JP3644612B2 - Ablator material and manufacturing method thereof - Google Patents

Ablator material and manufacturing method thereof Download PDF

Info

Publication number
JP3644612B2
JP3644612B2 JP13389696A JP13389696A JP3644612B2 JP 3644612 B2 JP3644612 B2 JP 3644612B2 JP 13389696 A JP13389696 A JP 13389696A JP 13389696 A JP13389696 A JP 13389696A JP 3644612 B2 JP3644612 B2 JP 3644612B2
Authority
JP
Japan
Prior art keywords
ablator
fiber
carbon
resin
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13389696A
Other languages
Japanese (ja)
Other versions
JPH09316217A (en
Inventor
口 茂 一 樋
Original Assignee
株式会社アイ・エイチ・アイ・エアロスペース
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アイ・エイチ・アイ・エアロスペース filed Critical 株式会社アイ・エイチ・アイ・エアロスペース
Priority to JP13389696A priority Critical patent/JP3644612B2/en
Publication of JPH09316217A publication Critical patent/JPH09316217A/en
Application granted granted Critical
Publication of JP3644612B2 publication Critical patent/JP3644612B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、飛翔体の表面を高熱ガスから保護するのに利用されるアブレータ材料およびその製造方法に係わり、従来の繊維強化樹脂(FRP)製アブレータ材料に比べてリセッション量が少ないと共に、従来の炭素繊維/炭素複合材(C/C材)製アブレータ材料に比べて断熱性の良いアブレータ材料およびその製造方法に関するものである。
【0002】
【従来の技術】
飛翔体が地球などの大気圏に再突入する時には、大気との摩擦によって高熱状態となるので、内部機器などへの熱影響を回避するためには、飛翔体の表面を高熱ガスから保護することが必要である。
【0003】
従来、このような高熱ガスに対する熱保護のための方法としては、例えば、
(i)比較的弱い加熱を長時間受ける場合に適したものとして、耐熱性に優れた表面材料を高温に保持し、表面からの輻射放熱によって熱保護を行うようにした輻射冷却法、具体的には、耐熱タイルを用いる方法や、
(ii)比較的強い加熱を短時間受ける場合に適したものとして、熱容量の大きい機体で熱を吸収して、機体表面の溶融・燃焼等による変形を防ぐようにした加熱吸収法、具体的にはノーズキャップを用いる方法や、
(iii)強い加熱を長時間受ける場合に適したものとして、樹脂を主材料とする表面材の熱分解・燃焼・昇華に伴う低温気体の噴出によって加熱を減じ、高温表面からの輻射冷却と併せて熱防護を行うようにしたFRP製アブレータを用いるアブレーション法や、表面の酸化消耗によるリセッション量が少ないC/C製アブレータを用いるアブレーション法などがある。
【0004】
本発明は、上記(iii)のアブレーション法に採用されるアブレータ材料に関するものであるが、従来のFRP製アブレータとしては、例えば、図4に示す工程で製造されるものがあった。
【0005】
すなわち、図4に示すように、繊維クロスに樹脂を含浸させたプリプレグを適当な大きさに切断したのち積層し、次いでキュア処理してFRP化することにより、密度(ρ)が1.3〜1.5g/cm程度の2D−CFRP製アブレータ材料を得る。
【0006】
一方、従来のC/C製アブレータとしては、例えば、図5や図6に示す工程で製造されるものがあった。
【0007】
すなわち、図5に示すように、3D方向に編みあげたドライプリフォームに樹脂を含浸させたのちHIP処理(熱間等方圧加圧処理)して樹脂を高圧炭化し、さらに温度を上げて黒鉛化し、この樹脂含浸と炭化処理と黒鉛化処理を数サイクル繰り返して密度を高めることにより密度(ρ)が1.8〜2.0g/cm程度の炭素繊維/炭素複合材(3D−C/C材)製アブレータ材料を得る。
【0008】
また、図6に示すように、2D方向に編んだプリプレグを積層してキュア処理することによってCFRP素材としたのち炭化および黒鉛化処理し、さらに樹脂含浸と炭化処理と黒鉛化処理とを数サイクル繰り返して密度を高めることによって密度(ρ)が1.8〜2.0g/cm程度の炭素繊維/炭素複合材(2D−C/C材)製アブレータ材料を得る。
【0009】
【発明が解決しようとする課題】
このような従来のアブレータ材料のうち、CFRP製アブレータ材料では、加熱された際に樹脂の熱分解ガスを発生するためブロッキング効果が大であり、熱分解ガスによる冷却作用を得ることができると共に断熱性が良好であるという利点を有しているものの、樹脂が熱分解したあとには強度の低い炭化層が形成されると共にこの炭化層の表面の酸化消耗が多く、また、動圧を受けた際のメカニカルエローションが大きいためにリセッション量がかなり多くなるという問題点があった。
【0010】
一方、2D−C/C材ないしは3D−C/C材製アブレータ材料では、加熱された際に熱分解ガスの発生がないためブロッキング効果を得ることができず熱がそのまま伝達されることになるものの、表面の酸化消耗によるリセッション量が少なく、また、動圧に対しても当初から強固な炭化層を形成しているためメカニカルエローションがほとんどなく、これによってもリセッション量がかなり少ないという利点を有しているが、断熱性があまりよくなく、また、上記したように加熱された際に熱分解ガスの発生がないためこの熱分解ガスによる冷却作用を得ることができず、熱の伝達が多くなるため、内部機器に対する熱保護が十分でない場合もあり得るという問題点があった。
【0011】
【発明の目的】
本発明は、このような従来の課題にかんがみてなされたものであって、従来のFRP製アブレータ材料に比べてリセッション量が少なく、また、従来のC/C製アブレータ材料に比べて断熱性が良好であるアブレータ材料を提供することを目的としている。
【0012】
【課題を解決するための手段】
本発明に係わるアブレータ材料は、請求項1に記載しているように、飛翔体の表面を高熱ガスから保護するアブレータ材料であって、繊維強化樹脂を炭化ないしは炭化および黒鉛化処理して炭素繊維/炭素複合材とし、炭素繊維/炭素複合材中にフェノール樹脂を含浸させたのちキュア処理してなる構成としたことを特徴としている。
【0013】
また、本発明に係わるアブレータ材料の製造方法は、請求項2に記載しているように、請求項1に記載のアブレータ材料を製造するに際して、繊維クロスにフェノール樹脂を含浸させたプリプレグを積層したのちキュア処理して得た繊維強化樹脂を炭化ないしは炭化および黒鉛化処理して炭素繊維/炭素複合材とし、炭素繊維/炭素複合材中にフェノール樹脂を含浸させたのちキュア処理する構成としたことを特徴としている。
【0014】
さらに、本発明に係わるアブレータ材料の製造方法は、請求項3に記載しているように、請求項1に記載のアブレータ材料を製造するに際して、3方向に編んだドライプリフォームに樹脂をフェノール含浸させたのちキュア処理して得た繊維強化樹脂を炭化ないしは炭化および黒鉛化処理して炭素繊維/炭素複合材とし、炭素繊維/炭素複合材中にフェノール樹脂を含浸させたのちキュア処理する構成としたことを特徴としている。
【0015】
【発明の作用】
本発明によるアブレータ材料では、繊維強化樹脂を炭化ないしは炭化および黒鉛化処理して従来のものよりも低密度に調整した炭素繊維/炭素複合材とし、このように低密度に調整した炭素繊維/炭素複合材中にフェノール樹脂を含浸させたのちキュア処理してなるものとしているので、フェノール樹脂のもつ熱分解ガスの発生によるブロッキング作用ならびに良好なる断熱性特性と、炭素繊維/炭素複合材のもつ良好なる耐リセッション性とが活かされたものとなって、従来のFRP製アブレータ材料に比べてリセッション量が少なくかつまた従来のC/C製アブレータ材料に比べて断熱性の良好なアブレータ材料となる。
【0016】
また、本発明によるアブレータ材料の製造方法では、繊維強化樹脂(FRP)、すなわち、繊維クロスにフェノール樹脂を含浸させたプリプレグを積層したのちキュア処理して得た繊維強化樹脂や、3方向に編んだドライプリフォームにフェノール樹脂を含浸させたのちキュア処理して得た繊維強化樹脂を炭化ないしは炭化および黒鉛化処理して従来のものよりも低密度に調整した炭素繊維/炭素複合材とし、この低密度に調整した炭素繊維/炭素複合材の内部にフェノール樹脂を含浸させたのちキュア処理する構成としているので、フェノール樹脂のもつ熱分解ガスの発生によるブロッキング作用ならびに良好なる断熱性特性と、炭素繊維/炭素複合材のもつ良好なる耐リセッション性とが活かされて、従来のFRP製アブレータ材料に比べてリセッション量が少なくかつまた従来のC/C製アブレータ材料に比べて断熱性の良好なアブレータ材料が製造されることととなる。
【0017】
【発明の実施の形態】
図1は本発明によるアブレータ材料の製造方法の第一実施形態を示すものであって、繊維クロスにフェノール樹脂を含浸させたプリプレグを適宜の大きさに切断してこれらを積層して所要厚さにしたのち、キュア処理してFRP化することにより繊維強化樹脂を得る。
次いで、この繊維強化樹脂を炭化し、場合によってはさらに黒鉛化したのちHIP処理によって樹脂を含浸させる。
【0018】
次いで、この繊維強化樹脂を炭化し、場合によってはさらに黒鉛化したのちHIP処理によってフェノール樹脂を含浸させる。
【0019】
そして、このような炭化,(黒鉛化),フェノール樹脂含浸の工程は、従来の炭素繊維/炭素複合材の製造方法では必要サイクルを得り返すことによって、炭素繊維/炭素複合材の密度を高めるようにしているのであるが、本発明では炭素繊維/炭素複合材の中にフェノール樹脂を含浸させたままのものとするため、これらの炭化,(黒鉛化),フェノール樹脂含浸の工程は1サイクルないしは数サイクルにとどめ、低密度に調整した炭素繊維/炭素複合材とすることによって、この炭素繊維/炭素複合材中にフェノール樹脂を含浸させ、この状態でキュア処理することによりFRP化する。
【0020】
これによって、炭素繊維/炭素複合材中にフェノール樹脂が含浸された2D−C/CFRPよりなるアブレータ材料が製造される。
【0021】
図2は本発明によるアブレータ材料の製造方法の他の実施形態を示すものであって、ドライプリフォームを3次元に編むことによって3D−ドライプリフォームを得たのち、フェノール樹脂含浸し、キュア処理を行ってFRP化することにより繊維強化樹脂を得る。
【0022】
次いで、この繊維強化樹脂に対して図1に示したと同様の処理を施すことによって、低密度に調整した炭素繊維/炭素複合材中にフェノール樹脂が含浸された3D−C/CFRPよりなるアブレータ材料が製造される。
【0023】
【発明の効果】
本発明に係わるアブレータ材料は、繊維強化樹脂を炭化ないしは炭化および黒鉛化処理して従来のものよりも低密度に調整した炭素繊維/炭素複合材とし、このように低密度に調整した炭素繊維/炭素複合材中にフェノール樹脂を含浸させたのちキュア処理してなるものであるから、従来の繊維強化樹脂(FRP)製アブレータ材料のように熱分解ガスの発生によるブロッキング効果を得ることができると共に従来の繊維強化樹脂(FRP)製アブレータ材料に比べてリセッション量を少ないものとすることが可能であり、かつまた、従来の炭素繊維/炭素複合材(C/C材)製アブレータ材料のように強固な炭化層を形成させてメカニカルエロージョンの少ないものにできると共に従来の炭素繊維/炭素複合材(C/C材)製アブレータ材料に比べて断熱性の良いアブレータ材料とすることが可能であるという著しく優れた効果がもたらされ、この結果、大気圏再突入カプセル用アブレーション材料として使用した場合に空力形状を安定なものにすることが可能であると共に薄肉化を実現することができ、軽量で且つ高性能なアブレータ材料を提供することが可能であるという著大なる効果がもたらされる。
【0024】
また、本発明に係わるアブレータ材料の製造方法では、上記した構成としたから、従来の繊維強化樹脂(FRP)製アブレータ材料のように熱分解ガスの発生によるブロッキング効果を得ることができると共に従来の繊維強化樹脂(FRP)製アブレータ材料に比べてリセッション量を少ないものとすることが可能であり、かつまた、従来の炭素繊維/炭素複合材(C/C材)製アブレータ材料のように強固な炭化層を形成させてメカニカルエロージョンの少ないものにできると共に従来の炭素繊維/炭素複合材(C/C材)製アブレータ材料に比べて断熱性の良いアブレータ材料を製造することが可能であるという著しく優れた効果がもたらされる。
【0025】
この際、繊維クロスにフェノール樹脂を含浸させたプリプレグを積層したのちキュア処理して得た繊維強化樹脂を用いると、繊維配向が2次元構造の2D−C/CFRPアブレータ材料を製造することが可能であり、一方、3次元方向に編んだドライプリフォームにフェノール樹脂を含浸させたのちキュア処理して得た繊維強化樹脂を用いると、繊維配向が3次元構造の3D−C/CFRPアブレータ材料を製造することが可能であるという著しく優れた効果がもたらされる。
【0026】
【実施例】
発明例
表1の発明例の欄に示す繊維およびマトリックス構成を有する密度1.52g/cmの複合化アブレータ材料(2D−C/CFRP)を図1に示す工程に従って製造した。
【0027】
この場合、はじめのキュア(FRP化)処理は、150℃×10kgf/cm×5hrの条件で行い、その後の炭化処理は、N中で、750℃×1kgf/cm×2hrの条件で行い、その後の黒鉛化処理は、Ar中で、2500℃×1kgf/cm×1hrの条件で行い、その後の樹脂含浸(HIP)は、真空脱泡を室温で0.1kgf/cm×1hrの条件で行うと共に含浸を室温で5kgf/cm×1hrの条件で行い、その後のキュア(FRP化)処理は、150℃×10kgf/cm×5hrの条件で行った。
【0028】
従来例1
表1の従来例1の欄に示す繊維およびマトリックス構成を有する密度1.38g/cmの繊維強化樹脂製アブレータ材料(2D−CFRP)を図4に示す工程に従って製造した。
【0029】
従来例2
表1の従来例2の欄に示す繊維およびマトリックス構成を有する密度1.83g/cmの炭素繊維/炭素製アブレータ材料(3D−C/C)を図5に示す工程に従って製造した。
【0030】
評価例
上記発明例および従来例1,2で製造したアブレータ材料において、図3に示すように、供試体1の直径をD=30mmとし、厚さをT=40mmとし、表面から深さがL=25mm入ったところに熱電対2の先端が位置するようにして、矢印A方向からのアーク加熱による風洞試験を行った。
【0031】
ここで、アーク加熱風洞試験条件は、大気圏再突入をシミュレーションするものとして次のとおりに設定した。
【0032】
・気流エンタルピー:11.0MJ/kg
・加熱率 :18MW/m
・加熱時間 :30sec
・動圧 :1.65kg/cm
・雰囲気 :空気
この結果を同じく表1に示す。
【0033】
【表1】

Figure 0003644612
【0034】
表1に示す結果より明らかなように、本発明例によるアブレータ材料は、従来例1の繊維強化樹脂(FRP)製アブレータ材料に比べてリセッション量がかなり少なく、また、従来例2の炭素繊維/炭素複合材(C/C材)製アブレータ材料に比べて最大内部上昇温度が低いと共に最大内部上昇温度時刻が長く断熱性の良いものとなっていることが確かめられた。
【図面の簡単な説明】
【図1】本発明の一実施形態によるアブレータ材料の製造工程を例示する説明図である。
【図2】本発明の他の実施形態によるアブレータ材料の製造工程を例示する説明図である。
【図3】本発明の実施例において採用した評価試験の要領を示す説明図である。
【図4】従来のFRP製アブレータ材料の製造工程を例示する説明図である。
【図5】従来の3D−C/C材製アブレータ材料の製造工程を例示する説明図である。
【図6】従来の2D−C/C材製アブレータ材料の製造工程を例示する説明図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ablator material used for protecting the surface of a flying object from a hot gas and a manufacturing method thereof, and has a smaller amount of recession than a conventional fiber reinforced resin (FRP) ablator material. The present invention relates to an ablator material having better heat insulation than a carbon fiber / carbon composite material (C / C material) ablator material and a method for producing the ablator material.
[0002]
[Prior art]
When a flying object re-enters the atmosphere such as the Earth, it becomes hot due to friction with the atmosphere. Therefore, in order to avoid thermal effects on internal devices, it is necessary to protect the flying object's surface from hot gases. is necessary.
[0003]
Conventionally, as a method for thermal protection against such a hot gas, for example,
(I) A radiation cooling method in which a surface material excellent in heat resistance is kept at a high temperature and heat protection is performed by radiation radiation from the surface, which is suitable when subjected to relatively weak heating for a long time, specifically In the method of using heat-resistant tiles,
(Ii) A heat absorption method in which heat is absorbed by an airframe having a large heat capacity to prevent deformation due to melting / combustion of the airframe surface, etc. Is a method using a nose cap,
(Iii) In combination with radiant cooling from a high temperature surface, the heating is reduced by blowing low temperature gas due to thermal decomposition, combustion, and sublimation of the surface material mainly made of resin, as suitable for receiving strong heating for a long time. There are an ablation method using an FRP ablator in which thermal protection is performed and an ablation method using a C / C ablator with a small amount of recession due to surface oxidation consumption.
[0004]
The present invention relates to an ablator material employed in the ablation method of (iii) above. As a conventional FRP ablator, for example, there is one manufactured in the process shown in FIG.
[0005]
That is, as shown in FIG. 4, the prepreg impregnated with resin in the fiber cloth is cut to an appropriate size and then laminated, and then cured to form FRP, whereby the density (ρ) is 1.3 to An ablator material made of 2D-CFRP of about 1.5 g / cm 3 is obtained.
[0006]
On the other hand, as a conventional C / C ablator, for example, there is one manufactured in the process shown in FIGS.
[0007]
That is, as shown in FIG. 5, a dry preform knitted in the 3D direction is impregnated with resin, and then HIP treatment (hot isostatic pressing) is performed to carbonize the resin at a high pressure, and the temperature is further increased to increase the graphite. The carbon fiber / carbon composite material (3D-C / 3 ) having a density (ρ) of about 1.8 to 2.0 g / cm 3 is obtained by repeating this resin impregnation, carbonization treatment and graphitization treatment for several cycles to increase the density. C material) An ablator material is obtained.
[0008]
Further, as shown in FIG. 6, a CFRP material is formed by laminating and curing a prepreg knitted in 2D direction, followed by carbonization and graphitization, and several cycles of resin impregnation, carbonization, and graphitization. By repeatedly increasing the density, an ablator material made of carbon fiber / carbon composite material (2D-C / C material) having a density (ρ) of about 1.8 to 2.0 g / cm 3 is obtained.
[0009]
[Problems to be solved by the invention]
Among such conventional ablator materials, the CFRP ablator material generates a thermal decomposition gas of the resin when heated, so that it has a large blocking effect and can obtain a cooling effect by the thermal decomposition gas and is insulated. Although there is an advantage that the property is good, after the resin is thermally decomposed, a low strength carbonized layer is formed and the surface of the carbonized layer is largely oxidized and is subjected to dynamic pressure. There was a problem that the amount of recession was considerably increased due to the large mechanical erosion.
[0010]
On the other hand, in the case of 2D-C / C material or 3D-C / C material ablator material, there is no generation of pyrolysis gas when heated, so that the blocking effect cannot be obtained and heat is transferred as it is. However, the amount of recession due to surface oxidation and consumption is small, and since a strong carbonized layer is formed from the beginning against dynamic pressure, there is almost no mechanical erosion, and this also has the advantage that the amount of recession is considerably small. However, the heat insulating property is not so good, and since there is no generation of pyrolysis gas when heated as described above, the cooling action by this pyrolysis gas cannot be obtained, and heat transfer is not possible. Therefore, there is a problem that the thermal protection for the internal device may not be sufficient.
[0011]
OBJECT OF THE INVENTION
The present invention has been made in view of such conventional problems, and has a smaller amount of recession compared to conventional FRP ablator materials, and has better heat insulation than conventional C / C ablator materials. It aims to provide an ablator material that is good.
[0012]
[Means for Solving the Problems]
The ablator material according to the present invention is an ablator material for protecting the surface of a flying object from a high-temperature gas as defined in claim 1, and carbon fiber obtained by carbonizing or carbonizing and graphitizing a fiber reinforced resin. / Carbon composite material, carbon fiber / carbon composite material is impregnated with phenol resin and then cured.
[0013]
Further, in the method for producing an ablator material according to the present invention, as described in claim 2, when producing the ablator material according to claim 1, a prepreg impregnated with a phenol resin is laminated on a fiber cloth. After that, the fiber reinforced resin obtained by curing treatment was carbonized or carbonized and graphitized to obtain a carbon fiber / carbon composite material, and the carbon fiber / carbon composite material was impregnated with a phenol resin and then cured. It is characterized by.
[0014]
Further, according to the manufacturing method of the ablator material according to the present invention, when manufacturing the ablator material according to claim 1, a dry preform knitted in three directions is impregnated with phenol as described in claim 3. After that, the fiber reinforced resin obtained by the curing treatment is carbonized or carbonized and graphitized to obtain a carbon fiber / carbon composite material, and the carbon fiber / carbon composite material is impregnated with a phenol resin and then cured. It is characterized by that.
[0015]
[Effects of the Invention]
In the ablator material according to the present invention, a carbon fiber / carbon composite material in which a fiber reinforced resin is carbonized or carbonized and graphitized to have a density lower than that of a conventional one is obtained. Since the composite material is impregnated with a phenol resin and then cured, the phenol resin has a blocking action due to the generation of pyrolysis gas and good thermal insulation properties, and the carbon fiber / carbon composite material has good properties. Thus, an ablator material having a smaller amount of recession than a conventional FRP ablator material and a better heat insulation than a conventional C / C ablator material is obtained.
[0016]
In the method for producing an ablator material according to the present invention, a fiber reinforced resin (FRP), that is, a fiber reinforced resin obtained by laminating a prepreg impregnated with a phenol resin in a fiber cloth and then curing treatment, or knitting in three directions. The carbon fiber / carbon composite material is made by carbonizing or carbonizing and graphitizing a fiber reinforced resin obtained by impregnating a dry preform with a phenolic resin and then curing. The carbon fiber / carbon composite material adjusted to the density is impregnated with a phenolic resin and then cured, so that the phenolic resin has a blocking action due to the generation of pyrolysis gas and good thermal insulation properties, and carbon fiber / Utilizing the good recession resistance of carbon composites, compared to conventional FRP ablator materials And recession small amount of Te also good ablator material of the heat insulation property than the conventional C / C made ablator material becomes and the is produced.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a first embodiment of a method for producing an ablator material according to the present invention, in which a prepreg obtained by impregnating a fiber cloth with a phenol resin is cut into an appropriate size, and these are laminated to obtain a required thickness. Then, a fiber reinforced resin is obtained by performing a curing treatment to form FRP.
Next, the fiber reinforced resin is carbonized and, if necessary, further graphitized, and then impregnated with the resin by HIP treatment.
[0018]
Next, the fiber reinforced resin is carbonized and, if necessary, further graphitized, and then impregnated with a phenol resin by HIP treatment.
[0019]
Such carbonization, (graphitization), and phenol resin impregnation processes increase the density of the carbon fiber / carbon composite material by obtaining a necessary cycle in the conventional carbon fiber / carbon composite material production method. However, in the present invention, since the carbon fiber / carbon composite material is impregnated with the phenol resin, the carbonization (graphitization) and phenol resin impregnation steps are one cycle. Alternatively, the carbon fiber / carbon composite material is adjusted to a low density with only a few cycles, so that the carbon fiber / carbon composite material is impregnated with a phenol resin and cured in this state to form FRP.
[0020]
Thus, an ablator material made of 2D-C / CFRP in which a carbon fiber / carbon composite material is impregnated with a phenol resin is manufactured.
[0021]
FIG. 2 shows another embodiment of the method for producing an ablator material according to the present invention. After obtaining a 3D-dry preform by knitting the dry preform in three dimensions, the resin is impregnated and cured. To obtain a fiber reinforced resin.
[0022]
Next, an ablator material made of 3D-C / CFRP in which a carbon fiber / carbon composite material adjusted to a low density is impregnated with a phenol resin by performing the same treatment as shown in FIG. 1 on the fiber reinforced resin. Is manufactured.
[0023]
【The invention's effect】
The ablator material according to the present invention is a carbon fiber / carbon composite material prepared by carbonizing or carbonizing and graphitizing a fiber reinforced resin so as to have a density lower than that of the conventional one. Since the carbon composite material is impregnated with a phenol resin and then cured, a blocking effect due to generation of pyrolysis gas can be obtained as in the case of a conventional fiber reinforced resin (FRP) ablator material. It is possible to reduce the amount of recession compared to conventional fiber reinforced resin (FRP) ablator materials, and like conventional carbon fiber / carbon composite (C / C material) ablator materials. A solid carbonized layer can be formed to reduce mechanical erosion and a conventional carbon fiber / carbon composite (C / C material) ablator The ablator material with better thermal insulation properties can be obtained, which results in a stable aerodynamic shape when used as an ablation material for atmospheric reentry capsules. In addition, it is possible to reduce the thickness and achieve a remarkable effect that it is possible to provide a lightweight and high-performance ablator material.
[0024]
Moreover, in the manufacturing method of the ablator material concerning this invention, since it was set as above-mentioned, while being able to acquire the blocking effect by generation | occurrence | production of pyrolysis gas like the conventional fiber reinforced resin (FRP) ablator material, it is conventional. It is possible to reduce the amount of recession compared to a fiber reinforced resin (FRP) ablator material, and it is also as strong as a conventional ablator material made of carbon fiber / carbon composite material (C / C material). A carbonized layer can be formed to reduce mechanical erosion, and it is possible to produce an ablator material having better heat insulation than conventional carbon fiber / carbon composite (C / C material) ablator materials. Excellent effect.
[0025]
At this time, it is possible to produce a 2D-C / CFRP ablator material having a two-dimensional fiber orientation by using a fiber reinforced resin obtained by laminating a prepreg impregnated with a phenolic resin into a fiber cloth and then performing a curing treatment. On the other hand, if a fiber reinforced resin obtained by impregnating a phenol resin with a dry preform knitted in a three-dimensional direction and then curing is used, a 3D-C / CFRP ablator material having a three-dimensional fiber orientation is produced. It is possible to achieve a remarkably excellent effect.
[0026]
【Example】
Inventive Example A composite ablator material (2D-C / CFRP) with a density of 1.52 g / cm 3 having the fiber and matrix configuration shown in the Inventive Example column of Table 1 was produced according to the process shown in FIG.
[0027]
In this case, the first cure (FRP) treatment is performed under the conditions of 150 ° C. × 10 kgf / cm 2 × 5 hr, and the subsequent carbonization treatment is performed under the conditions of 750 ° C. × 1 kgf / cm 2 × 2 hr in N 2. The subsequent graphitization treatment is performed in Ar at 2500 ° C. × 1 kgf / cm 2 × 1 hr, and the subsequent resin impregnation (HIP) is performed by vacuum degassing at room temperature of 0.1 kgf / cm 2 × 1 hr. The impregnation was performed at room temperature under the condition of 5 kgf / cm 2 × 1 hr, and the subsequent curing (FRP) treatment was performed under the conditions of 150 ° C. × 10 kgf / cm 2 × 5 hr.
[0028]
Conventional Example 1
A fiber reinforced resin ablator material (2D-CFRP) having a density of 1.38 g / cm 3 and having a fiber and matrix configuration shown in the column of Conventional Example 1 in Table 1 was produced according to the steps shown in FIG.
[0029]
Conventional example 2
A carbon fiber / carbon ablator material (3D-C / C) having a density of 1.83 g / cm 3 and having a fiber and matrix structure shown in the column of Conventional Example 2 in Table 1 was produced according to the process shown in FIG.
[0030]
Evaluation example In the ablator material manufactured in the above invention example and the conventional examples 1 and 2, as shown in FIG. 3, the diameter of the specimen 1 was set to D = 30 mm, the thickness was set to T = 40 mm, and from the surface. A wind tunnel test by arc heating from the direction of arrow A was performed so that the tip of the thermocouple 2 was positioned at a depth of L = 25 mm.
[0031]
Here, the arc heating wind tunnel test conditions were set as follows to simulate atmospheric reentry.
[0032]
・ Airflow enthalpy: 11.0MJ / kg
Heating rate: 18 MW / m 2
・ Heating time: 30 sec
・ Dynamic pressure: 1.65 kg / cm 2
-Atmosphere: Air This result is also shown in Table 1.
[0033]
[Table 1]
Figure 0003644612
[0034]
As is apparent from the results shown in Table 1, the ablator material according to the example of the present invention has a considerably smaller recession amount than the fiber reinforced resin (FRP) ablator material of the conventional example 1, and the carbon fiber / It was confirmed that the maximum internal rise temperature was low and the maximum internal rise temperature time was long and the heat insulation was good as compared with the ablator material made of carbon composite material (C / C material).
[Brief description of the drawings]
FIG. 1 is an explanatory diagram illustrating a manufacturing process of an ablator material according to an embodiment of the invention.
FIG. 2 is an explanatory view illustrating a manufacturing process of an ablator material according to another embodiment of the present invention.
FIG. 3 is an explanatory diagram showing the outline of an evaluation test employed in an example of the present invention.
FIG. 4 is an explanatory view illustrating a manufacturing process of a conventional FRP ablator material.
FIG. 5 is an explanatory view illustrating a manufacturing process of a conventional 3D-C / C material ablator material;
FIG. 6 is an explanatory view illustrating a manufacturing process of a conventional 2D-C / C material ablator material.

Claims (3)

飛翔体の表面を高熱ガスから保護するアブレータ材料であって、繊維強化樹脂を炭化ないしは炭化および黒鉛化処理して炭素繊維/炭素複合材とし、炭素繊維/炭素複合材中にフェノール樹脂を含浸させたのちキュア処理してなることを特徴とするアブレータ材料。  An ablator material that protects the surface of a flying object from high-temperature gas. Carbon fiber / carbon composite material is formed by carbonizing or carbonizing and graphitizing a fiber reinforced resin, and the carbon fiber / carbon composite material is impregnated with a phenol resin. An ablator material characterized by being subsequently cured. 請求項1に記載のアブレータ材料を製造するに際して、繊維クロスにフェノール樹脂を含浸させたプリプレグを積層したのちキュア処理して得た繊維強化樹脂を炭化ないしは炭化および黒鉛化処理して炭素繊維/炭素複合材とし、炭素繊維/炭素複合材中にフェノール樹脂を含浸させたのちキュア処理することを特徴とするアブレータ材料の製造方法。  When producing the ablator material according to claim 1, carbon fiber / carbon is obtained by carbonizing or carbonizing and graphitizing a fiber reinforced resin obtained by laminating a prepreg impregnated with a phenolic resin into a fiber cloth and then performing a curing treatment. A method for producing an ablator material, characterized in that a carbon fiber / carbon composite material is impregnated with a phenol resin and cured after being cured. 請求項1に記載のアブレータ材料を製造するに際して、3方向に編んだドライプリフォームにフェノール樹脂を含浸させたのちキュア処理して得た繊維強化樹脂を炭化ないしは炭化および黒鉛化処理して炭素繊維/炭素複合材とし、炭素繊維/炭素複合材中にフェノール樹脂を含浸させたのちキュア処理することを特徴とするアブレータ材料の製造方法。  When the ablator material according to claim 1 is produced, carbon fiber / carbonized / graphitized fiber reinforced resin obtained by impregnating a dry preform knitted in three directions with a phenol resin and then curing is obtained. A method for producing an ablator material, wherein a carbon composite material is used, and a carbon fiber / carbon composite material is impregnated with a phenol resin and then cured.
JP13389696A 1996-05-28 1996-05-28 Ablator material and manufacturing method thereof Expired - Fee Related JP3644612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13389696A JP3644612B2 (en) 1996-05-28 1996-05-28 Ablator material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13389696A JP3644612B2 (en) 1996-05-28 1996-05-28 Ablator material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH09316217A JPH09316217A (en) 1997-12-09
JP3644612B2 true JP3644612B2 (en) 2005-05-11

Family

ID=15115645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13389696A Expired - Fee Related JP3644612B2 (en) 1996-05-28 1996-05-28 Ablator material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3644612B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6280300B1 (en) 1998-11-25 2001-08-28 Ebara Corporation Filter apparatus
JP6353686B2 (en) * 2014-04-10 2018-07-04 三菱重工業株式会社 Re-entry machine manufacturing method
CN108248139B (en) * 2018-01-22 2023-06-23 山东大学 Three-dimensional braided carbon-carbon composite material plate and preparation method thereof
CN108081692A (en) * 2018-01-22 2018-05-29 山东大学 3 D weaving plate of resistance to ablative composite material and preparation method thereof
CN113860900A (en) * 2021-10-29 2021-12-31 西安美兰德新材料有限责任公司 Rapid preparation method of high-performance carbon fiber composite material plate
CN114716717B (en) * 2022-04-07 2023-04-07 江苏大学 Preparation method of laser-induced carbonization layer in aramid fiber resin-based composite material
CN115991608A (en) * 2022-12-26 2023-04-21 内蒙古航天红岗机械有限公司 Preparation method of endogenous fiber reinforced carbon/Tao Hou lining material

Also Published As

Publication number Publication date
JPH09316217A (en) 1997-12-09

Similar Documents

Publication Publication Date Title
JP4458510B2 (en) Thermal protection system with fiber variable density
EP3549926B1 (en) Method for preparing c/c-sic composite material part
CN108314458B (en) Preparation method of high-thermal-conductivity carbon/carbon composite material
CN103408315B (en) Three-dimensional mesophase pitch-based carbon/carbon composite material with high heat conductivity and preparation technology thereof
US7001544B2 (en) Method for manufacturing carbon-carbon composites
CN105110809B (en) The preparation method of the modified high heat conductance three-dimensional carbon/carbon composite of Graphene
Huang et al. Ablation mechanism of C/C–ZrB2–ZrC–SiC composite fabricated by polymer infiltration and pyrolysis with preform of Cf/ZrB2
US4668579A (en) Interstitially protected oxidation resistant carbon-carbon composite
US20120219778A1 (en) Composite material containing soft carbon fiber felt and hard carbon fiber felt
CN108911760A (en) The non-ablative type thermally protective materials of carbon fiber-reinforced resin gradient carbonization and preparation method
WO1997018081A2 (en) High performance structural laminate composite material for use to 1000 °f and above, apparatus for and method of manufacturing same, and articles made with same
EP0335736B1 (en) Process for producing carbon/carbon composites
CN106433148B (en) A kind of carbon cloth enhancing/resistance to ablative composite material of heat cure rubber and preparation method thereof
JP3644612B2 (en) Ablator material and manufacturing method thereof
US5061414A (en) Method of making carbon-carbon composites
Bae et al. Highly efficient densification of carbon fiber-reinforced SiC-matrix composites by melting infiltration and pyrolysis using polycarbosilane
CN105272256B (en) A kind of high heat conduction graphite foam/carbon composite and preparation method thereof
CN113666748B (en) Preparation method of graphite material and graphite material
Tang et al. Fabrication and study on thermal conductivity, electrical properties, and mechanical properties of the lightweight carbon/carbon fiber composite
CN108440010A (en) A kind of assorted fibre enhancing superhigh temperature anti-yaw damper composite material and preparation method
CN111040375B (en) Nano-pore antioxidant resin-based composite material and preparation method thereof
CN113292352B (en) Preparation method of unidirectional high-thermal-conductivity carbon/carbon composite material
CN107522499A (en) The preparation method of C/C composites
CN107082645A (en) A kind of dynamic controllable temperature gradient CVI carbon/carbon compound material method for rapidly densifying of confinement sensing heating
CN110093009A (en) A kind of graphite phase carbon nitride carbon modified/resistance to ablative composite material of phenolic aldehyde and preparation method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees