外表面から加熱コイルの内表面までの距離を、加熱コイルの長手方向に変化させたことを特徴とする請求項1ないし請求項3のいずれか1項に記載の配管系の熱処理方法。  4. The heat treatment method for a pipe system according to claim 1, wherein a distance from an outer surface of the pipe to an inner surface of the heating coil is changed in a longitudinal direction of the heating coil. 5. 加熱コイルの中心を配管の中心から偏心させることにより、加熱コイルと配管外表面間距離を周方向に変化させたことを特徴とする請求項4に記載の配管系の熱処理方法。  5. The heat treatment method for a piping system according to claim 4, wherein the distance between the heating coil and the outer surface of the pipe is changed in the circumferential direction by decentering the center of the heating coil from the center of the pipe. 配管と加熱コイル間の隙間を周方向にほぼ一定にし、この形成された隙間内の空気の流動を防止したことを特徴とする請求項1ないし請求項4のいずれか1項に記載の配管系の
熱処理方法。
The piping system according to any one of claims 1 to 4, wherein a gap between the pipe and the heating coil is made substantially constant in the circumferential direction to prevent air flow in the formed gap. Heat treatment method.
前記加熱コイルの巻き数は少なくとも2巻きを超えており、この巻き間隔を変化させたことを特徴とする請求項1ないし請求項6のいずれか1項に記載の配管系の熱処理方法。  The piping system heat treatment method according to any one of claims 1 to 6, wherein the number of turns of the heating coil exceeds at least two and the winding interval is changed. 前記加熱コイルを少なくとも2個備え、各加熱コイル毎に電流を制御可能としたことを特徴とする請求項1ないし請求項7のいずれか1項に記載の配管系の熱処理方法。  The pipe system heat treatment method according to any one of claims 1 to 7, wherein at least two heating coils are provided, and current can be controlled for each heating coil. 前記加熱コイルに供給する高周波電流の周波数を、時間とともに変化させることを特徴とする請求項1ないし請求項8のいずれか1項に記載の配管系の熱処理方法。  9. The piping system heat treatment method according to claim 1, wherein a frequency of a high-frequency current supplied to the heating coil is changed with time. 前記加熱コイルが加熱する配管表面の温度を測定し、この測定した温度に基づいて加熱コイルに供給する電流を制御すること特徴とする請求項8に記載の配管系の熱処理方法。Wherein the temperature of the pipe surface heating coil heats were measured, the heat treatment method of the pipeline of claim 8, wherein controlling the current supplied to the heating coil on the basis of the measured temperature. 前記加熱コイルが加熱する配管表面の電流または電圧の少なくともいずれかを検出し、この検出値に基づいて加熱コイルに供給する電流を制御することを特徴とする請求項8に記載の配管系の熱処理方法。  The pipe system heat treatment according to claim 8, wherein at least one of a current and a voltage on a pipe surface heated by the heating coil is detected, and a current supplied to the heating coil is controlled based on the detected value. Method. 加熱するコイルを設置する前に配管系内面の欠陥の有無を非破壊検査で確認し、欠陥が検出された場合は加熱コイルを用いて欠陥が検出されない場合とは異なる加熱を欠陥近傍に施すことを特徴とする請求項1ないし請求項11のいずれか1項に記載の配管の熱処理方法。  Before installing the coil to be heated, check for defects on the inner surface of the piping system by nondestructive inspection, and if a defect is detected, use a heating coil to apply heat to the vicinity of the defect that is not detected The piping heat treatment method according to any one of claims 1 to 11, wherein: 配管の外表面を全周にわたり冷却する冷却部の軸方向前後方向に加熱部を形成し、この加熱部を加熱コイルにより配管の全周にわたり加熱することを特徴とする請求項1ないし請求項12のいずれか1項に記載の配管の熱処理方法。  13. A heating section is formed in the longitudinal direction of the cooling section for cooling the outer surface of the pipe over the entire circumference, and the heating section is heated over the entire circumference of the pipe by a heating coil. The heat processing method of piping of any one of these. 配管外表面を全周にわたり加熱コイルにより加熱する加熱部の軸方向前後方向に配管の全周にわたり冷却する冷却部を形成したことを特徴とする請求項1ないし請求項13のいずれか1項に記載の配管の熱処理方法。  The cooling part which cools over the perimeter of piping is formed in the direction of the direction of an axis of the heating part which heats the outer surface of a pipe over a perimeter by a heating coil. The heat treatment method of the described piping. 配管系の外表面側に配置され、前記配管系の軸方向で2分割された高周波誘導加熱用の加熱コイルと、
前記配管系の軸方向に延びたスペーサを配管の周方向に複数個分散させ、前記分割された加熱コイル毎に配置させるスペーサ周方向取付治具と、
前記加熱コイルに取り付けられ内部を冷却水が循環する冷却水配管と、
接続された前記高周波誘導加熱用の加熱コイルに高周波電流を供給する手段と、
前記加熱コイルが加熱した配管系の外表面の温度を検出する温度測定装置と、
この温度測定装置が検出した温度に基いて前記加熱コイルを制御する制御装置とを備え、
前記スペーサを介して前記配管系の表面と加熱コイルとの距離を保って、前記加熱コイルにより配管系を加熱して配管系の内面に圧縮残留応力を発生させることを特徴とする配管系の熱処理装置。
A heating coil for high-frequency induction heating, arranged on the outer surface side of the piping system and divided in two in the axial direction of the piping system ;
A plurality of spacers extending in the axial direction of the piping system are dispersed in the circumferential direction of the piping, and a spacer circumferential mounting jig is arranged for each of the divided heating coils,
A cooling water pipe which is attached to the heating coil and in which cooling water circulates;
Means for supplying a high frequency current to the connected heating coil for high frequency induction heating ;
A temperature measuring device for detecting the temperature of the outer surface of the piping system heated by the heating coil;
And a control unit for controlling the heating coil have groups Dzu at this temperature the temperature measuring device detects,
Heat treatment of the piping system , wherein the distance between the surface of the piping system and the heating coil is maintained via the spacer, and the piping system is heated by the heating coil to generate compressive residual stress on the inner surface of the piping system. apparatus.
前記加熱コイルを少なくとも2組有し、各加熱コイルに独立に高周波電流を供給可能としたことを特徴とする請求項15に記載の配管系の熱処理装置。  16. The heat treatment apparatus for a piping system according to claim 15, wherein at least two sets of the heating coils are provided, and a high-frequency current can be independently supplied to each heating coil. 前記配管は、加熱コイルが加熱する部分の強度または材質の少なくともいずれかが配管軸に沿って変化するものであり、この配管の強度または材質に応じて加熱コイルを配置して加熱度を変化させたことを特徴とする請求項15に記載の配管系の熱処理装置In the pipe, at least one of the strength and material of the portion heated by the heating coil changes along the pipe axis, and the heating coil is arranged according to the strength or material of the pipe to change the heating degree. The piping system heat treatment apparatus according to claim 15, wherein: 前記配管の内部に導かれた冷却流体を加圧し、配管内部を満水の状態にして冷却流体を流すことを特徴とする請求項15ないし請求項17のいずれか1項に記載の配管系の熱処理装置 The heat treatment of a piping system according to any one of claims 15 to 17 , wherein the cooling fluid introduced into the piping is pressurized to flow the cooling fluid with the inside of the piping filled with water. Equipment .
JP2003001696A 2003-01-08 2003-01-08 Heat treatment method and heat treatment apparatus for piping system Expired - Lifetime JP3649223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003001696A JP3649223B2 (en) 2003-01-08 2003-01-08 Heat treatment method and heat treatment apparatus for piping system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003001696A JP3649223B2 (en) 2003-01-08 2003-01-08 Heat treatment method and heat treatment apparatus for piping system

Publications (3)

Publication Number Publication Date
JP2004211187A JP2004211187A (en) 2004-07-29
JP3649223B2 true JP3649223B2 (en) 2005-05-18
JP2004211187A5 JP2004211187A5 (en) 2005-06-02

Family

ID=32819653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003001696A Expired - Lifetime JP3649223B2 (en) 2003-01-08 2003-01-08 Heat treatment method and heat treatment apparatus for piping system

Country Status (1)

Country Link
JP (1) JP3649223B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4599957B2 (en) * 2004-09-16 2010-12-15 株式会社Ihi High frequency induction heating residual stress improvement method
JP4491334B2 (en) * 2004-12-01 2010-06-30 日立Geニュークリア・エナジー株式会社 Piping heat treatment method and apparatus
JP4899331B2 (en) * 2005-03-31 2012-03-21 Jfeスチール株式会社 Induction heating device cooling system
JP4599250B2 (en) * 2005-08-10 2010-12-15 株式会社東芝 High-frequency induction heating outer surface temperature control method and control device
JP4705905B2 (en) * 2006-12-19 2011-06-22 日本発條株式会社 Cooling apparatus for heat treatment apparatus and manufacturing method thereof
DE102007055379A1 (en) * 2007-11-19 2009-05-20 Alstom Technology Ltd. Manufacturing process for a rotor
US20100307643A1 (en) * 2007-12-17 2010-12-09 Micro Motion, Inc. method for reducing stress in a conduit brace assembly
TW201643169A (en) 2010-07-09 2016-12-16 艾伯維股份有限公司 Spiro-piperidine derivatives as S1P modulators
TWI522361B (en) 2010-07-09 2016-02-21 艾伯維公司 Fused heterocyclic derivatives as s1p modulators
TW201206893A (en) 2010-07-09 2012-02-16 Abbott Healthcare Products Bv Bisaryl (thio) morpholine derivatives as S1P modulators
JP5672818B2 (en) * 2010-07-26 2015-02-18 株式会社Ihi High frequency induction heating residual stress improvement method
IT1403263B1 (en) 2010-12-16 2013-10-17 Tesi Srl DEVICE FOR LOCALIZED HEATING OF PARTS OF COATED METAL PIPES AND PARTS OF THEIR PROTECTIVE COATING
JP5688352B2 (en) * 2011-09-19 2015-03-25 日立Geニュークリア・エナジー株式会社 Heat treatment method for piping
CN104376882B (en) * 2014-11-11 2017-03-22 中广核研究院有限公司 Hot pipeline
CN108977647B (en) * 2018-09-27 2023-09-22 中国电建集团山东电力建设第一工程有限公司 Special tool for post-welding heat treatment of boiler heating surface pin and heat treatment method
CA3159378A1 (en) 2019-10-31 2021-05-06 ESCAPE Bio, Inc. Solid forms of an s1p-receptor modulator
CN112053836B (en) * 2020-09-07 2023-03-24 乐清市君德电气有限公司 Large-capacity dry-type high-frequency high-voltage transformer
CN112662862B (en) * 2020-12-23 2024-05-28 上海天阳钢管有限公司 Bimetal composite pipe heat treatment device and heat treatment process method

Also Published As

Publication number Publication date
JP2004211187A (en) 2004-07-29

Similar Documents

Publication Publication Date Title
JP3649223B2 (en) Heat treatment method and heat treatment apparatus for piping system
US4229235A (en) Heat-treating method for pipes
JP4599250B2 (en) High-frequency induction heating outer surface temperature control method and control device
JP4969221B2 (en) Deterioration part reproduction method, degradation part reproduction device
US4505763A (en) Heat-treating method of weld portion of piping system and heating coil for the heat treatment
CN101264561A (en) Pipeline welding inside heating method
JP5859305B2 (en) Regeneration apparatus for creep part of large-diameter metal pipe and regeneration method using the regeneration apparatus
JP5477453B1 (en) Post heat treatment equipment
JP4491334B2 (en) Piping heat treatment method and apparatus
KR101201659B1 (en) Deteriorated portion reproducing method and deteriorated portion reproducing device
KR102002599B1 (en) Device for preventing deformation of thick platae
US4807801A (en) Method of ameliorating the residual stresses in metallic duplex tubes and the like and apparatus therefor
US20090141850A1 (en) Pressurized water reactor pressurizer heater sheath
JP2014101533A (en) Post-heat-treatment device
JP5298081B2 (en) Pipe residual stress improvement method and construction management method
CN219709546U (en) Local heat treatment device for special-shaped welding joint
JP2005111513A (en) Method for reluxing residual tensile stress, and welding apparatus
JP2005195522A (en) Heat treatment device in piping system
JP2004331999A (en) Method and apparatus for heat-treating pipe
CN114518383B (en) Test board for simulating heat treatment of pressure vessel and method for performing heat treatment test
JPS61246328A (en) Heat treatment of metal material
RU2811004C1 (en) Method for local heat treatment of welded joints of large-sized thick-walled products
CN113201627B (en) Local heat treatment method for inner wall of large quenched and tempered steel pressure container after repair welding
Romanov et al. High-Temperature Heat-Treatment of the Welded Joints of Du300 Austenitic Pipelines at 900° C
JPH03219023A (en) Method and apparatus for strengthening pressure proof of metal-made hollow structure, and pressure proof hollow structure made with this method and method for using the same under pressure proof condition

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040816

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040816

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040816

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050207

R151 Written notification of patent or utility model registration

Ref document number: 3649223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 9

EXPY Cancellation because of completion of term