JP3648761B2 - How to charge sealed lead-acid batteries - Google Patents

How to charge sealed lead-acid batteries

Info

Publication number
JP3648761B2
JP3648761B2 JP17961894A JP17961894A JP3648761B2 JP 3648761 B2 JP3648761 B2 JP 3648761B2 JP 17961894 A JP17961894 A JP 17961894A JP 17961894 A JP17961894 A JP 17961894A JP 3648761 B2 JP3648761 B2 JP 3648761B2
Authority
JP
Japan
Prior art keywords
discharge
battery
charge
test
sealed lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17961894A
Other languages
Japanese (ja)
Other versions
JPH0822844A (en
Inventor
貴之 舩戸
Original Assignee
日本電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電池株式会社 filed Critical 日本電池株式会社
Priority to JP17961894A priority Critical patent/JP3648761B2/en
Publication of JPH0822844A publication Critical patent/JPH0822844A/en
Application granted granted Critical
Publication of JP3648761B2 publication Critical patent/JP3648761B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【産業上の利用分野】
本発明は、密閉鉛電池の充電方法に関するものである。
【0002】
【従来の技術とその課題】
補水などの電池の保守が不要であることを最大の特徴とする密閉鉛電池は、従来の液式鉛電池とは異なり、密閉鉛電池を過充電するときに、水の電気分解によって鉛電池の正極板から発生する酸素ガスを負極板で還元する、いわゆる密閉反応によって電解液量の減少を防いでいる。一般に、電解液量が減少して電解液中の硫酸濃度が高くなると、密閉、液式を問わず鉛電池の充放電サイクル寿命が短くなることが知られている。しかし、現在の技術では、完全に電解液量の減少を防ぐ密閉鉛電池の開発は困難であり、電解液量の減少を少しでも防ぐためには、充電方法を制御することが大きな要因となっている。
【0003】
また、鉛電池を過充電すると、密閉鉛電池では水の電気分解と密閉反応とのほかに、正極格子の腐食に充電電流がつかわれる。一般に、密閉鉛電池では正極格子に鉛−カルシウム系の合金が用いられており、鉛−カルシウム系合金は腐食によって、正極格子と正極活物質界面に緻密な腐食層が形成され、正極格子と正極活物質の電気的な接触を阻害して、密閉鉛電池の早期容量低下にいたるという問題があった。
【0004】
【課題を解決するための手段】
本発明は密閉鉛電池の性能を損なうことなく、密閉反応の効率を向上させること、並びに正極格子の腐食を抑制することを目的とし、密閉鉛電池の充電方法を制御することによって密閉鉛電池の寿命性能を向上させることにあり、放電後の充電量を放電の深さや放電電流の大きさに関係なく、前回放電量の95%以上99%以下とすること、電池を充電するときの電流の大きさを電池の3時間率公称容量の0.5CA以上とすること、このような充電方法を数度繰り返す毎に1度過充電すること、電池を過充電するときの過充電量を電池の3時間率公称容量の20%以上100%以下にすること、電池を過充電するときの電流を電池の3時間率公称容量の0.2CA以下にすることを特徴とする密閉鉛電池の充電方法である。
【0005】
【作用】
フロート充電やトリクル充電で使用される、非常用電源やバックアップ用電源などに用いられる、ほとんど放電されることのない鉛電池とは異なり、電気自動車や太陽光発電システムなどの電源として用いられる、少なくとも1日から1週間に1度以上の頻度で放電される、いわゆるサイクルサービス用途の密閉鉛電池においては、フロート使用やトリクル使用に比べて放電後に充電する回数が多いため、密閉鉛電池の充電方法を制御することが、密閉鉛蓄電池の寿命性能を向上させるための不可欠かつ大きな要素の一つである。なお一般に、サイクルサービス用の鉛電池は、使用者の都合にあわせて用いられるため、その放電電流の大きさや放電深さは一定ではなく、一回の使用毎に放電のされ方が異なる。
【0006】
このような不規則な放電が繰り返されるサイクルサービス用途の密閉鉛電池の放電後の充電量を、その充電直前の放電の深さや放電電流の大きさに関係なく、放電量の95%以上99%以下とすることによって、前回放電量の大半を充電し、かつ過充電しないために密閉鉛電池の減液を防ぎ、格子腐食をも防ぐ。このような充電を繰り返すことによって、密閉鉛電池の寿命性能を向上させる。
【0007】
このときの充電電流を、その密閉鉛電池の3時間率公称容量の0.5CA以上の大きな電流とすることによって、正、負極活物質の結晶粒子を微細化させることによって、密閉鉛電池の寿命性能と放電性能がさらに向上する。
【0008】
しかし、このような優れた充電方法にも、全く問題がないわけではない。充電量を前回放電量の99%以下とするために、1回の充電毎にわずかずつの充電不足を生じる。その充電不足によって正、負極活物質中に充電されない硫酸鉛が残存する。特に負極板では、そのような硫酸鉛が充電されにくい、大きな結晶の硫酸鉛に成長し、いわゆる負極板のサルフェーションが発生してしまう。そこで、放電後の充電量を、その充電直前の放電の深さや放電電流の大きさに関係なく、放電電気量の95%以上99%以下とする充電を数度繰り返す毎に1度、過充電することによって、大きな結晶の硫酸鉛の生成を防ぐ。このときでも、過充電による密閉反応の効率の低下に起因する電解液の減少と、正極格子の腐食とを、できるだけ少なくすることが望ましい。そこで、密閉鉛電池を過充電するときの過充電量を、その密閉鉛電池の3時間率公称容量の20%以上100%以下とすることによって、電解液の減少と正極格子の腐食を少なくすることができる。このように、密閉鉛電池の正、負極板に残存する硫酸鉛を、充電状態の活物質である二酸化鉛と海綿状鉛に、充電して戻す場合には、比較的大きな電流で正、負極活物質の結晶粒子を微細化させるよりも、その密閉鉛電池の3時間率公称容量の0.2CA以下の比較的小さな電流で充電する方が完全に充電されやすい。
【0009】
【実施例】
(試験1)ペースト式の未化正極板5枚と未化負極板6枚を、それぞれの間に微細なガラス繊維からなるセパレータを介して交互に積層、溶接して極板群とし、それを電槽に挿入して蓋を取り付けて電槽と蓋を気密し、20℃における比重が1.26である希硫酸を注液して、正極活物質の理論容量に対して300%に相当する電気量を38時間かけて充電した後に安全弁を取り付ける、いわゆるリテーナペースト式密閉鉛電池(3時間率公称容量30Ah、公称電圧12V、以下「密閉電池A」と呼ぶ)を数個製作した。これらの電池を用いて試験を実施した。試験条件を以下の表1に示す。
【0010】
【表1】

Figure 0003648761
【0011】
試験結果を図1に示す。図1の1で示される条件1では、約70サイクルで放電2時間30分目電圧が6Vを下回った。図1の2から4に示される条件2から条件4では、300サイクルを過ぎても放電2時間30分目電圧が10.5Vを上回っており、非常に安定した電圧推移を示した。そして、図1の5で示される条件5では、約200サイクルで放電2時間30分目電圧が6Vを下回った。試験終了後の密閉電池Aの重量を測定したところ、No.1、No.2、そしてNo.3は試験前の重量とほとんど差がなかったのに対し、No.4とNo.5は試験前の重量よりも軽くなっていた。この重量減少の程度は、試験前の硫酸の重量を基準にして、No.4では4%、No.5では12%であった。
【0012】
この試験の結果から、条件1での放電2時間30分目電圧が約70サイクルで6Vを下回ったのは、充電が大幅に不足していたためであり、条件5での放電2時間30分目電圧が約200サイクルで6Vを下回ったのは、充電終期に電池電圧が上昇し、水の電気分解が促進されたことと、充電時間が長くなったためと考えられる。また、試験終了後のNo.4とNo.5を解体して、正極板の正極格子と正極活物質の界面を調べたところ、いずれも、その界面に緻密な腐食層が形成されていた。特にNo.5では正極格子と正極活物質の電気的な接触が阻害され、早期容量低下の原因となっていたことがわかった。
(試験2)さらに、別の密閉電池Aを用い、放電電流の大きさ、放電深さをかえて試験1と同様の試験を実施したが、充電量が95%未満の場合や、充電量が100%以上の場合は、試験1の結果と同様に短寿命であった。
(試験3)次に、別の3つの密閉電池Aを用いて、充電電流の大きさについて検討した。試験条件を以下の表2に示す。
【0013】
【表2】
Figure 0003648761
【0014】
試験結果を、試験1の条件2の結果と併せて図2に示す。図2から明らかなように、図2の2と6に示す、条件2と条件6での放電2時間30分目電圧の推移に比べて、図2の7と8に示す、条件7と条件8での推移の方がよかった。この原因を調査するために、充放電サイクル寿命試験300サイクル終了後のNo.2、No.6、No.7、No.8を解体して、正、負極板を水洗し、真空乾燥した後に正、負極活物質の微細構造を走査電子顕微鏡(SEM)を用いて観察した。No.2とNo.6のそれがほぼ同様で、No.7とNo.8のそれがほぼ同様であり、この2者を比較したときには後者の方が活物質の結晶が細かかった。したがって、充電電流を大きくすることにより、正、負極活物質の結晶が細かくなったことによって、条件7と条件8での電圧推移がよくなったものと判断できた。
【0015】
試験1,試験3で用いた電池を解体し、充放電サイクル寿命試験終了後の正、負極活物質中の硫酸鉛の量を調べた。充電量が放電量の100%以上であった電池に比べて、充電量が放電量の100%未満であった電池の方が硫酸鉛の量が多かった。これは、充電量を前回放電量の99%以下とするために、1回の充電毎にわずかずつの充電不足を生じるためである。そのような状態で長期間密閉鉛電池の使用を続けると、特に負極板で、そのような硫酸鉛が充電されにくい、大きな結晶の硫酸鉛に成長し、いわゆる負極板のサルフェーションが発生する。そこで、放電後の充電量を、その充電直前の放電の深さや放電電流の大きさに関係なく、放電電気量の95%以上99%以下とする充電を数度繰り返す毎に1度、過充電することによって、大きな結晶の硫酸鉛の生成を防ぐことを試みた。
(試験4)別の密閉電池Aを4つ用いて、過充電の頻度について検討した。試験条件を以下の表3に示す。
【0016】
【表3】
Figure 0003648761
【0017】
(注1)6Ah。密閉電池Aの3時間率公称容量の20%に相当
条件9の場合には、電解液の減少が著しく、試験1の条件5と同じ理由で密閉鉛電池が劣化したが、その他の場合には試験1の条件2、条件3と同様の傾向を示した。これら4つの電池を充放電サイクル寿命試験終了後に解体して、正、負極活物質中の硫酸鉛の量を調べた。これら4つの電池の正、負極活物質中の硫酸鉛の量は、試験3のNo.4、No.5のそれと同等以下であった。
(試験5)次に、別のいくつかの密閉電池Aを用いて、過充電量について検討した。試験条件は、試験1の条件2と全く同じ充放電サイクル試験の、50サイクルに1度、3Aで充電時間を各種かえて充電した(過充電量をかえた)。
【0018】
過充電量が密閉電池Aの3時間率公称容量の20%未満であるときには、過充電する効果が認められなかった。また、過充電量が100%以上のときには、前述の電池No.5と同様の劣化を示した。
(試験6)さらに、別のいくつかの密閉電池Aを用いて、過充電するときの電流について検討した結果について述べる。試験条件は、試験1の条件2と全く同じ充放電サイクル試験の、50サイクルに1度、過充電するときの電流を各種かえて充電した(このときの過充電量は密閉電池Aの3時間率公称容量の50%とした)。
【0019】
過充電するときの電流によって、充放電サイクル寿命試験中の放電2時間30分目端子電圧の推移に差はなかったが、充放電サイクル寿命試験後に、試験7に供した密閉電池Aを解体して、正、負極活物質中の硫酸鉛の量を調べたところ、過充電するときの電流が密閉電池Aの3時間率公称容量の0.2CA(6A)以下のときの硫酸鉛の量がより少なかった。試験3で述べたように、充放電サイクル寿命試験中の充電電流は大きい方がよかったが、この試験6のように、密閉鉛電池の正、負極板に残存する硫酸鉛を充電して、充電状態の活物質である二酸化鉛と海綿状鉛に戻す場合には、その密閉鉛電池の3時間率公称容量の0.2CA以下の比較的小さな電流で充電する方が完全に充電されやすいためと思われる。
【0020】
以上に述べたような試験を、密閉電池Aの他のリテーナペースト式密閉鉛電池やゲル式の密閉鉛電池、顆粒シリカ式の密閉鉛電池などでも追試したがその結果はいずれも試験1から試験6に述べた結果と同様であった。
【0021】
【発明の効果】
密閉鉛電池の構造や構成をかえることなく、充電方法を制御することのみによって、密閉鉛電池の性能を損なうことなく、その寿命性能を向上させることができるため、本発明による効果ははなはだ大であるといえる。
【図面の簡単な説明】
【図1】放電電流と放電時間を一定にして、充電電流一定の条件下で充電量を変えたときの放電終期電圧の推移を示した図
【図2】放電電流と放電時間を一定にして、充電量一定の条件下で充電電流を変えたときの放電終期電圧の推移を示した図[0001]
[Industrial application fields]
The present invention relates to a method for charging a sealed lead battery.
[0002]
[Prior art and its problems]
Unlike lead-type liquid lead batteries, sealed lead batteries, the main feature of which is that maintenance of batteries such as refilling water is unnecessary, are different from conventional liquid lead batteries. A reduction in the amount of electrolyte is prevented by a so-called sealing reaction in which oxygen gas generated from the positive electrode plate is reduced by the negative electrode plate. In general, it is known that when the amount of the electrolytic solution is reduced and the sulfuric acid concentration in the electrolytic solution is increased, the charge / discharge cycle life of the lead battery is shortened regardless of the sealed or liquid type. However, with current technology, it is difficult to develop a sealed lead battery that completely prevents the decrease in the amount of electrolyte, and in order to prevent any decrease in the amount of electrolyte, controlling the charging method is a major factor. Yes.
[0003]
In addition, when the lead battery is overcharged, the charge current is used for the corrosion of the positive grid in addition to the water electrolysis and the sealing reaction in the sealed lead battery. Generally, a lead-calcium alloy is used for a positive electrode lattice in a sealed lead battery, and the lead-calcium alloy is corroded to form a dense corrosion layer at the interface between the positive electrode lattice and the positive electrode active material. There was a problem that the electrical contact of the active material was hindered, leading to an early capacity reduction of the sealed lead battery.
[0004]
[Means for Solving the Problems]
The present invention aims to improve the efficiency of the sealing reaction without impairing the performance of the sealed lead battery and to suppress the corrosion of the positive electrode grid, and by controlling the charging method of the sealed lead battery, In order to improve the life performance, the amount of charge after discharge should be 95% or more and 99% or less of the previous discharge amount regardless of the depth of discharge or the magnitude of the discharge current. Set the battery size to 0.5CA or more of the nominal capacity of the battery for 3 hours, overcharge once each time this charging method is repeated several times, and the amount of overcharge when the battery is overcharged. A method for charging a sealed lead battery characterized in that it is 20% or more and 100% or less of the nominal capacity of 3 hours, and the current when overcharging the battery is 0.2 CA or less of the nominal capacity of 3 hours of the battery. It is.
[0005]
[Action]
Unlike lead batteries, which are used for float charging and trickle charging, which are used for emergency power supplies and backup power supplies, which are hardly discharged, they are used as power supplies for electric vehicles and solar power generation systems. In a sealed lead battery for so-called cycle service, which is discharged at a frequency of once or more from one day to one week, the number of times of charging is higher after discharge than in the case of using a float or trickle. It is one of the indispensable and important elements for improving the life performance of sealed lead-acid batteries. In general, a lead battery for cycle service is used in accordance with the convenience of the user. Therefore, the magnitude of the discharge current and the depth of discharge are not constant, and the manner of discharge varies with each use.
[0006]
Regardless of the depth of discharge or the magnitude of the discharge current immediately before the charge, the charge amount after discharge of the sealed lead battery for cycle service use in which such irregular discharge is repeated is 95% or more and 99% of the discharge amount. By making the following, most of the previous discharge amount is charged, and since it is not overcharged, the liquid reduction of the sealed lead battery is prevented, and lattice corrosion is also prevented. By repeating such charging, the life performance of the sealed lead battery is improved.
[0007]
By making the charging current at this time a large current of 0.5 CA or more of the 3-hour rate nominal capacity of the sealed lead battery, the lifetime of the sealed lead battery is reduced by refining the crystal particles of the positive and negative electrode active materials. Performance and discharge performance are further improved.
[0008]
However, such an excellent charging method is not completely free of problems. In order to set the charge amount to 99% or less of the previous discharge amount, a slight charge shortage occurs for each charge. Due to the shortage of charge, uncharged lead sulfate remains in the positive and negative electrode active materials. Particularly in the negative electrode plate, such lead sulfate is difficult to be charged and grows into large crystal lead sulfate, and so-called negative electrode sulfation occurs. Therefore, overcharge is performed once every time the charge amount after discharge is set to 95% or more and 99% or less of the discharge electric quantity several times regardless of the depth of discharge or the magnitude of discharge current immediately before the charge. This prevents the formation of large crystalline lead sulfate. Even at this time, it is desirable to reduce as much as possible the decrease in the electrolyte due to the decrease in the efficiency of the sealing reaction due to overcharge and the corrosion of the positive electrode grid. Therefore, by reducing the overcharge amount when the sealed lead battery is overcharged to 20% or more and 100% or less of the nominal capacity of the sealed lead battery for 3 hours, the decrease in the electrolyte and the corrosion of the positive grid are reduced. be able to. Thus, when the lead sulfate remaining in the positive and negative electrode plates of the sealed lead battery is charged back to lead dioxide and spongy lead, which are active materials in a charged state, the positive and negative electrodes are supplied with a relatively large current. Charging with a relatively small current of 0.2 CA or less, which is the nominal capacity of the 3-hour rate of the sealed lead battery, is easier to fully charge than making the crystal particles of the active material fine.
[0009]
【Example】
(Test 1) Five paste-type unmodified positive electrode plates and six un-formed negative electrode plates are alternately laminated via a separator made of fine glass fiber between them and welded to form an electrode plate group. The battery is inserted into the battery case, the cover is attached, the battery case and the cover are hermetically sealed, and diluted sulfuric acid having a specific gravity of 1.26 at 20 ° C. is injected, which corresponds to 300% of the theoretical capacity of the positive electrode active material. Several so-called retainer paste type sealed lead batteries (3-hour rate nominal capacity 30 Ah, nominal voltage 12 V, hereinafter referred to as “sealed battery A”), in which a safety valve is attached after charging the amount of electricity over 38 hours, were manufactured. Tests were conducted using these batteries. The test conditions are shown in Table 1 below.
[0010]
[Table 1]
Figure 0003648761
[0011]
The test results are shown in FIG. In condition 1 indicated by 1 in FIG. 1, the voltage at the discharge 2 hours 30 minutes was less than 6 V in about 70 cycles. In conditions 2 to 4 shown in 2 to 4 of FIG. 1, the voltage at the discharge 2 hours 30 minutes exceeded 10.5 V even after 300 cycles, indicating a very stable voltage transition. And in the condition 5 shown by 5 of FIG. 1, the voltage of discharge 2 hour 30 minutes fell below 6V in about 200 cycles. When the weight of the sealed battery A after the completion of the test was measured, 1, no. 2 and no. No. 3 was almost the same as the weight before the test. 4 and no. 5 was lighter than the weight before the test. The degree of this weight reduction is based on the weight of sulfuric acid before the test. 4 is 4%, no. 5 was 12%.
[0012]
From the result of this test, the voltage at discharge 2 hours and 30 minutes under condition 1 dropped below 6V in about 70 cycles because the charge was significantly insufficient, and discharge at condition 5 at time 2 hours and 30 minutes. The reason why the voltage dropped below 6 V in about 200 cycles is considered to be that the battery voltage rose at the end of charging, the electrolysis of water was promoted, and the charging time became longer. In addition, No. after the test was completed. 4 and no. 5 was disassembled and the interface between the positive electrode grid of the positive electrode plate and the positive electrode active material was examined. In each case, a dense corrosion layer was formed on the interface. In particular, no. 5, it was found that the electrical contact between the positive electrode grid and the positive electrode active material was hindered, causing an early capacity decrease.
(Test 2) Further, another sealed battery A was used, and the same test as in Test 1 was performed by changing the magnitude of the discharge current and the discharge depth, but the charge amount was less than 95% or the charge amount was In the case of 100% or more, it was a short life like the result of Test 1.
(Test 3) Next, the magnitude of the charging current was examined using another three sealed batteries A. The test conditions are shown in Table 2 below.
[0013]
[Table 2]
Figure 0003648761
[0014]
The test results are shown in FIG. 2 together with the results of Condition 2 of Test 1. As is clear from FIG. 2, the conditions 7 and 8 shown in FIGS. 2 and 7 are compared with the transition of the voltage at the discharge 2 hours 30 minutes in the conditions 2 and 6 shown in 2 and 6 in FIG. The transition at 8 was better. In order to investigate this cause, the No. after 300 cycles of the charge / discharge cycle life test was completed. 2, no. 6, no. 7, no. 8 was disassembled, the positive and negative electrode plates were washed with water and vacuum-dried, and then the microstructure of the positive and negative electrode active materials was observed using a scanning electron microscope (SEM). No. 2 and No. No. 6 is almost the same. 7 and no. The result of 8 was almost the same, and when the two were compared, the latter had finer active material crystals. Therefore, it can be determined that the voltage transition under the conditions 7 and 8 was improved by increasing the charging current, and the crystals of the positive and negative electrode active materials became finer.
[0015]
The batteries used in Test 1 and Test 3 were disassembled, and the amount of lead sulfate in the positive and negative electrode active materials after the completion of the charge / discharge cycle life test was examined. The amount of lead sulfate was higher in the battery in which the charge amount was less than 100% of the discharge amount, compared to the battery in which the charge amount was 100% or more of the discharge amount. This is because in order to make the charge amount 99% or less of the previous discharge amount, a slight charge shortage occurs for each charge. If the sealed lead battery is continuously used in such a state for a long period of time, especially in the negative electrode plate, such lead sulfate is difficult to be charged and grows into large crystalline lead sulfate, and so-called negative electrode sulfation occurs. Therefore, overcharge is performed once every time the charge amount after discharge is set to 95% or more and 99% or less of the discharge electric quantity several times regardless of the depth of discharge or the magnitude of discharge current immediately before the charge. By trying to prevent the formation of large crystalline lead sulfate.
(Test 4) The frequency of overcharge was examined using four different sealed batteries A. The test conditions are shown in Table 3 below.
[0016]
[Table 3]
Figure 0003648761
[0017]
(Note 1) 6Ah. In the case of equivalent condition 9, which is 20% of the nominal capacity of 3 hours of sealed battery A, the electrolyte decreased significantly, and the sealed lead battery deteriorated for the same reason as condition 5 of test 1, but in other cases The same tendency as in conditions 2 and 3 of test 1 was shown. These four batteries were disassembled after the end of the charge / discharge cycle life test, and the amount of lead sulfate in the positive and negative electrode active materials was examined. The amount of lead sulfate in the positive and negative electrode active materials of these four batteries was determined as No. 3 in Test 3. 4, no. It was equal to or less than that of 5.
(Test 5) Next, the amount of overcharge was examined using some other sealed batteries A. The test conditions were the same charge / discharge cycle test as in condition 2 of test 1, once every 50 cycles, and charged at various charge times at 3A (overcharge amount was changed).
[0018]
When the overcharge amount was less than 20% of the nominal capacity of the sealed battery A, the effect of overcharging was not recognized. When the overcharge amount is 100% or more, the above-mentioned battery No. Degradation similar to 5 was shown.
(Test 6) Further, the results of studying the current when overcharged using some other sealed batteries A will be described. The test condition was the same charge / discharge cycle test as in condition 2 of test 1 and was charged once every 50 cycles with various currents when overcharged (the amount of overcharge at this time was 3 hours for sealed battery A). Rate 50% of nominal capacity).
[0019]
There was no difference in the transition of the terminal voltage at the discharge 2 hour 30 minute during the charge / discharge cycle life test depending on the overcharge current, but after the charge / discharge cycle life test, the sealed battery A used for test 7 was disassembled. Then, when the amount of lead sulfate in the positive and negative electrode active materials was examined, the amount of lead sulfate when the current when overcharged was 0.2 CA (6 A) or less of the 3-hour rate nominal capacity of the sealed battery A was Less. As described in Test 3, the charge current during the charge / discharge cycle life test was better, but as in Test 6, the lead sulfate remaining on the positive and negative plates of the sealed lead battery was charged and charged. When returning to lead dioxide and spongy lead, which are active materials in the state, it is easier to fully charge the battery with a relatively small current of 0.2 CA or less of the 3-hour rate nominal capacity of the sealed lead battery. Seem.
[0020]
The tests as described above were further tested with other retainer paste type sealed lead batteries, gel type sealed lead batteries, granular silica type sealed lead batteries, etc. of sealed battery A. The result was the same as described in 6.
[0021]
【The invention's effect】
Since the life performance of the sealed lead battery can be improved without degrading the performance of the sealed lead battery by controlling the charging method without changing the structure or configuration of the sealed lead battery, the effect of the present invention is very large. It can be said that there is.
[Brief description of the drawings]
[Fig. 1] Fig. 1 shows the transition of discharge end voltage when the charge amount is changed under the condition of constant charge current with the discharge current and discharge time constant. [Fig. 2] The discharge current and discharge time are made constant. Figure showing the transition of the final discharge voltage when the charge current is changed under the condition of constant charge

Claims (3)

一回の使用毎に放電電流の大きさや放電の深さが一定でない放電が繰り返される密閉鉛電池の充電方法において、放電後の充電量を、放電の深さや放電電流の大きさに関係なく、前回放電量の95%以上99%以下とし、充電を5回以上繰り返す毎に1度、過充電を行い、過充電量が電池の3時間率公称容量の20%以上100%以下であることを特徴とする密閉鉛電池の充電方法。 In a sealed lead battery charging method in which discharge with non-constant discharge current magnitude or discharge depth is repeated for each use , the amount of charge after discharge is independent of discharge depth or discharge current, The battery shall be over 95% to 99% of the previous discharge amount , overcharge once every 5 times or more of charging, and the overcharge amount should be 20% or more and 100% or less of the nominal capacity of the battery for 3 hours. A method for charging a sealed lead-acid battery. 密閉鉛電池を充電するときの電流の大きさが、該密閉鉛電池の3時間率公称容量の0.5CA以上であることを特徴とする、請求項1に記載の密閉鉛電池の充電方法。 The method for charging a sealed lead battery according to claim 1, wherein the magnitude of the current when charging the sealed lead battery is 0.5 CA or more of the nominal capacity of the sealed lead battery for 3 hours. 電池を過充電するときの電流が電池の3時間率公称容量の0.2CA以下であることを特徴とする請求項1に記載の密閉鉛電池の充電方法。 2. The method for charging a sealed lead battery according to claim 1, wherein a current when the battery is overcharged is 0.2 CA or less of a nominal capacity of the battery for 3 hours .
JP17961894A 1994-07-07 1994-07-07 How to charge sealed lead-acid batteries Expired - Fee Related JP3648761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17961894A JP3648761B2 (en) 1994-07-07 1994-07-07 How to charge sealed lead-acid batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17961894A JP3648761B2 (en) 1994-07-07 1994-07-07 How to charge sealed lead-acid batteries

Publications (2)

Publication Number Publication Date
JPH0822844A JPH0822844A (en) 1996-01-23
JP3648761B2 true JP3648761B2 (en) 2005-05-18

Family

ID=16068910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17961894A Expired - Fee Related JP3648761B2 (en) 1994-07-07 1994-07-07 How to charge sealed lead-acid batteries

Country Status (1)

Country Link
JP (1) JP3648761B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6275006B1 (en) 1998-05-27 2001-08-14 Matsushita Electric Industrial Co., Ltd. Method for charging secondary battery

Also Published As

Publication number Publication date
JPH0822844A (en) 1996-01-23

Similar Documents

Publication Publication Date Title
US20040041542A1 (en) Charger for a rechargeable nickel-zinc battery
JP3648761B2 (en) How to charge sealed lead-acid batteries
JP4081698B2 (en) Lead-acid battery charging method
JPH0831336B2 (en) Anode plate for sealed lead acid battery
JP4515046B2 (en) Lead acid battery conversion method
JP2720689B2 (en) Lead storage battery
JP3185300B2 (en) Sealed lead-acid battery
JP4411860B2 (en) Storage battery
JP3648752B2 (en) Lead storage battery charge control method
JP3582068B2 (en) How to charge lead storage batteries
JP3671402B2 (en) Lead storage battery charge control method
Burrows et al. Low maintenance lead-acid batteries for energy storage
JPH10294113A (en) Positive electrode plate for sealed lead-acid battery
JP4742424B2 (en) Control valve type lead acid battery
JPH10241746A (en) Charging method of sealed-type lead storage battery
JPH10189057A (en) Charging method for lead-acid battery
JP3496241B2 (en) How to charge lead storage batteries
WO2024035663A2 (en) Titanium dioxide in flooded deep cycle lead-acid batteries
JP2001160422A (en) Charging control method of lead storage battery
Janakiraman et al. Lead-cadmium alloy for lead-acid battery-effect of additives on cycling
JP3577709B2 (en) Sealed lead-acid battery
JP2001185227A (en) Maintenance method of lead-acid battery
JPH02119054A (en) Sealed lead-acid battery
JPH06267582A (en) Sealed lead-acid battery
JPH11185738A (en) Lead-acid battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050207

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees