JP3647477B2 - Steering control device of rice transplanter - Google Patents

Steering control device of rice transplanter Download PDF

Info

Publication number
JP3647477B2
JP3647477B2 JP30125293A JP30125293A JP3647477B2 JP 3647477 B2 JP3647477 B2 JP 3647477B2 JP 30125293 A JP30125293 A JP 30125293A JP 30125293 A JP30125293 A JP 30125293A JP 3647477 B2 JP3647477 B2 JP 3647477B2
Authority
JP
Japan
Prior art keywords
planting
sensor
traveling vehicle
correction value
stroke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30125293A
Other languages
Japanese (ja)
Other versions
JPH07123807A (en
Inventor
田 悟 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanma Agricultural Equipment Co Ltd
Original Assignee
Yanma Agricultural Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanma Agricultural Equipment Co Ltd filed Critical Yanma Agricultural Equipment Co Ltd
Priority to JP30125293A priority Critical patent/JP3647477B2/en
Publication of JPH07123807A publication Critical patent/JPH07123807A/en
Application granted granted Critical
Publication of JP3647477B2 publication Critical patent/JP3647477B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Guiding Agricultural Machines (AREA)
  • Transplanting Machines (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

【0001】
【産業上の利用分野】
本発明は苗載台及び植付爪を備えて連続的に苗植作業を行う田植機の操向制御装置に関する。
【0002】
【従来の技術】
田植機による田植作業にあっては、次行程の走行のために線引マーカにより田面に線を引いて、次行程の走行時にこの線を目標に機体の操向制御を行っている。
【0003】
【発明が解決しようとする課題】
しかし乍らこのようなマーカ使用の場合、水深が深いところでは線が見えないため(前サイドマーカを隣接植付条に合せて進む場合でも不可)、作業者の勘に頼った作業が行われる結果、作業者が疲れる或いは条間が合わない或いは植付苗列が曲がるなどとした不都合を生じさせていた。
【0004】
【課題を解決するための手段】
請求項1に係る本発明は、植付方向を検出する方位センサと、走行車移動方向の変化速度を検出する角速度センサとを備え、方位センサ及び角速度センサの検出に基づいて走行車の操向制御を行う田植機の操向制御装置において、走行車の前輪設置側に方位センサを配置し、走行車の後輪設置側に角速度センサを設け、1行程目の植付作業は方位センサの基準値となる方位平均値計算のため制御は行われず、往行程の植付作業が終了し植付クラッチが切となるとき、往行程の作業中に方位センサで読み込まれた走行車の方位の平均値を算出させ、この方位の平均値を次の復行程の目標植付方向として記憶させると共に、走行車が往行程の移動終端で旋回して機体姿勢を反転させるとき、復行程の目標植付方向を、前記方位平均値の180度逆方向に設定し、植付クラッチを再び入にする復行程の植付作業中、方位センサで検出される方位と目標植付方向との間にズレが発生するとき、このズレを修正する方向修正値を算出させる一方、前記角速度センサで検出される角速度の変動出力に対し直進方向に戻す直進修正値を算出させ、前記方向修正値と直進修正値の修正方向が逆方向のときには操向制御が行われず、前記方向修正値と直進修正値の修正方向が同一方向のとき、前記方向修正値に応じて走行車の操向制御を行う。したがって、トラクタによる耕耘及び代掻き後に残耕が形成されて耕盤に凸部が形成され、田植え時に前記凸部に後輪が乗り上げるなどにより、後輪が横滑りして走行車後部が左右方向に振れても、単なるスリップで進路の修正が不要であるのか、または走行車の進路が変更されて修正が必要であるのかを、適正に判断させ得、蛇行走行によって植付け条間が不均一に変化するのを防止し得るものである。
【0005】
【実施例】
以下、本発明の実施例を図面に基づいて詳述する。図1は制御回路図、図2は乗用田植機の側面図、図3は同平面図を示し、図中(1)は作業者が搭乗する田植本機である走行車であり、エンジン(2)を車体フレーム(3)に搭載させ、ミッションケース(4)前方にフロントアクスルケース(5)を介して水田走行用前輪(6)を支持させると共に、前記ミッションケース(4)の後部にリヤアクスルケース(7)を介して水田走行用後輪(8)を支持させる。そして前記エンジン(2)等を覆うボンネット(9)両側に予備苗載台(10)を取付けると共に、ステップ(11)を介して作業者が搭乗する車体カバー(12)によって前記ミッションケース(4)等を覆い、前記車体カバー(12)上部に運転席(13)を取付け、その運転席(13)の前方で前記ボンネット(9)後部に操向ハンドル(14)を設ける。
【0006】
また、図中(15)は6条植え用の苗載台(16)並びに複数の植付爪(17)などを具備する植付部であり、前高後低の合成樹脂製の苗載台(16)を下部レール(18)及びガイドレール(19)を介して植付ケース(20)に左右往復摺動自在に支持させると共に、一方向に等速回転させるロータリケース(21)を前記植付ケース(20)に支持させ、該ケース(21)の回転軸芯を中心に対称位置に配設する一対の爪ケース(22)(22)先端に植付爪(17)(17)を取付ける。
【0007】
さらに、前記植付ケース(20)の前側にローリング支点軸(23)を介して支持フレーム(24)を設け、トップリンク(25)及びロワーリンク(26)を含む昇降リンク機構(27)を介して走行車(1)後側に支持フレーム(24)を連結させ、前記リンク機構(27)を介して植付部(15)を昇降させる昇降シリンダ(28)をロワーリンク(26)に連結させ、前記前後輪(6)(8)を走行駆動して移動すると同時に、左右に往復摺動させる苗載台(16)から一株分の苗を植付爪(17)によって取出し、連続的に苗植え作業を行うように構成する。
【0008】
また、図中(29)は主変速レバー、(30)は植付昇降兼作業走行変速用副変速レバー、(31)は植付け感度調節レバー、(32)は主クラッチペダル、(33)(33)は左右ブレーキペダル、(34)は2条分均平用センターフロート、(35)は2条分均平用サイドフロート、(36)は側条施肥機である。
【0009】
さらに、図4乃至図5にも示す如く、エンジン(2)を左右一対の車体フレーム(3)(3)を載置させ、操向ハンドル(14)のステアリング軸(37)を減速ケース(38)上面に立設させ、減速ケース(38)前側に前記車体フレーム(3)後側を固定させると共に、減速ケース(38)下側のステアリングケース(39)下面に設ける平面視L形の操向アーム(40)の一端側を前輪(6)のナックルアーム(41)に操向ロッド(42)を介して連結させる一方、油圧操向シリンダ(43)を操向アーム(40)のL形他端側に連結させて、機体の操向制御を行うように構成している。
【0010】
図1にも示す如く、田植機の自動操向制御を行う自動スイッチ(44)と、前記副変速レバー(30)操作によるミッションケース(4)内の植付クラッチ(図示せず)の入切を検出する植付スイッチ(45)と、走行車(1)の方位を検出する磁気方位センサ(46)と、走行車(1)の左右方向の移動変化速度を検出する角速度センサであるジャイロ(47)と、走行車(1)の走行速度を検出する車速センサ(48)と、前輪(6)の操舵角を検出するステアリングセンサ(49)とを、操向制御用のコントローラ(50)に入力接続させると共に、前記操向シリンダ(43)を伸縮動作する電磁油圧切換弁の左及び右操向用ソレノイド(51)(52)と、走行車(1)の進路修正方向を運転パネル面(53a)に矢印表示するパネル表示装置(53)とに、前記コントローラ(50)を出力接続させて、前記方位センサ(46)の検出に基づく植付方向と、前記ジャイロ(47)の検出に基づく走行車(1)の左右角速度とによって、走行車(1)の進路修正方向の表示と、走行車(1)の所定の植付方向に沿った走行を行わしめるように構成している。
【0011】
本実施例は上記の如く構成するものにして、以下図7のフローチャートを参照してこの作用を説明する。
【0012】
自動スイッチ(44)がオンで、方位センサ(46)及びジャイロ(47)からの出力がコントローラ(50)に入力され、植付クラッチが入となって、図6に示す如く圃場一端側で1行程(L1)目の植付作業が行われ、1行程(L1)目の植付作業が終了し植付クラッチが切となるとき、1行程(L1)目の作業中に方位センサ(46)で順次読み込まれた走行車(1)の方位の平均値(α0)が算出されて、この方位の平均値(α0)が次行程以後の目標の植付方向(α)としてコントローラ(50)に記憶設定される。つまり1行程(L1)目は方位センサ(46)の基準値となる方位平均値計算のため制御は行わない。
【0013】
そして、走行車(1)が1行程(L1)目の移動終端で180度旋回して機体姿勢を反転させるとき、この2行程(L2)目の目標植付方向(α)を、前記方位平均値(α0)の180度逆方向(α=α0−180)に設定して、再度植付クラッチを入とさせての2行程(L2)目の植付作業中にあっては、この作業中方位センサ(46)で検出される方位(α1)と目標の方位(α)との間にズレ(α2=α−α1≠0)が発生するとき(角速度(ω)も変動する)、このズレ(α2)を修正する方向の修正値(α3=−α2)を算出させると共に、前記ジャイロ(47)で検出される角速度の変動出力(+ω、−ω)に対し直進(ω=0)方向に戻す直進修正値(ω1=−ω、+ω)を算出させ、これら修正値(α3)(ω1)の修正方向が同一方向のときにのみ、前記修正値(α3)に応じた修正方向の表示をパネル面(53a)へ行うと共に、修正値(α3)分の方位の修正を行うように前記ソレノイド(51)(52)を励磁操作して走行車(1)の操向制御を行い、これら修正値(α3)(ω1)の修正方向が逆方向のときには操向制御は行わない。
【0014】
上記の記載並びに図2、図3から明らかなように、植付方向を検出する方位センサ(46)と、走行車(1)移動方向の変化速度を検出する角速度センサ(47)とを備え、方位センサ(46)及び角速度センサ(47)の検出に基づいて走行車(1)の操向制御を行う田植機の操向制御装置において、前輪(6)を設ける走行車(1)の前側に方位センサ(46)を設け、後輪(8)を設ける走行車(1)の後側に角速度センサ(47)を設け、往行程の植付作業が終了し植付クラッチが切となるとき、往行程の作業中に方位センサ(46)で読み込まれた走行車(1)の方位の平均値を算出させ、この方位の平均値を次の復行程の目標植付方向として記憶させると共に、走行車(1)が往行程の移動終端で旋回して機体姿勢を反転させるとき、復行程の目標植付方向を、前記方位平均値の180度逆方向に設定し、植付クラッチを再び入にする復行程の植付作業中、方位センサ(46)で検出される方位と目標植付方向との間にズレが発生するとき、このズレを修正する方向修正値を算出させる一方、前記角速度センサ(47)で検出される角速度の変動出力に対し直進方向に戻す直進修正値を算出させ、前記の方向修正値と直進修正値の修正方向が同一方向のときだけ、前記方向修正値に応じて走行車(1)の操向制御を行う。
【0015】
上記のように、往行程作業の方位の平均値を次の復行程の目標植付方向として記憶させると共に、復行程の目標植付方向を、前記方位平均値の180度逆方向に設定するから、圃場形状または田植作業域などに合せて作業者が目標植付方向を手動操作によって初期設定する手間を省くことができ、田植作業を行う最初の1行程だけを手動で操向することによって次行程以後の作業の目標植付方向が自動的に設定され、例えば変形田であっても、田植作業の自動操向をスムーズに開始させる。また、方位センサで検出される方位と目標植付方向との間にズレが発生するとき、修正する方向修正値を算出させる一方、前記角速度センサで検出される角速度の変動出力に対し直進方向に戻す直進修正値を算出させ、前記の方向修正値と直進修正値の修正方向が同一方向のときだけ、前記方向修正値に応じて走行車の操向制御を行うから、スリップなどによる進路変更を適正に判断して自動操向の誤動作を低減し得、各行程間の植付け条間を一定に保ち乍ら往復走行による田植作業を行うことができる。例えばトラクタによる耕耘及び代掻き後に残耕が形成されて耕盤に凸部が形成され、田植え時に前記凸部に後輪が乗り上げるなどにより、後輪が横滑りして走行車後部が左右方向に振れても、単なるスリップで進路の修正が不要であるのが、または走行車の進路が変更されて修正が必要であるのかを、適正に判断させ得、蛇行走行によって植付け条間が不均一に変化するのを防止する。
【0016】
斯る植付作業中(同一行程中)植付クラッチが一旦切となり再び入動作しても一時停止とみなして操向制御を続行させると共に、苗継ぎ或いは枕地などで作業停止するとき、前記ジャイロ(角速度センサ)(47)のドリフト補正を行って、周囲温度の影響などで0点が変動するのを修正する。
【0017】
また、2行程(L2)目以後各行程(L2〜Ln)の移動終端で機体姿勢を180度反転させる毎に、目標の植付方向(α4)を前行程目標の植付方向(α)より180度逆方向(α4=α±180)に設定して、目標の植付方向(α4)に沿った操向制御を行うものである。
【0018】
なお、各行程終了毎の目標値(α4)を180度逆方向に設定時にあっては、各行程中に検出する方位平均値(α0)の180度逆方向を更新値として用いても良い。また前記方位センサ(46)及びジャイロ(47)の検出による方位(α)及び角速度(ω)に対して、ファジィ手段を用いて走行車(1)の修正方向及び修正速度を出力して操向制御を行う構成でも良い。
【0019】
【発明の効果】
以上実施例から明らかなように本発明は、植付方向を検出する方位センサ(46)と、走行車(1)移動方向の変化速度を検出する角速度センサ(47)とを備え、方位センサ(46)及び角速度センサ(47)の検出に基づいて走行車(1)の操向制御を行う田植機の操向制御装置において、走行車(1)の前輪(6)設置側に方位センサ(46)を配置し、走行車(1)の後輪(8)設置側に角速度センサ(47)を設け、1行程(L1)目の植付作業は方位センサ(46)の基準値となる方位平均値計算のため制御は行われず、往行程の植付作業が終了し植付クラッチが切となるとき、往行程の作業中に方位センサ(46)で読み込まれた走行車(1)の方位の平均値(α0)を算出させ、この方位の平均値(α0)を次の復行程の目標植付方向(α)として記憶させると共に、走行車(1)が往行程の移動終端で旋回して機体姿勢を反転させるとき、復行程の目標植付方向(α)を、前記方位平均値(α0)の180度逆方向(α=α0−180)に設定し、植付クラッチを再び入にする復行程の植付作業中、方位センサ(46)で検出される方位(α1)と目標植付方向(α)との間にズレ(α2=α−α1≠0)が発生するとき、このズレ α2)を修正する方向修正値(α3=−α2)を算出させる一方、前記角速度センサ(47)で検出される角速度の変動出力(+ω、−ω)に対し直進(ω=0)方向に戻す直進修正値(ω1=−ω、+ω)を算出させ、前記方向修正値(α3)と直進修正値(ω1)の修正方向が逆方向のときには操向制御が行われず、前記方向修正値(α3)と直進修正値(ω1)の修正方向が同一方向のとき、前記方向修正値(α3)に応じて走行車(1)の操向制御を行う。最初の1行程目は、方位センサ(46)の基準値になる方位平均値(α0)が計算されて、走行車(1)の操向制御が行われない。往行程作業の方位の平均値(α0)を次の復行程の目標植付方向(α)として記憶させると共に、復行程の目標植付方向(α)を、前記方位平均値の180度逆方向に設定する。したがって、圃場形状または田植作業域などに合せて作業者が目標植付方向(α)を手動操作によって初期設定する手間を省くことができ、田植作業を行う最初の1行程だけを手動で操向することによって次行程以後の作業の目標植付方向(α)が自動的に設定され、例えば変形田であっても、田植作業の自動操向をスムーズに開始させることができる。
【0020】
また、方位センサ(46)で検出される方位と目標植付方向(α)との間にズレが発生するとき、修正する方向修正値(α3=−α2)を算出させる。一方、前記角速度センサ(47)で検出される角速度の変動出力に対し直進方向に戻す直進修正値(ω1=−ω、+ω)を算出させる。前記方向修正値(α3=−α2)と直進修正値(ω1=−ω、+ω)の修正方向が逆方向のときは、操向制御が行われない。前記方向修正値(α3=−α2)と直進修正値(ω1=−ω、+ω)の修正方向が同一方向のときに、前記方向修正値(α3=−α2)に応じて走行車(1)の操向制御を行う。したがって、スリップなどによる進路変更を適正に判断して自動操向の誤動作を低減でき、各行程間の植付け条間を一定に保ち乍ら往復走行による田植作業を行うことができる。
【0021】
特に、トラクタによる耕耘及び代掻き後に残耕が形成されて耕盤に凸部が形成され、田植え時に前記凸部に後輪が乗り上げるなどにより、後輪(8)が横滑りして走行車(1)後部が左右方向に振れても、単なるスリップで進路の修正が不要であるのか、または走行車(1)の進路が変更されて修正が必要であるのかを、適正に判断させることができ、蛇行走行によって植付け条間が不均一に変化するのを防止できるものである。
【図面の簡単な説明】
【図1】操向制御回路図。
【図2】田植機の全体側面図。
【図3】田植機の全体平面図。
【図4】走行車の側面図。
【図5】走行車の平面図。
【図6】走行状態を示す説明図。
【図7】フローチャート。
【符号の説明】
(1) 走行車
(6) 前輪
(8) 後輪
(46) 方位センサ
(47) ジャイロ(角速度センサ)
[0001]
[Industrial application fields]
The present invention relates to a steering control device for a rice transplanter that includes a seedling stage and a planting claw and performs seedling planting work continuously.
[0002]
[Prior art]
In the rice transplanting operation by the rice transplanter, a line is drawn on the surface of the field by a drawing marker for the next stroke, and the steering control of the aircraft is performed with this line as the target during the next stroke.
[0003]
[Problems to be solved by the invention]
However, when using such a marker, the line is not visible in deep water (even if the front side marker is moved along with the adjacent planting line), work that depends on the operator's intuition is performed. As a result, the operator is tired, the gap is not enough, or the planted seedling row is bent.
[0004]
[Means for Solving the Problems]
The present invention according to claim 1 includes an azimuth sensor that detects a planting direction and an angular velocity sensor that detects a change speed of a traveling vehicle moving direction, and steers the traveling vehicle based on detection of the azimuth sensor and the angular velocity sensor. In the steering control device of the rice transplanter that performs control, an orientation sensor is arranged on the front wheel installation side of the traveling vehicle, an angular velocity sensor is provided on the rear wheel installation side of the traveling vehicle, and the planting operation in the first stroke is based on the orientation sensor. No control is performed to calculate the azimuth average value, and the average of the azimuth of the traveling vehicle read by the azimuth sensor during the forward trip work when the planting work in the forward trip is finished and the planting clutch is disengaged Value is calculated and the average value of this direction is memorized as the target planting direction for the next return stroke, and the target planting for the reverse stroke is performed when the traveling vehicle turns at the end of the forward stroke and reverses the body posture. The direction is 180 degrees opposite to the azimuth average value. When the misalignment occurs between the direction detected by the direction sensor and the target planting direction during the reverse stroke planting operation, which is set to the direction and the planting clutch is engaged again, the direction correction is performed to correct this misalignment. On the other hand, a straight-line correction value to be returned in the straight direction is calculated with respect to the angular velocity fluctuation output detected by the angular velocity sensor, and the steering control is performed when the correction direction of the direction correction value and the straight-line correction value is opposite. done without, when correcting direction of the direction correction value and the rectilinear correction value is in the same direction, performs steering control of the vehicle in accordance with the direction correction value. Therefore, after tilling and plowing with a tractor, residual tillage is formed and a convex part is formed on the cultivator, and the rear wheel slides sideways and the rear part of the traveling vehicle swings left and right due to the rear wheel riding on the convex part when planting rice. However, it is possible to properly determine whether the course is not necessary to be corrected due to a mere slip, or whether the course of the traveling vehicle is changed and needs to be corrected. This can be prevented.
[0005]
【Example】
Embodiments of the present invention will be described below in detail with reference to the drawings. 1 is a control circuit diagram, FIG. 2 is a side view of a passenger rice transplanter, and FIG. 3 is a plan view thereof. In FIG. 1, (1) is a traveling vehicle that is a rice transplanter on which an operator is boarded. ) Is mounted on the vehicle body frame (3), the front wheels (6) for paddy field traveling are supported through the front axle case (5) in front of the transmission case (4), and the rear axle case is disposed at the rear of the transmission case (4). The rear wheel (8) for paddy field traveling is supported via (7). The spare seedling stage (10) is attached to both sides of the bonnet (9) covering the engine (2) and the like, and the mission case (4) is provided by a vehicle body cover (12) on which an operator boardes through the step (11). Etc., a driver's seat (13) is attached to the upper part of the vehicle body cover (12), and a steering handle (14) is provided at the rear of the bonnet (9) in front of the driver's seat (13).
[0006]
Further, in the figure, (15) is a planting part comprising a seedling stage (16) for planting six strips and a plurality of planting claws (17), and a seedling stage made of synthetic resin with high front and rear and low. (16) is supported by the planting case (20) through the lower rail (18) and the guide rail (19) so as to be slidable in the left-right reciprocating manner, and the rotary case (21) rotated at a constant speed in one direction is planted. The planting claws (17) and (17) are attached to the tips of a pair of claw cases (22) and (22) that are supported by the attached case (20) and disposed at symmetrical positions around the rotational axis of the case (21). .
[0007]
Further, a support frame (24) is provided on the front side of the planting case (20) via a rolling fulcrum shaft (23), and a lifting link mechanism (27) including a top link (25) and a lower link (26) is provided. Then, the support frame (24) is connected to the rear side of the traveling vehicle (1), and the elevating cylinder (28) for raising and lowering the planting part (15) via the link mechanism (27) is connected to the lower link (26). The seedlings (17) are taken out by the planting claws (17) continuously from the seedling mounting base (16) that moves while driving the front and rear wheels (6) and (8). It is configured to perform seedling planting work.
[0008]
In the figure, (29) is the main transmission lever, (30) is the planting lifting / working transmission subtransmission lever, (31) is the planting sensitivity adjustment lever, (32) is the main clutch pedal, and (33) (33). ) Is a left and right brake pedal, (34) is a center float for leveling two strips, (35) is a side float for leveling two strips, and (36) is a side fertilizer.
[0009]
Further, as shown in FIGS. 4 to 5, the engine (2) is mounted with a pair of left and right body frames (3) (3), and the steering shaft (37) of the steering handle (14) is mounted on the speed reduction case (38). ) Standing on the upper surface, fixing the rear side of the vehicle body frame (3) to the front side of the deceleration case (38), and providing L-shaped steering in plan view provided on the lower surface of the steering case (39) below the deceleration case (38) One end side of the arm (40) is connected to the knuckle arm (41) of the front wheel (6) via the steering rod (42), while the hydraulic steering cylinder (43) is connected to the L-shape of the steering arm (40), etc. It is configured to be connected to the end side to control the steering of the aircraft.
[0010]
As shown in FIG. 1, an automatic switch (44) for automatically controlling the steering of the rice transplanter and an on / off of a planting clutch (not shown) in the mission case (4) by the operation of the auxiliary transmission lever (30). A planting switch (45) for detecting the direction of the traveling vehicle (1), a magnetic direction sensor (46) for detecting the direction of the traveling vehicle (1), and a gyro ( 47), a vehicle speed sensor (48) for detecting the traveling speed of the traveling vehicle (1), and a steering sensor (49) for detecting the steering angle of the front wheels (6) are used as the steering control controller (50). The left and right steering solenoids (51) and (52) of the electrohydraulic switching valve that expands and contracts the steering cylinder (43) and the course correction direction of the traveling vehicle (1) are displayed on the driving panel surface ( Panels with arrows in 53a) The controller (50) is connected to the display device (53) by output, and the planting direction based on the detection of the direction sensor (46) and the left and right of the traveling vehicle (1) based on the detection of the gyro (47) are connected. According to the angular velocity, the traveling vehicle (1) is configured to display the course correction direction and travel along the predetermined planting direction of the traveling vehicle (1).
[0011]
This embodiment is configured as described above, and this operation will be described below with reference to the flowchart of FIG.
[0012]
The automatic switch (44) is turned on, the outputs from the direction sensor (46) and the gyro (47) are input to the controller (50), the planting clutch is turned on, and 1 at one end of the field as shown in FIG. When the planting operation of the stroke (L1) is performed and the planting operation of the first stroke (L1) is completed and the planting clutch is disengaged, the direction sensor (46) during the operation of the first stroke (L1) The average value (α0) of the azimuth of the traveling vehicle (1) sequentially read in is calculated, and the average value (α0) of the azimuth is determined as the target planting direction (α) after the next stroke to the controller (50). The memory is set. That is, the first stroke (L1) is not controlled for calculating the azimuth average value that is the reference value of the azimuth sensor (46).
[0013]
Then, when the traveling vehicle (1) turns 180 degrees at the moving end of the first stroke (L1) to reverse the body posture, the target planting direction (α) of the second stroke (L2) is set to the azimuth average. If the value (α0) is set to 180 degrees opposite (α = α0−180) and the planting clutch is engaged again during the second stroke (L2) planting operation, When a deviation (α2 = α−α1 ≠ 0) occurs between the orientation (α1) detected by the orientation sensor (46) and the target orientation (α) (the angular velocity (ω) also varies), this deviation A correction value (α3 = −α2) in a direction in which (α2) is corrected is calculated, and the angular velocity fluctuation output (+ ω, −ω) detected by the gyro (47) is linearly moved (ω = 0). The straight-line correction values (ω1 = −ω, + ω) to be returned are calculated, and the correction directions of these correction values (α3) (ω1) are the same direction. Only when the correction value (α3) is displayed on the panel surface (53a), the solenoid (51) (52) is adjusted so as to correct the direction corresponding to the correction value (α3). Steering control of the traveling vehicle (1) is performed by exciting operation, and steering control is not performed when the correction direction of these correction values (α3) and (ω1) is the reverse direction.
[0014]
As is clear from the above description and FIGS. 2 and 3, the bearing sensor (46) for detecting the planting direction and the angular velocity sensor (47) for detecting the changing speed of the traveling vehicle (1) moving direction, In a steering control device of a rice transplanter that performs steering control of the traveling vehicle (1) based on the detection of the azimuth sensor (46) and the angular velocity sensor (47), on the front side of the traveling vehicle (1) provided with the front wheels (6). When the direction sensor (46) is provided, the angular velocity sensor (47) is provided on the rear side of the traveling vehicle (1) on which the rear wheel (8) is provided, and when the planting operation in the forward stroke is completed and the planting clutch is disengaged, The average value of the azimuth of the traveling vehicle (1) read by the azimuth sensor (46) during the work of the forward trip is calculated, the average value of this azimuth is stored as the target planting direction of the next backward stroke, and the traveling The car (1) turns at the end of travel in the forward direction and reverses the body posture The direction detected by the azimuth sensor (46) during the reverse stroke planting operation in which the target planting direction for the reverse stroke is set 180 degrees opposite to the azimuth average value and the planting clutch is engaged again. When a deviation occurs between the target planting direction and the target planting direction, a direction correction value for correcting this deviation is calculated. On the other hand, a straight-ahead correction for returning to the straight-ahead direction with respect to the angular velocity fluctuation output detected by the angular velocity sensor (47). Only when the direction correction value and the straight direction correction value are in the same direction, steering control of the traveling vehicle (1) is performed according to the direction correction value.
[0015]
As described above, the average value of the azimuth of the forward stroke work is stored as the target planting direction of the next backward stroke, and the target planting direction of the backward stroke is set to 180 degrees opposite to the azimuth average value. The operator can save time and effort for initial setting of the target planting direction by manual operation according to the shape of the field or the rice planting work area. The target planting direction of the work after the stroke is automatically set. For example, even in the case of a deformed rice field, the automatic steering of the rice transplanting work is started smoothly. Further, when a deviation occurs between the orientation detected by the orientation sensor and the target planting direction, the direction correction value to be corrected is calculated, while the angular velocity variation output detected by the angular velocity sensor is set in the straight direction. Since the straight-line correction value to be returned is calculated and the steering control of the traveling vehicle is performed according to the direction correction value only when the direction correction value and the correction direction of the straight-line correction value are the same direction, the course change due to slip or the like is performed. Appropriate judgment can be made to reduce automatic steering malfunctions, and rice transplanting work by reciprocating travel can be performed while keeping the planting strips between the strokes constant. For example, after plowing and plowing with a tractor, residual plowing is formed and a convex part is formed on the cultivator, and the rear wheel slides sideways and the rear part of the traveling vehicle swings left and right due to the rear wheel riding on the convex part when planting rice. However, it is possible to properly determine whether the course is not necessary to be corrected due to a simple slip, or whether the course of the traveling vehicle is changed and needs to be corrected. To prevent.
[0016]
During such planting work (during the same stroke), even if the planting clutch is once disengaged and re-engaged, the steering control is continued and the steering control is continued. The drift correction of the gyro (angular velocity sensor) (47) is performed to correct the fluctuation of the zero point due to the influence of the ambient temperature or the like.
[0017]
In addition, the target planting direction (α4) is changed from the planting direction (α) of the previous stroke target every time the body posture is reversed by 180 degrees at the movement end of each stroke (L2 to Ln) after the second stroke (L2). The steering control is performed along the target planting direction (α4) by setting the direction to 180 ° reverse (α4 = α ± 180).
[0018]
When the target value (α4) at the end of each stroke is set in the reverse direction of 180 degrees, the reverse direction of 180 degrees of the azimuth average value (α0) detected during each stroke may be used as the update value. Further, for the direction (α) and the angular velocity (ω) detected by the direction sensor (46) and the gyro (47), the correction direction and the correction speed of the traveling vehicle (1) are output using the fuzzy means and the steering is performed. A configuration for performing control may be used.
[0019]
【The invention's effect】
As is apparent from the above embodiments, the present invention includes an azimuth sensor (46) for detecting a planting direction and an angular velocity sensor (47) for detecting a change speed in the traveling direction of the traveling vehicle (1). 46) and the steering control device of the rice transplanter that performs the steering control of the traveling vehicle (1) based on the detection of the angular velocity sensor (47) , the direction sensor (46) on the front wheel (6) installation side of the traveling vehicle (1). ), An angular velocity sensor (47) is provided on the rear wheel (8) installation side of the traveling vehicle (1), and the planting work in the first stroke (L1) is an azimuth average that is a reference value of the azimuth sensor (46). No control is performed for the calculation of the value. When the planting operation in the forward stroke is finished and the planting clutch is disengaged, the direction of the traveling vehicle (1) read by the direction sensor (46) during the work in the forward stroke is determined. The average value (α0) is calculated, and the average value (α0) of this direction is the target for the next return stroke As the planting direction (α) is memorized, and when the traveling vehicle (1) turns at the end of the forward travel and reverses the body posture, the target planting direction (α) of the reverse stroke is calculated as the azimuth average value ( The direction (α1) detected by the direction sensor (46 ) and the target planting are set during the reverse stroke planting operation in which the α0) is set to 180 degrees opposite (α = α0-180) and the planting clutch is engaged again. When a deviation (α2 = α−α1 ≠ 0) occurs with respect to the attaching direction (α) , a direction correction value (α3 = −α2) for correcting this deviation ( α2 ) is calculated, while the angular velocity sensor ( 47), the straight - line correction value (ω1 = −ω, + ω) to be returned in the straight - forward (ω = 0) direction is calculated with respect to the angular velocity fluctuation output (+ ω, −ω) detected in 47), and the direction correction value (α3) and straight modifier steering control is not performed when modifying the direction of (.omega.1) is reverse, the direction correction value (.alpha.3) When correcting direction of the rectilinear correction value (.omega.1) is in the same direction, performs steering control of the vehicle (1) according to the direction correction value (.alpha.3). In the first first stroke, the azimuth average value (α0) that is the reference value of the azimuth sensor (46) is calculated, and the steering control of the traveling vehicle (1) is not performed. The average value of the orientation of the working forward stroke (.alpha.0) together with is stored as a target planting direction (alpha) of the next backward stroke, the target planting direction of backward stroke (alpha), 180-degree opposite direction of the azimuth mean value Set to. Therefore, it is possible to save the operator from manually setting the target planting direction (α) according to the shape of the field or the rice planting work area, and to manually operate only the first stroke of the rice planting work. By doing this, the target planting direction (α) of the work after the next stroke is automatically set, and for example, even in the case of a deformed rice field, the automatic steering of the rice planting work can be started smoothly.
[0020]
Further, when a deviation occurs between the direction detected by the direction sensor (46) and the target planting direction (α) , a direction correction value (α3 = −α2) to be corrected is calculated. On the other hand, a rectilinear correction value (ω1 = −ω, + ω) for returning to the rectilinear direction is calculated with respect to the angular velocity fluctuation output detected by the angular velocity sensor (47). When the direction correction value (α3 = −α2) and the straight direction correction value (ω1 = −ω, + ω) are reverse directions, steering control is not performed. When the correction direction of the direction correction value (α3 = −α2) and the straight direction correction value (ω1 = −ω, + ω) are the same direction, the traveling vehicle (1) according to the direction correction value (α3 = −α2). The steering control is performed. Accordingly, it is possible to appropriately determine a course change due to slip or the like and reduce automatic steering malfunctions, and it is possible to perform rice transplanting work by reciprocating while maintaining a constant spacing between the strokes.
[0021]
In particular, after plowing with a tractor and after plowing, residual plowing is formed and a convex part is formed on the cultivator, and the rear wheel (8) slides sideways by the rear wheel riding on the convex part at the time of rice planting. Even if the rear part swings in the left-right direction, it is possible to properly determine whether the course is not necessary to be corrected simply by slipping, or whether the course of the traveling vehicle (1) is changed and needs to be corrected. It is possible to prevent the planting strips from changing unevenly by running.
[Brief description of the drawings]
FIG. 1 is a steering control circuit diagram.
FIG. 2 is an overall side view of a rice transplanter.
FIG. 3 is an overall plan view of a rice transplanter.
FIG. 4 is a side view of a traveling vehicle.
FIG. 5 is a plan view of a traveling vehicle.
FIG. 6 is an explanatory diagram showing a running state.
FIG. 7 is a flowchart.
[Explanation of symbols]
(1) Traveling vehicle (6) Front wheel (8) Rear wheel (46) Direction sensor (47) Gyro (angular velocity sensor)

Claims (1)

植付方向を検出する方位センサ(46)と、走行車(1)移動方向の変化速度を検出する角速度センサ(47)とを備え、方位センサ(46)及び角速度センサ(47)の検出に基づいて走行車(1)の操向制御を行う田植機の操向制御装置において、走行車(1)の前輪(6)設置側に方位センサ(46)を配置し、走行車(1)の後輪(8)設置側に角速度センサ(47)を設け、1行程(L1)目の植付作業は方位センサ(46)の基準値となる方位平均値計算のため制御は行われず、往行程の植付作業が終了し植付クラッチが切となるとき、往行程の作業中に方位センサ(46)で読み込まれた走行車(1)の方位の平均値(α0)を算出させ、この方位の平均値(α0)を次の復行程の目標植付方向(α)として記憶させると共に、走行車(1)が往行程の移動終端で旋回して機体姿勢を反転させるとき、復行程の目標植付方向(α)を、前記方位平均値(α0)の180度逆方向(α=α0−180)に設定し、植付クラッチを再び入にする復行程の植付作業中、方位センサ(46)で検出される方位(α1)と目標植付方向(α)との間にズレ(α2=α−α1≠0)が発生するとき、このズレ(α2)を修正する方向修正値(α3=−α2)を算出させる一方、前記角速度センサ(47)で検出される角速度の変動出力(+ω、−ω)に対し直進(ω=0)方向に戻す直進修正値(ω1=−ω、+ω)を算出させ、前記方向修正値(α3)と直進修正値(ω1)の修正方向が逆方向のときには操向制御が行われず、前記方向修正値(α3)と直進修正値(ω1)の修正方向が同一方向のとき、前記方向修正値(α3)に応じて走行車(1)の操向制御を行うことを特徴とする田植機の操向制御装置。An azimuth sensor (46) for detecting the planting direction and an angular velocity sensor (47) for detecting a change speed in the moving direction of the traveling vehicle (1) are provided. Based on detection of the azimuth sensor (46) and the angular velocity sensor (47). In the steering control device for a rice transplanter that controls the steering of the traveling vehicle (1), the direction sensor (46) is disposed on the front wheel (6) installation side of the traveling vehicle (1), and the rear of the traveling vehicle (1). An angular velocity sensor (47) is provided on the side where the wheel (8) is installed, and the planting work in the first stroke (L1) is not controlled because the azimuth average value is calculated as a reference value of the azimuth sensor (46) . When the planting operation is completed and the planting clutch is disengaged, the average value (α0) of the direction of the traveling vehicle (1) read by the direction sensor (46) during the work in the forward path is calculated, together and stores the average value (.alpha.0) as the target planting direction of the next backward stroke (alpha), When a row vehicle (1) is to reverse the aircraft attitude to pivot in the mobile end of the forward stroke, the target planting direction of backward stroke of the (alpha), the 180-degree opposite direction of the azimuth mean value (α0) = α0- 180) and during the reverse stroke planting operation in which the planting clutch is engaged again, a deviation (α2 ) between the bearing (α1) detected by the bearing sensor (46 ) and the target planting direction (α). = Α−α1 ≠ 0), a direction correction value (α3 = −α2) for correcting the deviation (α2 ) is calculated, while the angular velocity fluctuation output (+ ω ) detected by the angular velocity sensor (47) is calculated. , −ω) , a straight - line correction value (ω1 = −ω, + ω) for returning in the straight direction (ω = 0) direction is calculated, and the direction of correction of the direction correction value (α3) and the straight-line correction value (ω1) is the reverse direction. The steering control is not performed at the time, and the correction direction of the direction correction value (α3) and the straight-line correction value (ω1) are the same direction At this time , the steering control device for the rice transplanter performs steering control of the traveling vehicle (1) according to the direction correction value (α3) .
JP30125293A 1993-11-04 1993-11-04 Steering control device of rice transplanter Expired - Fee Related JP3647477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30125293A JP3647477B2 (en) 1993-11-04 1993-11-04 Steering control device of rice transplanter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30125293A JP3647477B2 (en) 1993-11-04 1993-11-04 Steering control device of rice transplanter

Publications (2)

Publication Number Publication Date
JPH07123807A JPH07123807A (en) 1995-05-16
JP3647477B2 true JP3647477B2 (en) 2005-05-11

Family

ID=17894596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30125293A Expired - Fee Related JP3647477B2 (en) 1993-11-04 1993-11-04 Steering control device of rice transplanter

Country Status (1)

Country Link
JP (1) JP3647477B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5818448B2 (en) * 2011-02-02 2015-11-18 ヤンマー株式会社 Seedling planting machine
JP5944473B2 (en) * 2014-11-25 2016-07-05 シャープ株式会社 Mobile work vehicle and control device therefor
CN114946346A (en) * 2022-04-06 2022-08-30 西安合众思壮导航技术有限公司 Unmanned automatic operation method, device and system for rice transplanter

Also Published As

Publication number Publication date
JPH07123807A (en) 1995-05-16

Similar Documents

Publication Publication Date Title
JP6525902B2 (en) Field work vehicle
JP6552420B2 (en) Work vehicle
JP6860387B2 (en) Work platform
CN109863852B (en) Traveling working machine, rice transplanter, paddy field direct seeder, and spray working machine
JP2019054746A (en) Working machine
US11866094B2 (en) Working vehicle having a display for displaying driving information thereof
CN115226449A (en) Working vehicle
JP6811655B2 (en) Work platform
JP2020099226A (en) Controller for automatic travel work vehicle
JP2019103467A (en) Field work machine
JP2019097503A (en) Traveling working machine
JP3647477B2 (en) Steering control device of rice transplanter
JP2024040453A (en) work vehicle
JP2020103088A (en) Control device of work vehicle, and work vehicle equipped with control device
JP7300411B2 (en) autopilot
JP2019097504A (en) Travel implement
JP2021003035A (en) Work vehicle
TWI810418B (en) Operating vehicle
JP3123519B2 (en) Rice transplanter planting section elevation control device
JP7447881B2 (en) work vehicle
JP7392689B2 (en) work vehicle
JPH0116121B2 (en)
JPH05344812A (en) Agricultural machine
JP2023133399A (en) work vehicle
JP2870893B2 (en) Moving agricultural machine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040224

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040709

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees