JP3645208B2 - 中波ステレオ放送受信回路 - Google Patents

中波ステレオ放送受信回路 Download PDF

Info

Publication number
JP3645208B2
JP3645208B2 JP2001326586A JP2001326586A JP3645208B2 JP 3645208 B2 JP3645208 B2 JP 3645208B2 JP 2001326586 A JP2001326586 A JP 2001326586A JP 2001326586 A JP2001326586 A JP 2001326586A JP 3645208 B2 JP3645208 B2 JP 3645208B2
Authority
JP
Japan
Prior art keywords
signal
frequency
wave
output
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001326586A
Other languages
English (en)
Other versions
JP2003134068A (ja
Inventor
泰宏 伊藤
泰章 西田
孝 安藤
一弘 大黒
進一 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
NHK Engineering System Inc
Original Assignee
NHK Engineering Services Inc
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Engineering Services Inc, Japan Broadcasting Corp filed Critical NHK Engineering Services Inc
Priority to JP2001326586A priority Critical patent/JP3645208B2/ja
Priority to US10/274,282 priority patent/US20030103631A1/en
Priority to CA002410002A priority patent/CA2410002A1/en
Publication of JP2003134068A publication Critical patent/JP2003134068A/ja
Application granted granted Critical
Publication of JP3645208B2 publication Critical patent/JP3645208B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/44Arrangements characterised by circuits or components specially adapted for broadcast
    • H04H20/46Arrangements characterised by circuits or components specially adapted for broadcast specially adapted for broadcast systems covered by groups H04H20/53-H04H20/95
    • H04H20/47Arrangements characterised by circuits or components specially adapted for broadcast specially adapted for broadcast systems covered by groups H04H20/53-H04H20/95 specially adapted for stereophonic broadcast systems
    • H04H20/49Arrangements characterised by circuits or components specially adapted for broadcast specially adapted for broadcast systems covered by groups H04H20/53-H04H20/95 specially adapted for stereophonic broadcast systems for AM stereophonic broadcast systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Stereo-Broadcasting Methods (AREA)
  • Noise Elimination (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は中波(MF、Medium Frequency)ステレオ放送を受信する受信回路に関する。中波ステレオ放送は、米国のモトローラ社が考案したC−Quam(Compatible-Quadrature Amplitude Modulation)方式が事実上の標準(de facto standard)方式となっている。本願発明は、C−Quam方式による放送波を受信して復調する中波ステレオ放送受信回路において、復調信号の音声品質を高め、十分なステレオ効果を得るための技術に関する。
【0002】
【従来の技術】
中波ステレオ放送は、1982年に米国で開始され、1985年にオーストラリア、1986年にブラジル、1988年にはカナダ、さらに、日本でも1992年に実施されている。米国ではC−Quam方式の他に4方式が提案されていたが、これらを抑えて現在ではC−Quam方式が主流となり、約600以上の局がステレオ放送をすでに実施している。日本を含め他の国々では、C−Quam方式を標準方式として採用し、合計約150以上の局がステレオ放送を実施している。
【0003】
【発明が解決しようとする課題】
C−Quam方式では、従来の中波放送受信機との両立性を確保するために、左側の情報信号(L)と右側の情報信号(R)から和信号(L+R)と差信号(L-R)を生成して、和と差信号で変調した角度変調波を生成し、この角度変調波に和信号(L+R)によってAM変調した信号を送信している。和信号(L+R)によるAM変調成分は従来のモノラル中波受信機で受信できるので、両立性が確保される。
【0004】
しかし、C−Quam方式の従来の復調技術には以下のような問題がある。
▲1▼ C−Quam方式では、和信号(L+R)と差信号(L-R)を復調するために、同相変調成分(Iチヤネル)と直交変調成分(Qチャネル)を同期検波する直交検波を用いているので、正確な同調が必要になる。
▲2▼ C−Quam方式でステレオ信号を得るために、差信号(L-R)を直交変調成分(Qチヤネル)から同期検波によって復調するには、受信信号に含まれる余分な変調成分を正確に取り除く処理が必要になる。しかし、この処理を正確に行うことが困難であるために、ステレオ受信時の復調信号の音声品質は、モノラル放送の受信時の音声品質より劣化してしまう。
▲3▼ C−Quam方式における従来の復調方法は、放送波の振幅成分を利用しているので、外来雑音の影響を受け易いという欠点がある。実際の受信機では、主帯域制限フィルタの帯域を狭くしてこの影響をできるだけ排除している。そこで、送信された情報信号に対して高い忠実度を持つ復調信号を得ることが困難になっている。
▲4▼ 以上のような問題点がC−Quam方式にあるので、現状の受信機ではステレオ効果が十分に発揮できず、鑑賞に値する程の充分な音声品質が確保できていない。
【0005】
本特許は、以上の問題を解決し、事実上の標準方式となっている中波ステレオ放送波の電波型式を変更することなく、送信された放送波を受信し、信号が伝搬路で受けた外乱を復調過程で除去して、復調信号の音声品質を高め、ステレオ効果が発揮できる中波ステレオ放送受信回路を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の中波ステレオ放送受信回路は、左側の情報信号(L)と右側の情報信号(R)との和信号(L+R)および差信号(L-R)により変調された角度変調波がさらに和信号により振幅変調された中波ステレオ放送波、特にC−Quam方式の放送波、を受信して復調する中波ステレオ放送受信回路において、受信した中波ステレオ放送波を、搬送波を含んだ単側波帯信号に変換し、変換された単側波帯信号の位相項から和信号を復調する和信号復調手段と、受信した中波ステレオ放送波の位相項と和信号復調手段の復調出力とから差信号を復調する差信号復調手段とを備えたことを特徴とする。
【0007】
本発明では、和と差信号を共にC−Quam方式の変調信号の位相項から復調するように工夫した。その理由は、変調信号の位相項に存在する情報信号成分は相乗性あるいは相加性の外来雑音の影響を受けにくく、その結果として、伝送品質が優れているからである。FM放送の受信特性がAM放送波の受信特性に比べて良いのも、FM変調信号では情報信号成分が位相項にのみ存在し、その位相項から情報信号を復調するからである。
【0008】
そこで、和信号(L+R)はAM変調信号の位相項に含まれる変調成分を除去した後、RZ SSB信号に変換して、その信号の位相項から復調する復調処理方法を用いた。このような復調処理技術はRZ SSB(Real Zero Single Sideband)変復調技術として知られ、外来雑音による振幅歪を復調過程で除去できる。RZ SSB変復調技術については、特公平06-018333(特許第1888866号)に詳しい。
【0009】
AM変調信号の位相項に含まれる変調成分を除去するには、和信号復調手段に、受信した中波ステレオ放送波を周波数変換する第一の周波数変換手段と、この第一の周波数変換手段の入力信号を分岐して振幅制限する手段と、この振幅制限する手段の出力を上記第一の周波数変換手段の出力に掛け合わせて周波数変換を行う第二の周波数変換手段とを備えることが望ましい。
【0010】
第二の周波数変換手段の出力には、和と差信号による変調信号成分が除去され、和信号の抽出に必要な信号、即ち、単純なAM変調波が得られる。これを単側波帯信号に変換することで、その信号の位相項から安心して和信号を抽出することができる。また、第二の周波数変換手段の出力からは、フェージングや周波数変動の影響も除去される。
【0011】
第二の周波数変換手段以下の手段は中間周波段に設けることが望ましく、それにより、高周波段の局部発振器の周波数安定度に依存せず、高い品質の復調信号が得られる。これにより本発明では、復調特性が周波数変動に依存しないという従来の包絡線復調方法の特徴が損なわれることはなく、送信された情報信号帯域特性を忠実に確保できる。
【0012】
本発明ではさらに、差信号(L-R)についても、受信した信号の位相項から復調できるように工夫したので、以下にその方法を述べる。
【0013】
C−Quam方式の中波ステレオ放送波は、搬送波の角周波数を(ωc)、和信号を(L+R)、差信号を(L-R)、差信号に重畳されるパイロット信号を(P)とするとき、時間tの関数、
S(t) = (1+L+R)cos(ωct+Φ(t))
ただし、
tanΦ(t) = (L-R+P)/(1+L+R)
と表される。このような変調信号から差信号を復調する差信号復調手段としては、受信した中波ステレオ放送波を周波数弁別して角度成分d/dt(Φ(t))を抽出する周波数弁別回路と、抽出された角度成分d/dt(Φ(t))を積分する積分回路と、この積分回路の出力Φ(t)の正接関数tanΦ(t)を発生するtan関数発生回路と、このtan関数発生回路の出力に、上記和信号復調手段の出力を遅延等化し適切な定数を加算した信号を掛け合わせる手段とを含むことが望ましい。
【0014】
差信号復調手段の入力には振幅制限器(ハードリミタ)を設けるが、和信号復調手段に振幅制限する手段を備える場合には、これらを共用することができる。
【0015】
AM変調波は上側波帯と下側波帯から構成されるので、和信号(L+R)によるAM変調信号を単側波帯信号に変換するときに、受信した中波ステレオ放送波とこれを周波数領域で信号位置を反転させた信号とを重ね合わせてひとつの単側波帯信号に変換する周波数ダイバーシチ手段を含むことが望ましい。
【0016】
周波数ダイバーシチ手段は中間周波段に設けられ、中間周波に変換された中波ステレオ放送波にその搬送波成分より周波数の高い局部発信信号を掛け合わせて周波数領域における信号配置が互いに反転した差周波数成分と和周波数成分とを抽出する第一の周波数変換手段と、この第一の周波数変換手段の入力信号を分岐して振幅制限する手段と、この振幅制限する手段の出力を上記第一の周波数変換手段により抽出された差周波数成分に掛け合わせて和周波数成分を抽出し、上記振幅制限する手段の出力を上記第一の周波数変換手段により抽出された和周波数成分に掛け合わせて差周波数成分を抽出する第二の周波数変換手段と、この第二の周波数変換手段により得られた和周波数成分と差周波数成分とを加算する手段とを含むことができる。
【0017】
本発明の中波ステレオ放送受信回路は、高度な受信信号処理を行うにもかかわらず安価に構成できるように、デジタル信号処理(DSP、Digital Signal Processing)技術を用いて実施するが望ましい。この技術を用いると、回路の調整が不要になると共に、量産効果が期待できるDSPプロセッサデバイスを用いるので、経済性が確保できる。
【0018】
【発明の実施の形態】
本発明の理解のために、ここでは、C−Quam方式の送信波について簡単に説明する。搬送波の角周波数を(ωc)、和信号を(L+R)、差信号を(L-R)、差信号に重畳されるパイロット信号を(P)とおくと、C−Quam方式の送信波は
S(t) = (1+L+R)cos(ωct+Φ(t)) ...(1)
と書くことができる。ただし、
tanΦ(t) = (L-R+P)/(1+L+R) ...(2)
また、AM変調波が過変調にならないためには、
|L+R|<1 ...(3)
でなければならない。以下の実施例では、(1)式で記述できる送信波を用いて説明する。
【0019】
〔第一の実施形態〕
以下、本発明を具体化した第一の実施形態を説明する。図1は本発明の第一の実施形態を示すブロック構成図であり、100はC−Quam送信機、101は送信アンテナ、102はC−Quam受信機の受信アンテナ、103はフロントエンド増幅器、104は周波数変換器、105は局部発振器、106はIF(中間周波数)フィルタ、107は周波数変換器、108は局部発振器、109は振幅制限器(ハードリミタ)、110はIFフィルタ、111は周波数変換器、112はIFフィルタ、113はRZ SSB復調処理回路、114は遅延回路、115は周波数弁別回路、116はバンドパスフィルタ、117は積分回路、118はtan関数発生回路、119は定数発生回路、120は加算回路、121は掛け算回路、122はバンドパスフィルタ、123はローパスフィルタ、124はマトリックス回路、125は左側音声信号出力端子、126は右側音声信号出力端子、127はパイロット信号出力端子である。
【0020】
図1に示した第一の実施形態における信号の流れと共に夫々の回路の機能について簡単に説明する。
【0021】
C−Quam送信機100の出力は、送信アンテナ101によってC−Quam変調波として送出される。
【0022】
C−Quam変調波は、C−Quam受信機のアンテナ102で受信され、フロントエンド増幅器103にて増幅された後、周波数変換器104で局部発振器105と、たとえば、差周波数となるようなIF信号に変換され、IFフィルタ106によってその必要なIF信号が抽出される。
【0023】
この信号は二分割され、その一部は周波数変換器107に導かれ、局部発振器108の出力によって和周波数信号に変換され、IFフィルタ110によってその必要なIF信号が抽出される。分割された他方の信号は、振幅制限器(ハードリミタ)109に導かれ振幅が一定な信号に変換される。振幅制限器(ハードリミタ)109の出力は二分割され、一方の出力は、IFフィルタ110の出力信号とで周波数変換器111によって差周波数信号を生成するように機能し、IFフィルタ112では、その信号から不要な雑音成分が除去され搬送波を伴った下側波帯成分が抽出される。IFフィルタ112の出力はRZ SSB復調処理回路113に導かれて復調され、和信号(L+R)が得られる。その信号は遅延回路114に導かれる。
【0024】
分割された他方の振幅制限器(ハードリミタ)109の出力は、周波数弁別回路115によって角度成分が抽出され、その出力がバンドパスフィルタ116によって直流成分とランダムFM雑音成分が除去され、その出力は積分回路117で積分された後、tan関数発生回路118で角度に対応したtan値を生成する。
【0025】
遅延回路114の出力は二分割され、一方の出力は、定数発生回路119の出力と加算回路120で加算される。その出力はtan関数発生回路118の出力と掛け算回路121で掛け算される。掛け算回路121の出力は二分され一方はバンドパスフィルタ122に、他方はローパスフィルタ123に導かれる。バンドパスフィルタ122によって不要な雑音成分が除去された信号と、分割された他方の遅延回路114から得られる信号をマトリックス回路124に導くと、左側信号(L)が左側音声信号出力端子125に、右側信号(R)が右側音声信号出力端子126に出力される。ローパスフィルタ123の出力からパイロット信号(P)が得られるので、パイロット信号出力端子127に導き出される。
【0026】
更に、各々の回路の動作を、数式を用いて説明する。送信アンテナ101から放射された信号は、伝搬中に、振幅と位相項にそれぞれρ(t)とθ(t)で表示できるレーレ分布則に従うランダムな振幅変動とランダムFM雑音と呼ばれる位相変動を受け、信号に対して相乗的な外乱として影響を与える。そこで、C−Quam受信機アンテナ102に到達する信号は、
Srl(t) = ρ(t)(1+L+R)cos(ωct+Φ(t)+θ(t)) ...(4)
となる。
【0027】
受信信号をフロントエンド増幅器103(増幅度が受信電力(RSSI、Received Signal Strength Indication)で変化するものを用いてもよい)にて増幅した後、この信号と、中心角周波数が(ωc1)でその角周波数変動が(±δω)なる局部発振器105を用い、周波数変換器104で、たとえば、差周波数変換して、その中心角周波数が(ω1)なるIF信号に変換、IFフィルタ106によってその必要なIF信号成分のみを抽出すると、それは、(4)式から容易に求まる。ただし、フロントエンド増幅器103で相加される熱雑音を無視すると、
Figure 0003645208
と書ける。ここで、
Θ(t) = (ω1±δω)t+Φ(t)+θ(t)
(L++R+) = (L-+R-)
H((L++R+)) = H((L-+R-))
と置いた。また、H((L++R+))は(L++R+)のヒルベルト変換を、そして、(L++R+)は送信波の上側波帯領域に存在する情報信号、(L-+R-)は下側波帯領域に存在する情報信号を表す。(6)式の第一項は搬送波成分、第二項は上側波帯成分、第三項は下側波帯成分を数学的に表している。側波帯成分の配置は送信波のそれと同じである。(6)式から、過変調を起こさないAM信号、すなわち、(3)式の条件を満たすAM信号においては、搬送波成分は側波帯成分より常に6dB大きいことが分かる。図1では上側波帯成分と下側波帯成分が区別できるように図示した。(5)式と(6)式は全く同じであるが、単側波帯成分を考える場合には、上側波帯成分あるいは下側波帯成分のどちらの単側波帯成分を抽出しているか考慮する必要がある場合には(6)式の表示を用いる。
【0028】
ここで、C−Quam受信機を含めた従来のAM受信機(中波AM放送用受信機や短波帯のAM受信機)における通常の周波数変換について考察する。中波や短波帯の搬送波はその性質から周波数が低いので、局部発振器の周波数(ωL1)は搬送周波数(ωc)より高い周波数を用いて、IF周波数(ωIF1)に変換する場合が多い。このようにするのは、IF周波数領域へのスプリアス(不要波)信号の混入を防ぐためである。この場合、受信信号の側波帯について観測すると、上下の側波帯が反転している。得られたIF周波数(ωIF1)をさらに低周波なIF周波数(ωIF2)領域に変換する場合、同じようにIF周波数(ωIF1)より高い周波数を用いて周波数変換すると、側波帯は再度反転して、もとに戻る。本実施例の説明では、このようなことを想定しながら、簡単のために、上記のような周波数変換を用いたが、本発明の本質には影響しない。以下の第二、第三の実施例でもこのようなことを考え、模式的に周波数変換を表した。
【0029】
(5)式、あるいは、(6)式で表される信号を二分し、まず、角周波数が(ω2)なる局部発振器108を用い、周波数変換器107で和周波数を生成し、中心角周波数が(ω12)なるIF信号に変換、IFフィルタ110によってその必要なIF信号成分のみを抽出する。その信号は、(6)式の表示を用いると、
Figure 0003645208
となる。
【0030】
二分された他方の信号は、振幅制限器(ハードリミタ)109に導き、振幅が一定な信号に変換する。それは、(5)式の表示を用いると、
Figure 0003645208
とランダムな振幅変動成分 ρ(t)が除去される。IFフィルタ110の出力(7)式と振幅制限器(ハードリミタ)109の出力(8)式で表される信号を周波数変換器111に入力して、その差周波数成分を抽出すると、
Figure 0003645208
となり、位相項に含まれる局部発振器105の周波数変動(±δω)、変調成分Φ(t)とランダムな外乱成分θ(t)が完全に除去できると共に、搬送波の角周波数は(ω2)となる。そこで、これ以後の復調処理においては、周波数の安定度は局部発振器108にのみに依存することになる。この結果、角周波数(ω2)が低周波であれば、周波数安定度はほとんど考慮する必要がなくなり、以後の信号処理では急峻なフィルタを用いることができる。
【0031】
次に、(9)式で表示される信号からIFフィルタ112を用いて、不要な雑音成分を除去して搬送波が付加した下側波帯信号のみを抽出する。その信号は、雑音成分の数式上の記述を省略して示すと、
Figure 0003645208
となり、(11)式では送信波の下側波帯信号を抽出しているが分かる。抽出した下側波帯信号は、既に述べたように搬送波成分が情報信号の最大値に対して6dB大きいので、RZ SSB信号となる。そこで、RZ SSB復調処理回路113を用いると、ランダムな振幅成分ρ(t)が除去できて高い品質の和情報信号(L+R)が復調できる。
【0032】
分割された振幅制限器(ハードリミタ)109の他方の出力から、周波数弁別回路115によって角度成分を抽出すると、それは
Figure 0003645208
となる。この信号に含まれる直流成分とランダムFM雑音成分をバンドパスフィルタ116で除去すると、
S1f(t) = d/dt(Φ(t)) ...(13)
となる。この出力を積分回路117で積分すると、
S1g(t) = Φ(t) ...(14)
と和と差信号による変調成分を含む角度信号Φ(t)を得る。この角度信号からtan関数発生回路118で
S1h(t) = tanΦ(t) ...(15)
を生成する。
【0033】
一方、周波数弁別回路115からtan関数発生回路118までの処理遅延とRZ SSB復調処理回路113までの処理遅延を合わせるために遅延回路114を挿入する。その出力と定数発生回路119の出力を加算回路120で加算して、
S1i(t)= 1+L+R ...(16)
なる信号が得られるように定数を加算する。
【0034】
掛け算回路121において、(15)式で表されるtan関数発生回路118の出力と(16)式で表される加算回路120の出力を掛け算すると、
Figure 0003645208
と差信号(L-R+P)が求まる。ここで、(2)式の関係を用いた。掛け算回路121の出力を二分され、一方はバンドパスフィルタ122に、他方はローパスフィルタ123に導く。バンドパスフィルタ122によって不要な雑音成分を除去した差信号(L-R)と、遅延回路114から得られる和信号(L+R)とをマトリックス回路124に導くと、左側信号(L)が左側音声信号出力端子125に、右側信号(R)が右側音声信号出力端子126に出力される。ローパスフィルタ123の出力からパイロット信号(P)が得られるので、パイロット信号出力端子127に導き出す。
【0035】
IFフィルタ106以後の信号処理をデジタル信号処理(DSP、Digital Signal Processing)回路で実行することができる。搬送波が付加した下側波帯信号の抽出は、上記で説明したように周波数安定度が局部発振器108でのみ決定されるので、急峻な遮断特性を持つIFフィルタ112を用いて実行できる。また、DSP回路によるフィルタでは温度特性等を考慮しなくても良いなどの利点がある。図1に示した実施例を、DSPデバイスを用いて実施する場合に、無駄な処理を行う周波数領域をできるだけ少なくしてDSPの消費電力を低下させるためには、RZ SSB復調処理回路のサンプリング周波数を低くする必要がある。その場合には、できるだけ信号周波数領域をより低周波領域に移動させるとよい。
【0036】
〔第二の実施形態〕
以下、本発明を具体化した第二の実施形態を説明する。図2は本発明の第二の実施形態を示すブロック構成図であり、200はC−Quam送信機、201は送信アンテナ、202はC−Quam受信機の受信アンテナ、203はフロントエンド増幅器、204は周波数変換器、205は局部発振器、206はIFフィルタ、207は周波数変換器、208は局部発振器、209は振幅制限器(ハードリミタ)、210はIFフィルタ、211は周波数変換器、212はIFフィルタ、213はRZ SSB復調処理回路、214は遅延回路、215は周波数弁別回路、216はバンドパスフィルタ、217は積分回路、218はtan関数発生回路、219は定数発生回路、220は加算回路、221は掛け算回路、222はバンドパスフィルタ、223はローパスフィルタ、224はマトリックス回路、225は左側音声信号出力端子、226は右側音声信号出力端子、227はパイロット信号出力端子である。
【0037】
図2に示した第二の実施形態における信号の流れと共に夫々の回路の機能について同様に説明する。
【0038】
C−Quam送信機200の出力は、送信アンテナ201によってC−Quam変調波として送出される。
【0039】
C−Quam変調波は、C−Quam受信機のアンテナ202で受信され、フロントエンド増幅器203にて増幅された後、周波数変換器204と局部発振器205によって差周波数信号に変換され、IFフィルタ206によってその必要なIF信号が抽出される。
【0040】
この信号は二分割され、一方の信号は、周波数変換器207に導かれ、局部発振器208の信号との差周波数となる信号がIFフィルタ210によって抽出される。分割された他方の信号は、振幅制限器(ハードリミタ)209に導かれ振幅が一定な信号に変換される。振幅制限器(ハードリミタ)209の出力は二分割され、一方の出力は、IFフィルタ210の出力信号とで周波数変換器211によって和周波成分を生成するように機能し、IFフィルタ212では、その信号から不要な雑音成分が除去され、搬送波を伴った下側波帯成分が抽出される。IFフィルタ212の出力はRZ SSB復調処理回路213に導かれて復調され、和信号(L+R)が得られる。その信号は遅延回路214に導かれる。
【0041】
分割された他方の振幅制限器(ハードリミタ)209の出力は、周波数弁別回路215によって角度成分が抽出され、その出力はバンドパスフィルタ216によって直流成分とランダムFM雑音成分が除去され、その出力が積分回路217で積分された後、tan関数発生回路218で角度に対応したtan値が生成される。
【0042】
遅延回路214の出力は二分され、一方の出力は、定数発生回路219の出力と加算回路220で加算される。その出力はtan関数発生回路218の出力と掛け算回路221で掛け算される。掛け算回路221の出力は二分され、一方はバンドパスフィルタ222に、他方はローパスフィルタ223に導かれる。バンドパスフィルタ222によって不要な雑音成分が除去された信号と、分割された他方の遅延回路214から得られる信号をマトリックス回路224に導くと、左側信号(L)は、左側音声信号出力端子225に、右側信号(R)は右側音声信号出力端子226に出力される。ローパスフィルタ223の出力からパイロット信号(P)が得られるので、パイロット信号出力端子227に導き出される。
【0043】
更に、各々の回路の動作を、数式を用いて説明する。送信アンテナ201から放射された信号は、伝搬中に、振幅と位相項にそれぞれρ(t)とθ(t) で表示できるレーレ分布則に従うランダムな振幅変動とランダムFM雑音と呼ばれる位相変動を受け、信号に対して相乗的な外乱として影響を与える。そこで、C−Quam受信機アンテナ202に到達する信号は、
Sr2(t) = ρ(t)(1+L+R)cos(ωct+Φ(t)+θ(t)) ...(18)
となる。
【0044】
受信信号をフロントエンド増幅器203(増幅度が受信電力(RSSI、Received Signal Strength Indication)で変化するものを用いてもよい)にて増幅した後、この信号と、中心角周波数が(ωc1)でその角周波数変動が(±δω)なる局部発振器205を用い、周波数変換器204で、たとえば、差周波数変換して、その中心角周波数が(ω1)なるIF信号に変換、IFフィルタ206によってその必要なIF信号成分のみを抽出すると、それは、(18)式から容易に求まる。ただし、フロントエンド増幅器203で相加される熱雑音を無視すると、
Figure 0003645208
と書ける。ここで、
Θ(t) = (ω1±δω)t+Φ(t)+θ(t)
(L++R+) = (L-+R-)
H((L++R+)) = H((L-+R-))
と置いた。また、H((L++R+))は(L++R+)のヒルベルト変換を、そして、(L++R+)は送信波の上側波帯領域に存在する情報信号、(L-+R-)は下側波帯領域に存在する情報信号を表す。(20)式の第一項は搬送波成分、第二項は上側波帯成分、第三項は下側波帯成分を数学的に表している。側波帯成分の配置は送信波のそれと同じである。(20)式から、過変調を起こさないAM信号、すなわち、(3)式の条件を満たすAM信号においては、搬送波成分は側波帯成分より常に6dB大きいことが分かる。図2では上側波帯成分と下側波帯成分が区別できるように図示した。(19)式と(20)式は全く同じであるが、単側波帯成分を考える場合には、上側波帯成分あるいは下側波帯成分のどちらの単側波帯成分を抽出しているか考慮する必要がある場合には(20)式の表示を用いる。
【0045】
(19)式、あるいは、(20)式で表される信号を二分し、まず、角周波数が(ω2)なる局部発振器208を用い、周波数変換器207で差周波数を生成し、中心角周波数が(ω21)なるIF信号に変換、IFフィルタ210によってその必要なIF信号成分のみを抽出する。その信号は、
Figure 0003645208
となる。ここで、ω2>ω1なる周波数関係を用いた。送信波の側波帯成分が上下入れ替わる。
【0046】
二分された他方の信号は、振幅制限器(ハードリミタ)209に導き、振幅が一定な信号に変換する。それは、(19)式の表示を用いると、
Figure 0003645208
とランダムな振幅変動成分ρ(t)が除去される。IFフィルタ210の出力(21)式と振幅制限器(ハードリミタ)209の出力(22)式で表される信号を周波数変換器211に入力して、その差周波数成分を抽出すると、
Figure 0003645208
となり、位相項に存在した局部発振器205の周波数変動(±δω)、変調成分Φ(t)とランダムな外乱成分θ(t)が完全に除去できると共に、搬送波の角周波数は(ω2)となる。そこで、これ以後の復調処理においては、周波数の安定度は局部発振器208にのみに依存することになる。この結果、角周波数(ω2)が低周波であれば、周波数安定度はほとんど考慮する必要がなくなり、以後の信号処理では急峻なフィルタを用いることができる。
【0047】
IFフィルタ212を用いて、不要な雑音成分を除去して搬送波が付加した下側波帯信号のみを抽出する。その信号は、(23)式より雑音成分の数式上の記述を省略して示すと、
Figure 0003645208
と表される。抽出した(25)式で記述できる下側波帯信号は、既に述べたように、送信波の上側波帯に相当するものである。また、搬送波成分が情報信号の最大値に対して6dB大きいので、RZ SSB信号となる。そこで、RZ SSB復調処理回路213を用いると、ランダムな振幅成分ρ(t)が除去できて高い品質の和信号(L+R)が復調できる。
【0048】
分割された振幅制限器(ハードリミタ)209の他方の出力から、周波数弁別回路215によって角度成分を抽出すると、それは
Figure 0003645208
となる。この信号に含まれる直流成分とランダムFM雑音成分をバンドパスフィルタ216で除去すると、
S2f(t) = d/dt(Φ(t)) ...(27)
となる。この出力を積分回路218で積分すると、
S2g(t) =Φ(t) ...(28)
と和と差信号による変調成分を含む角度信号Φ(t)を得る。この角度信号からtan関数発生回路218で
S2h(t) = tanΦ(t) ...(29)
を生成する。
【0049】
一方、周波数弁別回路215からtan関数発生回路218までの処理遅延とRZ SSB復調処理回路213までの処理遅延を合わせるために遅延回路214を挿入する。その出力と定数発生回路219の出力を加算回路220で加算して、
S2i(t)= 1+L+R ...(30)
なる信号が得られるように定数を加算する。
【0050】
掛け算回路221において、(29)式で表されるtan関数発生回路218の出力と(30)式で表される加算回路220の出力を掛け算すると、
Figure 0003645208
と差信号(L-R+P)が求まる。ここで、(2)式の関係を用いた。掛け算回路221の出力を二分され、一方はバンドパスフィルタ222に、他方はローパスフィルタ223に導く。バンドパスフィルタ222によって不要な雑音成分を除去した差信号(L-R)と、遅延回路214から得られる和信号(L+R)とをマトリックス回路224に導くと、左側信号(L)が左側音声信号出力端子225に、右側信号(R)が右側音声信号出力端子226に出力される。ローパスフィルタ223の出力からパイロット信号(P)が得られるので、パイロット信号出力端子227に導き出す。
【0051】
IFフィルタ206以後の信号処理をデジタル信号処理(DSP、Digital Signal Processing)回路で実行することができる。搬送波が付加した下側波帯信号の抽出は、上記で説明したように周波数安定度が局部発振器208でのみ決定されるので、急峻な遮断特性を持つIFフィルタ212を用いて実行できる。また、DSP回路によるフィルタでは温度特性等を考慮しなくても良いなどの利点がある。図2に示した実施例をDSPデバイスを用いて実施する場合に、無駄な処理を行う周波数領域をできるだけ少なくしてDSPの消費電力を低下させるためには、RZSSB復調処理回路のサンプリング周波数を低くする必要がある。その場合には、できるだけ信号周波数領域をより低周波領域に移動させるとよい。
【0052】
〔第三の実施形態〕
以下、本発明を具体化した第三の実施形態を説明する。図3は本発明の第三の実施形態を示すブロック構成図であり、300はC−Quam送信機、301は送信アンテナ、302はC−Quam受信機の受信アンテナ、303はフロントエンド増幅器、304は周波数変換器、305は局部発振器、306はIFフィルタ、307は周波数変換器、308は局部発振器、309は振幅制限器(ハードリミタ)、310と311はIFフィルタ、312と313は周波数変換器、314は加算回路、315はIFフィルタ、316はRZ SSB復調処理回路、317は遅延回路、318は周波数弁別回路、319はバンドパスフィルタ、320は積分回路、321はtan関数発生回路、322は定数発生回路、323は加算回路、324は掛け算回路、325はバンドパスフィルタ、326はローパスフィルタ、327はマトリックス回路、328は左側音声信号出力端子、329は右側音声信号出力端子、330はパイロット信号出力端子である。
【0053】
図2に示した第三の実施形態における信号の流れと共に夫々の回路の機能について同様に説明する。
【0054】
C−Quam送信機300の出力は、送信アンテナ301によってC−Quam変調波として送出される。
【0055】
C−Quam変調波は、C−Quam受信機のアンテナ302で受信され、フロントエンド増幅器303にて増幅された後、周波数変換器304と局部発振器305によって差周波数信号に変換され、IFフィルタ306によって所要のIF信号が抽出される。
【0056】
この信号は二分割され、一方の信号は周波数変換器307に導かれ、局部発振器308の信号との和および差周波数が生成される。和周波数となる信号はIFフィルタ310によって、また、差周波数となる信号はIFフィルタ311によって抽出される。分割された他方の信号は、振幅制限器(ハードリミタ)309に導かれ、振幅が一定な信号に変換される。振幅制限器(ハードリミタ)309の出力は二分割され、一方の出力はさらに二分割される。IFフィルタ310の出力信号は分割された振幅制限器(ハードリミタ)309の出力を用いて周波数変換器312によって差周波成分を生成、また、IFフィルタ311の出力信号は分割された振幅制限器(ハードリミタ)309の出力を用いて周波数変換器313によって和周波成分を生成する。周波数変換器312と周波数変換器313の出力は加算回路で加算され、IFフィルタ315によって不要な雑音成分が除去されて、搬送波を伴った下側波帯成分が抽出される。IFフィルタ315の出力はRZ SSB復調処理回路316に導かれて復調され、和信号(L+R)が得られる。その信号は遅延回路317に導かれる。
【0057】
分割された他方の振幅制限器(ハードリミタ)309の出力は、周波数弁別回路318によって角度成分が抽出され、その出力はバンドパスフィルタ319によって直流成分とランダムFM雑音成分が除去され、その出力が積分回路320で積分された後、tan関数発生回路321で角度に対応したtan値が生成される。
【0058】
遅延回路317の出力は二分され、一方の出力は、定数発生回路322の出力と加算回路323で加算される。その出力はtan関数発生回路321の出力と掛け算回路324で掛け算される。掛け算回路324の出力は二分され、一方はバンドパスフィルタ325に、他方はローパスフィルタ326に導かれる。バンドパスフィルタ325によって不要な雑音成分が除去された信号と、分割された他方の遅延回路317から得られる信号をマトリックス回路327に導くと、左側信号(L)は、左側音声信号出力端子328に、右側信号(R)は右側音声信号出力端子329に出力される。ローパスフィルタ326の出力からパイロット信号(P)が得られるので、パイロット信号出力端子330に導き出される。
【0059】
更に、各々の回路の動作を、数式を用いて説明する。送信アンテナ301から放射された信号は、伝搬中に、振幅と位相項にそれぞれρ(t)とθ(t) で表示できるレーレ分布則に従うランダムな振幅変動とランダムFM雑音と呼ばれる位相変動を受け、信号に対して相乗的な外乱として影響を与える。そこで、C−Quam受信機アンテナ302に到達する信号は、
Sr3(t) = ρ(t)(1+L+R)cos(ωct+Φ(t)+θ(t)) ...(32)
となる。
【0060】
受信信号をフロントエンド増幅器303(増幅度が受信電力(RSSI、Received Signal Strength Indication)で変化するものを用いてもよい)にて増幅した後、この信号と、中心角周波数が(ωc1)でその角周波数変動が(±δω)なる局部発振器305を用い、周波数変換器304で、たとえば、差周波数変換して、その中心角周波数が(ω1)なるIF信号に変換、IFフィルタ306によってその必要なIF信号成分のみを抽出すると、それは、(32)式から容易に求まる。ただし、フロントエンド増幅器303で相加される熱雑音を無視すると、
Figure 0003645208
と書ける。ここで、
Θ(t) = (ω1±δω)t+Φ(t)+θ(t)
(L++R+) = (L-+R-)
H((L++R+)) = H((L-+R-))
と置いた。また、H((L++R+))は(L++R+)のヒルベルト変換を、そして、(L++R+)は送信波の上側波帯領域に存在する情報信号、(L-+R-)は下側波帯領域に存在する情報信号を表す。(34)式の第一項は搬送波成分、第二項は上側波帯成分、第三項は下側波帯成分を数学的に表している。側波帯成分の配置は送信波のそれと同じである。(34)式から、過変調を起こさないAM信号、すなわち、(3)式の条件を満たすAM信号においては、搬送波成分は側波帯成分より常に6dB大きいことが分かる。図3では上側波帯成分と下側波帯成分が区別できるように図示した。(33)式と(34)式は全く同じであるが、単側波帯成分を考える場合には、上側波帯成分あるいは下側波帯成分のどちらの単側波帯成分を抽出しているか考慮する必要がある場合には(34)式の表示を用いる。
【0061】
IFフィルタ306の出力である(33)式、あるいは、(34)式で表される信号を二分し、まず、角周波数が(ω2)なる局部発振器308を用い、周波数変換器307で和周波数を生成し、中心角周波数が(ω12)なるIF信号に変換、IFフィルタ310によってその必要なIF信号成分のみを抽出する。その信号は、(34)式を用いると、
Figure 0003645208
となる。また、角周波数が(ω2)なる局部発振器308を用い、周波数変換器307で差周波数を生成し、中心角周波数が(ω21)なるIF信号に変換、IFフィルタ310によってその必要なIF信号成分のみを抽出する。その信号は、
Figure 0003645208
となる。ここで、ω2>ω1なる周波数関係を用いた。送信波の側波帯成分が上下入れ替わる。
【0062】
二分されたIFフィルタ306の他方の信号は、振幅制限器(ハードリミタ)309に導き、振幅が一定な信号に変換する。それは、
Figure 0003645208
となり、ランダムな振幅変動成分ρ(t)が除去される。
【0063】
IFフィルタ310の出力(35)式と振幅制限器(ハードリミタ)309の出力(37)式で表される信号を周波数変換器312に入力して、その差周波数成分を抽出すると、
Figure 0003645208
となる。また、IFフィルタ311の出力(36)式と振幅制限器(ハードリミタ)309の出力(37)式で表される信号を周波数変換器313に入力して、その和周波数成分を抽出すると、
Figure 0003645208
となる。
【0064】
(38)式と(39)式を見ると、位相項に存在した局部発振器305の周波数変動(±δω)、変調成分Φ(t)とランダムな外乱成分θ(t)が完全に除去できると共に、搬送波の角周波数は(ω2)となる。そこで、これ以後の復調処理においては、周波数の安定度は局部発振器308にのみに依存することになる。この結果、角周波数(ω2)が低周波であれば、周波数安定度はほとんど考慮する必要がなくなり、以後の信号処理では急峻なフィルタを用いることができる。
【0065】
(38)式と(39)式で記述できる周波数変換器312、313の出力を加算回路314で加算して、IFフィルタ315を用いて、不要な雑音成分を除去して搬送波が付加した下側波帯信号のみを抽出することができる。その信号は、雑音成分の数式上の記述を省略して示すと、
Figure 0003645208
と求まる。(40)式の第2項と第3項は伝搬路を伝搬した時は、それぞれ上、下側波帯であったので、伝搬中の劣化度合いが違うのでダイバーシチ効果が期待できる。(40)式で示した下側波帯信号は、第一の実施形態で述べたように、RZ SSB信号となることが分かる。そこで、RZ SSB復調処理回路を用いると、外乱成分ρ(t)が除去でき、かつ、先のダイバーシチ効果と相侯って高い品質の和信号(L+R)が復調できる。
【0066】
分割された振幅制限器(ハードリミタ)309の他方の出力から、周波数弁別回路318によって角度成分を抽出すると、それは
Figure 0003645208
となる。この信号に含まれる直流成分とランダムFM雑音成分をバンドパスフィルタ319で除去すると、
S3h(t) = d/dt(Φ(t)) ...(42)
となる。この出力を積分回路320で積分すると、
S3i(t) = Φ(t) ...(43)
と和と差信号による変調成分を含む角度信号Φ(t)を得る。この角度信号からtan関数発生回路321で
S3j(t) = tanΦ(t) ...(44)
を生成する。
【0067】
一方、周波数弁別回路318からtan関数発生回路321までの処理遅延とRZ SSB復調処理回路316までの処理遅延を合わせるために遅延回路317を挿入する。その出力と定数発生回路322の出力を加算回路323で加算して、
S3k(t)= 1+L+R ...(45)
なる信号が得られるように定数を加算する。
【0068】
掛け算回路324において、(44)式で表されるtan関数発生回路321の出力と(45)式で表される加算回路323の出力を掛け算すると、
Figure 0003645208
と差信号(L-R+P)が求まる。ここで、(2)式の関係を用いた。掛け算回路324の出力を二分され、一方はバンドパスフィルタ325に、他方はローパスフィルタ326に導く。バンドパスフィルタ325によって不要な雑音成分を除去した差信号(L-R)と、遅延回路317から得られる和信号(L+R)とをマトリックス回路327に導くと、左側信号(L)が左側音声信号出力端子328に、右側信号(R)が右側音声信号出力端子329に出力される。ローパスフィルタ326の出力からパイロット信号(P)が得られるので、パイロット信号出力端子330に導き出す。
【0069】
IFフィルタ306以後の信号処理をデジタル信号処理(DSP、Digital Signal Processing)回路で実行することができる。搬送波が付加した下側波帯信号の抽出は、上記で説明したように周波数安定度が局部発振器308でのみ決定されるので、急峻な遮断特性を持つIFフィルタ315を用いて実行できる。また、DSP回路によるフィルタでは温度特性等を考慮しなくても良いなどの利点がある。図3に示した実施例をDSPデバイスを用いて実施する場合に、無駄な処理を行う周波数領域をできるだけ少なくしてDSPの消費電力を低下させるためには、RZSSB復調処理回路のサンプリング周波数を低くする必要がある。その場合には、できるだけ信号周波数領域をより低周波領域に移動させるとよい。
【0070】
【発明の効果】
以上説明したように、本発明によれば、
▲1▼ 送信波の周波数特性に忠実な周波数特性を持つ復調信号が得られ、従来の受信回路に比べて、復調品質が改善、向上する。
▲2▼ フェージングなどの外来の相乗性雑音に強い受信特性が得られ、復調品質が改善、向上する。
▲3▼ 従来のAM受信機の特長を踏襲して、C−Quam方式に対しても復調信号が周波数変動に強く依存しないで得られる受信回路構成としたので、受信機が安価に構成できる。
▲4▼ C−Quam変調時に得られる上側波帯と下側波帯を用いて周波数ダイバーシチ効果が得られる受信回路構成とすることで、復調品質の向上が図れる。
と言う効果がある。
【図面の簡単な説明】
【図1】本発明の第一の実施形態の中波ステレオ放送受信回路を示すブロック構成図。
【図2】本発明の第二の実施形態の中波ステレオ放送受信回路を示すブロック構成図。
【図3】本発明の第三の実施形態の中波ステレオ放送受信回路を示すブロック構成図。
【記号の説明】
100、200、300 C−Quam送信機
101、201、301 送信アンテナ
102、202、302 受信アンテナ
103、203、303 フロントエンド増幅器
104、107、111、123、204、207、211、223、304、307、312、313、326 周波数変換器
105、108、205、208、305、308 局部発振器
106、110、112、206、210、212、306、310、311、315 IFフィルタ
109、209、309 振幅制限器(ハードリミタ)
113、213、316 RZ SSB復調処理回路
114、214、317 遅延回路
115、215、318 周波数弁別回路
116、122、216、222、319、325 バンドパスフィルタ
117、217、320 積分回路
118、218、321 tan関数発生回路
119、219、322 定数発生回路
120、220、314、323 加算回路
121、221、324 掛け算回路
123、223、326 ローパスフィルタ
124、224、327 マトリックス回路
125、225、328 左側(L)音声信号出力端子
126、226、329 右側(R)音声信号出力端子
127、227、330 パイロット信号(P)出力端子

Claims (7)

  1. 左側の情報信号と右側の情報信号との和信号および差信号により変調された角度変調波がさらに和信号により振幅変調された中波ステレオ放送波を受信して復調する中波ステレオ放送受信回路において、
    受信した中波ステレオ放送波を単側波帯信号に変換し、変換された単側波帯信号の位相項から和信号を復調する和信号復調手段と、
    受信した中波ステレオ放送波の位相項と上記和信号復調手段の復調出力とから差信号を復調する差信号復調手段と
    を備えたことを特徴とする中波ステレオ放送受信回路。
  2. 上記和信号復調手段は、
    受信した中波ステレオ放送波を周波数変換する第一の周波数変換手段と、
    この第一の周波数変換手段の入力信号を分岐して振幅制限する手段と、
    この振幅制限する手段の出力を上記第一の周波数変換手段の出力に掛け合わせることで、和信号を復調する上で不要な変調信号成分の除去を行う第二の周波数変換手段と、
    この第二の周波数変換手段の出力する振幅変調波を単側波帯信号に変換する手段と
    を含む
    請求項1記載の中波ステレオ放送受信回路。
  3. 上記第一の周波数変換手段が中間周波段に設けられた請求項2記載の中波ステレオ放送受信回路。
  4. 中波ステレオ放送波は、搬送波の角周波数を(ωc)、和信号を(L+R)、差信号を(L-R)、差信号に重畳されるパイロット信号を(P)とするとき、時間(t)の関数、
    S(t) = (1+L+R)cos(ωct+Φ(t))
    ただし、
    tanΦ(t) = (L-R+P)/(1+L+R)
    と表される信号であり、
    上記差信号復調手段は、
    受信した中波ステレオ放送波を周波数弁別して角度成分d/dt(Φ(t))を抽出する周波数弁別回路と、
    抽出された角度成分d/dt(Φ(t))を積分する積分回路と、
    この積分回路の出力Φ(t)の正接関数tanΦ(t)を発生するtan関数発生回路と、
    このtan関数発生回路の出力に、上記和信号復調手段の出力を遅延等化し適切な定数を加算した信号を掛け合わせる手段と
    を含む
    請求項1記載の中波ステレオ放送受信回路。
  5. 中波ステレオ放送波は、搬送波の角周波数を(ωc)、和信号を(L+R)、差信号を(L-R)、差信号に重畳されるパイロット信号を(P)とするとき、時間(t)の関数、
    S(t) = (1+L+R)cos(ωct+Φ(t))
    ただし、
    tanΦ(t) = (L-R+P)/(1+L+R)
    と表される信号であり、
    上記差信号復調手段は、
    上記振幅制限する手段の出力を周波数弁別して角度成分d/dt(Φ(t))を抽出する周波数弁別回路と、
    抽出された角度成分d/dt(Φ(t))を積分する積分回路と、
    この積分回路の出力Φ(t)の正接関数tanΦ(t)を発生するtan関数発生回路と、
    このtan関数発生回路の出力に、上記和信号復調手段の出力を遅延等化し適切な定数を加算した信号を掛け合わせる手段と
    を含む
    請求項2記載の中波ステレオ放送受信回路。
  6. 上記和信号復調手段は、受信した中波ステレオ放送波とこれを周波数領域で信号配置を反転させた信号とを重ね合わせてひとつの単側波帯信号に変換する周波数ダイバーシチ手段を含む請求項1記載の中波ステレオ放送受信回路。
  7. 上記周波数ダイバーシチ手段は中間周波段に設けられ、
    中間周波に変換された中波ステレオ放送波にその搬送波成分より周波数の高い局部発信信号を掛け合わせて周波数領域における信号配置が互いに反転した差周波数成分と和周波数成分とを抽出する第一の周波数変換手段と、
    この第一の周波数変換手段の入力信号を分岐して振幅制限する手段と、
    この振幅制限する手段の出力を上記第一の周波数変換手段により抽出された差周波数成分に掛け合わせて和周波数成分を抽出し、上記振幅制限する手段の出力を上記第一の周波数変換手段により抽出された和周波数成分に掛け合わせて差周波数成分を抽出する第二の周波数変換手段と、
    この第二の周波数変換手段により得られた和周波数成分と差周波数成分とを加算する手段と
    を含む
    請求項6記載の中波ステレオ放送受信回路。
JP2001326586A 2001-10-24 2001-10-24 中波ステレオ放送受信回路 Expired - Fee Related JP3645208B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001326586A JP3645208B2 (ja) 2001-10-24 2001-10-24 中波ステレオ放送受信回路
US10/274,282 US20030103631A1 (en) 2001-10-24 2002-10-18 Medium-frequency stereo broadcast receiving circuit
CA002410002A CA2410002A1 (en) 2001-10-24 2002-10-24 Medium-frequency stereo broadcast receiving circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001326586A JP3645208B2 (ja) 2001-10-24 2001-10-24 中波ステレオ放送受信回路

Publications (2)

Publication Number Publication Date
JP2003134068A JP2003134068A (ja) 2003-05-09
JP3645208B2 true JP3645208B2 (ja) 2005-05-11

Family

ID=19142943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001326586A Expired - Fee Related JP3645208B2 (ja) 2001-10-24 2001-10-24 中波ステレオ放送受信回路

Country Status (3)

Country Link
US (1) US20030103631A1 (ja)
JP (1) JP3645208B2 (ja)
CA (1) CA2410002A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109787562B (zh) * 2019-01-10 2023-06-20 青岛海洋科技中心 超宽带毫米波变频模块及组件

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4159398A (en) * 1977-09-27 1979-06-26 Motorola, Inc. Stereo presence signal for an AM stereo system
US4313211A (en) * 1979-08-13 1982-01-26 Bell Telephone Laboratories, Incorporated Single sideband receiver with pilot-based feed forward correction for motion-induced distortion
US4426728A (en) * 1981-08-31 1984-01-17 Kahn Leonard R Multiple system AM stereo receiver and pilot signal detector
US4680794A (en) * 1986-07-29 1987-07-14 Motorola, Inc. AM stereo system with modified spectrum
US4872207A (en) * 1987-04-15 1989-10-03 Motorola, Inc. Automatic IF tangent lock control circuit
US5008939A (en) * 1989-07-28 1991-04-16 Bose Corporation AM noise reducing
DE69933367T8 (de) * 1999-06-17 2007-12-06 Sony Deutschland Gmbh Rauschdetektion in einem frequenzdemodulierten FM-Rundfunksignal

Also Published As

Publication number Publication date
US20030103631A1 (en) 2003-06-05
CA2410002A1 (en) 2003-04-24
JP2003134068A (ja) 2003-05-09

Similar Documents

Publication Publication Date Title
JP3647894B2 (ja) アナログオーバーサンプリングを用いて信号帯域幅を増大する中間周波数fm受信機
US7787630B2 (en) FM stereo decoder incorporating Costas loop pilot to stereo component phase correction
EP1081870A1 (en) Detection of noise in a frequency demodulated FM-audio broadcast signal
US8406717B1 (en) Digital FM stereo receiver architecture to recover carrier information based on stereo or mono signals
US7170950B2 (en) DRM/AM simulcast
JP3645208B2 (ja) 中波ステレオ放送受信回路
EP1094627A1 (en) Method and device to retrieve RDS information
Yam et al. Innovative demodulation method for SSB technique
US4167650A (en) Stereo signal demodulating circuits
JP3594921B2 (ja) 振幅変調信号受信回路
CN101521773B (zh) 解调器及其相应的解调方法
US6671378B1 (en) Detection of noise in a frequency demodulated FM audio broadcast signal
US8064858B1 (en) Digital carrier-recovery scheme for FM stereo detection
GB945546A (en) Improvements in and relating to radio transmission systems for stereophonic signals
US5179593A (en) Fm stereo receiving device
JP2008283296A (ja) 受信装置と受信方法
JP2001086083A (ja) 逆多重化方法及びデマルチプレクサ
KR100941823B1 (ko) Drm/am 동시 송출
JP2742685B2 (ja) Fm多重信号の受信装置
EP1071232A1 (en) Stereo multiplex-signal transmission with one single sideband modulation of the stereo-difference signal for frequency modulated broadcast system
JP2777717B2 (ja) Fm放送受信装置
Leitch et al. A Linear AM Stereo System Using Qudature Modulation
JP3798516B2 (ja) 通信装置
JPH02159833A (ja) Fm多重信号受信装置
JPH01279648A (ja) Fm受信装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees