JP3644398B2 - Manufacturing method of non-tempered thick high-tensile steel sheet with excellent weld heat-affected zone toughness - Google Patents

Manufacturing method of non-tempered thick high-tensile steel sheet with excellent weld heat-affected zone toughness Download PDF

Info

Publication number
JP3644398B2
JP3644398B2 JP2001089295A JP2001089295A JP3644398B2 JP 3644398 B2 JP3644398 B2 JP 3644398B2 JP 2001089295 A JP2001089295 A JP 2001089295A JP 2001089295 A JP2001089295 A JP 2001089295A JP 3644398 B2 JP3644398 B2 JP 3644398B2
Authority
JP
Japan
Prior art keywords
mass
toughness
less
cooling
affected zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001089295A
Other languages
Japanese (ja)
Other versions
JP2002285239A (en
Inventor
克行 一宮
健次 大井
俊幸 星野
虔一 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001089295A priority Critical patent/JP3644398B2/en
Publication of JP2002285239A publication Critical patent/JP2002285239A/en
Application granted granted Critical
Publication of JP3644398B2 publication Critical patent/JP3644398B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、造船、建築、土木等の各分野で使用される鋼材に係わり、特に溶接入熱が300kJ/cmを超える大入熱溶接での溶接熱影響部靱性に優れる、降伏強さが390N/mm2以上、板厚が50mm以上の非調質厚肉高張力鋼板 ( 以降、「非調質厚肉高張力鋼」とも言う。 )の製造方法に関する。
【0002】
【従来の技術】
造船、建築、土木等の各分野で使用される鋼材は、一般に、溶接接合により所望の形状の構造物に仕上げられる。こうした構造物においては、安全性の観点から、使用される鋼材の母材靱性はもちろんのこと、溶接熱影響部の靱性に優れることが要求される。その際、最も問題となるのは、溶接熱影響部のボンド部の靱性である。ボンド部は、大入熱溶接時に溶融点直下の高温にさらされて、オーステナイト結晶粒がもっとも粗大化しやすく、引き続く冷却によって、脆弱な上部ベイナイト組織に変態しやすい位置であるからである。また、ボンド部では、ウッドマンステッテン組織や島状マルテンサイトといった脆化組織が生成しやすく、このことも靱性低下の要因となっている。
【0003】
ところで、ボンド部の靱性改善策として、これまでTiNの微細分散によるオーステナイトの粗大化抑制やフェライト変態核としての利用技術が実用化されてきた。また、特公平03−53367号公報や入熱量230kJ/cmの溶接ボンド部での靱性改善を目指した特開昭60−184663号公報には、希土類元素(REM)をTiと複合添加することにより、鋼中に微細粒子を分散させてオーステナイトの粒成長を防止し、溶接部の靱性向上を図る方法が示されている。さらに、Tiの酸化物を分散させる技術やBNのフェライト核生成能を組み合わせる技術も開発されている。このほか、CaやREMを添加することで硫化物の形態を制御し、より高靱性を得られることが知られている。
【0004】
【発明が解決しようとする課題】
しかしながら、これら従来技術においては、安定した靱性が得られる鋼材の製造が困難であったり、300kJ/cmを超える大入熱溶接部では十分な靱性が得られないという問題があった。すなわち、TiNを主体に利用する技術においては、TiNが溶解する温度域に加熱される溶接部でその作用がなくなり、また固溶TiおよびNによる地の組織の脆化によって著しく靱性の低下が見られた。さらに、Tiの酸化物を使った技術においては、酸化物の微細分散が十分均質にできないという問題があった。
またCaやREMを添加する技術においても300 kJ/cm を超える大入熱溶接では溶接熱影響部の高靭性を確保することは困難であった。
【0005】
一方において、近年、船舶や構造物の一層の大型化が進み、使用される鋼材にはより高強度化、厚肉化が求められている。しかしながら、高強度化、厚肉化を行うには合金元素の添加が必要となって、この合金元素の添加は溶接部靱性の低下を招くのが一般的である。したがって、厚肉材のように製造時の冷却速度が比較的遅い場合においても、合金元素添加量を増加させずに、母材の強度を向上させる必要性も高まっている。
そこで、本発明は、板厚が50mm以上、母材の降伏強さが390 N/mm以上、−40℃における吸収エネルギーvE-40 が200 J 以上であって、300 kJ/cm を超える大入熱溶接においても十分な靱性が得られる非調質厚肉高張力鋼を安定かつ効果的に製造するための製造方法を提案することを目的とする。なお、本発明が目標とする大入熱溶接での溶接熱影響部靱性は、vE-40 が 41 J 以上である。
【0006】
【課題を解決するための手段】
発明者らは、大入熱溶接部の靱性とともに、厚肉材の母材強度・靱性を改善する方法について、研究、検討を重ねた。
その結果、まず、大入熱溶接部とくに溶接ボンド部の靱性は脆化組織に影響され、この脆化組織は硫化物の形態制御の役割を担うCaの添加方法を制御することにより大きく改善できることを新たに知見した。すなわち、大入熱溶接部の高靱性化を達成するには、高温に加熱された領域におけるオーステナイトの粗大化抑制と、加熱後の冷却時におけるフェライト変態促進のための変態核の微細分散が必要であり、従来技術ではこれらが不十分であった。
本発明では、鋼を溶製する際の凝固段階でCaSを晶出させるようにした。CaSは酸化物に比べて低温で晶出するので、鋼中での微細均一分散が可能となる。そして、Ca、Sの添加量および添加時の溶鋼中の溶存酸素量を制御することによって、CaSの晶出後に固溶S量を確保すれば、CaSの表面上にMnSが析出することを見出した。MnSにはフェライト核生成能があることが知られており、さらにはその周囲にMnの希薄帯が形成されるとフェライト変態が促進される。また、MnS上にTiN,BN,AlN等のフェライト生成核が析出することによって、より一層フェライト変態が促進されることも新たに知見した。これらの知見から、高温でも溶解しないフェライト変態生成核を微細分散させることに成功し、大入熱溶接熱影響部の組織微細化、高靱性化が可能となった。
【0007】
次に、母材特性に及ぼす圧延条件の影響について検討したところ、圧延後の冷却を冷却速度が大きい前段冷却と小さい後段冷却からなる2段階に分け、それぞれの冷却速度を制御すれば、鋼板組織がアシキュラ−フェライト主体の組織となり、母材の強度・靱性に優れた厚肉高張力鋼を製造できることを見出した。
このような知見に基づいて完成した本発明は、以下の構成を要旨とするものである。
【0008】
(1) C:0.05〜0.15mass%、Si:0.05〜0.50mass%、Mn:1.0〜2.0mass%、P:0.015mass%以下、S:0.0050mass%以下、Al:0.005〜0.06mass%、Nb:0.05mass%以下、Ti:0.005〜0.02mass%、N:0.0035〜0.0075mass%、Ca:0.0005〜0.0030mass%を含み、かつ、Ca、O、Sの各含有量は、下記(1)式を満たして含有し、残部はFeおよび不可避的不純物からなる鋼素材を1050〜1200℃に加熱後、950℃以上の温度域における累積圧下率が30%以上かつ、950℃未満の温度域における累積圧下率が30〜70%となる熱間圧延を施し、熱間圧延終了温度から、600〜450℃間とする前段冷却停止温度までの前段冷却を7〜20℃/sの冷却速度で、該前段冷却の停止温度から、450未満〜200℃間とする後段冷却停止温度までの後段冷却を1〜7℃/s未満の冷却速度で行い、その後は空冷または徐冷することを特徴とする300kJ を超える大入熱溶接における溶接熱影響部靱性に優れた非調質厚肉高張力鋼板の製造方法。

0 <(Ca−(0.18+130 × Ca)×O)/1.25/S < 1 ---- (1)
ただし、Ca、O、Sは各成分の含有量(mass%)を表す。
【0009】
(2) 上記(1)において鋼素材が、さらにB:0.0003〜0.0025mass% Cu:1.0mass%以下、Ni:1.5mass%以下、Cr:0.7mass%以下、Mo:0.7mass%以下から選ばれる少なくとも1種または2種以上を含有する組成になる、300kJ を超える大入熱溶接における溶接熱影響部靱性に優れた非調質厚肉高張力鋼板の製造方法。
【0010】
【発明の実施の形態】
はじめに、本発明の基礎となった実験結果を説明する。
質量%で、C:0.08%、Si:0.2 %、Mn:1.5 %を基本成分とする鋼を、1150℃に加熱後、 950℃以上の圧下率を40%、 950℃未満での累積圧下率を50%、圧延終了温度を850 ℃として圧延した後、圧延終了から500 ℃までを冷却速度2〜25℃/sで冷却する前段冷却ののち、その後350 ℃までを冷却速度3℃/sで冷却する後段冷却を行い、その後空冷して厚鋼板とした。得られた厚鋼板について、アシキュラ−フェライト組織の面積率および強度、靱性を調査した。
図1に、前段冷却の冷却速度が母材特性およびアシキュラ−フェライト面積率に及ぼす影響を示す。図1から、前段冷却の冷却速度が増すに伴い、強度は上昇し、靱性(−40℃における吸収エネルギー vE-40)は低下する。また、アシキュラ−フェライト組織の面積率は冷却速度の増大とともに上昇するが、おおよ10℃/sで勾配が緩やかになる傾向となる。このように、前段冷却の冷却速度をある速度以上に高めることにより、比較的高温で生成するポリゴナルフェライトを抑制し、アシキュラーフェライト主体の組織にすると、強度と靱性のバランスのとれた鋼板を製造できることがわかった。
【0011】
次に各成分の限定理由について説明する。
C:0.05〜0.15mass%
C量は、構造用鋼として必要な強度を得るために0.05mass%は必要であり、多すぎると溶接割れの発生を助長するので上限を0.15mass%とする。
【0012】
Si:0.05〜0.50mass%
Siは、製鋼上0.05mass%以上は必要であり、0.50mass%を超えると母材の靱性を劣化させる。
【0013】
Mn:1.0 〜2.0 mass%
Mnは、母材の強度を確保するために1.0 mass%以上は必要であり、2.0 mass%を超えると溶接部の靱性を著しく劣化させる。
【0014】
P:0.015 mass%以下
Pは、0.015 mass%を超えると溶接部の靱性を劣化させる。
【0015】
S:0.0050mass%以下
Sは、0.0050mass%を超えて含有すると、母材および溶接部の靱性を劣化させる。
【0016】
Al:0.005 〜0.06mass%
Alは、鋼の脱酸上0.005 mass%以上は必要であり、0.06mass%を超えて含有すると母材の靱性を低下させるとともに、溶接時の希釈で溶接金属部に混入することにより、靱性を劣化させる。
【0017】
Nb:0.017mass%以下
Nbは、制御圧延を行う鋼で不可欠な元素であり、鋼の強化に有効な元素であるが、0.017mass%を超える含有は溶接部靱性を劣化させる。
【0018】
Ti:0.005 〜0.02mass%
Tiは、凝固時にTiNとなって析出し、溶接部でのオーステナイトの粗大化抑制やフェライト変態核となって高靱性化に寄与する。0.005 mass%未満ではその効果が少なく、0.02mass%を超えるとTiN粒子の粗大化によって期待する効果が得られなくなる。
【0019】
N:0.0035〜0.0075mass%
Nは、TiNの必要量を確保するうえで必要な元素であり、0.0035mass%未満では十分なTiN量が得られず、0.0075mass%を超えると溶接熱サイクルによってTiNが溶解する領域における固溶N量の増加のために靱性を著しく低下させる。
【0020】
Ca:0.0005〜0.0030mass%
Caは、Sの固定による靱性改善効果を有する元素である。このような効果を発揮させるには少なくとも0.0005mass%は含有することが必要であるが、0.0030mass%を超えて含有しても効果が飽和する。このため、本発明では、0.0005mass%から0.0030mass%の範囲に限定する。
【0021】
0<(Ca −(0.18 +130 ×Ca) ×O) /1.25/S<1(ここに、Ca,O,S:各元素の含有量(mass%))
CaおよびSは、0<(Ca −(0.18 +130 ×Ca) ×O) /1.25/S<1の関係を満足するように含有する必要がある。この場合、CaS上にMnSが析出した複合硫化物の形態となる。(Ca −(0.18 +130 ×Ca) ×O) /1.25/S≦0 の場合には、CaSが晶出しないためにSはMnS単独の形態で析出する。このMnSは鋼板製造時の圧延で伸長されて母材の靱性の低下を引き起こすとともに、本発明の主眼である溶接熱影響部での微細分散が達成されない。一方、1≦(Ca −(0.18 +130×Ca) ×O) /1.25/Sの場合には、Sが完全にCaによって固定され、フェライト生成核として働くMnSがCaS上に析出しないために十分な機能が発揮されない。
【0022】
本発明では、さらに強度および靱性を高めるために、B Cu、Ni、Cr、Moから選ばれる少なくとも1種または2種以上を含有することができる。
B:0.0003〜0.0025mass%
Bは、オーステナイト粒界に偏析することで粒界からのフェライト変態を抑え、高強度化する効果があるが、0.0025%を超えて添加すると逆に靱性が劣化する。
【0024】
Ni:1.5 mass%以下
Niは、母材の高靱性を保ちつつ強度を上昇させるが、高価であるため上限を1.5%とした。
【0025】
Cu:1.0 mass%以下
Cuは、Niと同様の働きを有しているが、1.0 %を超えると熱間脆性を生じ、鋼板の表面性状を劣化させる。
【0026】
Cr:0.7 mass%以下
Crは、母材の高強度化に有効な元素であるが、多量に含有すると靱性に悪影響を与えるので上限を0.7 mass%とする。
【0027】
Mo:0.7 mass%以下
Moは、母材の高強度化に有効な元素であるが、多量に含有すると靱性に悪影響を与えるので上限を0.7 mass%とする。
【0028】
次に、本発明の製造工程について説明する。上記組成の溶鋼を、転炉、電気炉、真空溶解炉等の通常の方法で溶製し、連続鋳造法、造塊法など通常の鋳造方法でスラブ等の圧延素材とする。この素材から以下の工程により厚肉の高張力鋼を製造する。すなわち、上述した基本組成に成分調整した鋼素材を、まず1050〜1200℃の温度範囲に加熱する。1050℃以上に加熱するのはNb炭窒化物を完全に固溶するためであり、一方1200℃を超える温度に加熱するとTiNが粗大化することにより溶接部の靱性が劣化する。したがって、加熱温度は1050〜1200℃の範囲とする。
【0029】
鋼素材の加熱に次いで、950 ℃以上の温度域における累積圧下率30%以上となる、熱間圧延を施す。この温度域では、圧延によってオーステナイト粒が再結晶するため、組織を微細にすることができる。30%未満では、加熱時の異常粗大粒が残存し、母材の靱性に悪影響を及ぼすので下限を30%とする。
【0030】
引き続き、950 ℃未満の温度域における累積圧下率30〜70%で熱間圧延する。この温度域ではオーステナイト粒の再結晶は起こらず、オーステナイト粒は扁平に変形し、かつ内部に変形帯などの欠陥が導入される。この蓄積された内部エネルギーがその後のフェライト変態の駆動力に加えられる。圧下率が30%未満では蓄積される内部エネルギーが十分ではないために、フェライト変態が起こりにくく、ベイナイト組織が生成する。また、70%以上では、逆にポリゴナルフェライトの生成が促進され、アシキュラ−フェライトの生成が抑制される。
【0031】
熱間圧延後の冷却は、前段冷却と後段冷却に分け、前者の冷却速度を後者のそれよりも相対的に大きくする。すなわち、前段冷却では、熱間圧延終了温度から600 〜450 ℃の間とする前段冷却停止温度まで、好ましくは熱間圧延終了温度から580 〜480 ℃の間とする前段冷却停止温度までの温度域を7〜20℃/s 、好ましくは 8〜16℃/s の冷却速度で冷却する。そして、後段冷却では、前段冷却の停止温度から450 未満〜200 ℃の間とする後段冷却停止温度まで、好ましくは前段冷却の停止温度から 400〜 300℃の間とする後段冷却停止温度までの温度域を1〜7℃/s 未満、好ましくは 2〜 6℃/s の冷却速度で冷却する。
前段冷却において、停止温度が停止温度域の上限よりも高いと強度の増加がほとんどなく、下限よりも低いと靱性が劣化する。また、冷却速度が上記範囲の下限に満たないとポリゴナルフェライト主体の組織となって強度上昇効果が得られず、上記範囲の上限を超えると靱性が劣化する。
また、後段冷却において、冷却停止温度が停止温度域の上限よりも高いと強度上昇量が不十分となり、下限よりも低くなると水素の除去が不十分となり水素起因の欠陥が発生する。また、冷却速度が上記範囲の下限に満たないと強度上昇効果がなく、上記範囲の上限よりも大きいと冷却停止温度が板内で不均一となる。上述したように、熱間圧延の圧下率と圧延後の2段冷却条件の制御、とくに前段冷却の冷却速度を大きくすることにより、母材がアシキュラーフェライト主体の組織となり、強度・靱性に優れた鋼材が製造可能となる。
【0032】
【実施例】
次に本発明の効果を実施例に基づいて説明する。
表1に示す種々の成分組成に調整した鋼スラブを用いて、表2および表3に示す条件にしたがって、板厚55又は65mmの厚鋼板(熱間圧延後は水冷)を製造した。かくして、得られた各厚鋼板について、母材の引張試験及びシャルピー試験を実施した。引張試験は、各鋼板の板厚1/4 位置から、JIS 4号引張試験片を採取し、降伏強さYP、引張強さTSを求めた。シャルピー衝撃試験は、各鋼板の板厚1/4 位置から、JIS 4号衝撃試験片を採取し、−40℃での吸収エネルギー(vE−40)を求めた。
【0033】
また、各鋼板から採取した継手用試験板に、V開先を施し、エレクトロガスアーク溶接(350 又は450 kJ/cm )により、溶接継手を作製した。これら溶接継手から切り欠き位置をボンド部とするJIS 4号衝撃試験片を採取し、試験温度−40℃でシャルピー衝撃試験を実施し、吸収エネルギー(vE−40)を求めた。
【0034】
【表1】

Figure 0003644398
【0035】
【表2】
Figure 0003644398
【0036】
【表3】
Figure 0003644398
【0037】
これらの表から、本発明例は、降伏強さ390 N/mm以上の強度とvE−40が200J以上の吸収エネルギーを有して、母材の強度・靱性に優れる上、さらにエレクトロガスアーク溶接継手ボンド部のvE−40が85J 以上と、大入熱溶接を施しても優れた溶接熱影響部靱性を有する鋼材となっている。これに対し、本発明の範囲を外れる比較例は、母材の強度不足(降伏応力390 N/mm以下)、母材の靱性不良、溶接熱影響部の靱性不良、水素割れ、材質のばらつきの少なくとも一つの特性が劣っている。
【0038】
【発明の効果】
以上説明したように、本発明によれば、300kJ/cmを超える大入熱溶接の場合でも優れた溶接熱影響部靱性が得られる、降伏強さ390 N/mm以上、板厚50mm超えの厚肉非調質鋼材を安価に製造することができる。したがって、本発明は構造物の大型化や施工能率の向上に寄与するところ大である。
【図面の簡単な説明】
【図1】前段冷却の冷却速度(600 〜450 ℃の温度域までの冷却速度)がアシキュラーフェライト面積率、強度および靱性に及ぼす影響を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to steel materials used in various fields such as shipbuilding, construction, civil engineering, etc., and is particularly excellent in weld heat affected zone toughness in high heat input welding where the heat input of welding exceeds 300 kJ / cm, yield strength is 390 N / mm 2 or more, the thickness is 50mm or more of the non-heat treated thick-walled high-strength steel plate (hereinafter, also referred to as "non-heat treated thick-walled high-strength steel.") process for the preparation of.
[0002]
[Prior art]
Steel materials used in various fields such as shipbuilding, construction, and civil engineering are generally finished into a desired shape structure by welding. In such a structure, from the viewpoint of safety, not only the base material toughness of the steel material used but also the toughness of the weld heat affected zone is required to be excellent. At that time, the most serious problem is the toughness of the bond portion of the weld heat affected zone. This is because the bond portion is exposed to a high temperature just below the melting point during high heat input welding, and the austenite crystal grains are most likely to be coarsened, and are subsequently transformed into a fragile upper bainite structure by cooling. In the bond portion, a brittle structure such as a woodman-stetten structure or island martensite is easily generated, which also causes a decrease in toughness.
[0003]
By the way, as a measure for improving the toughness of the bond portion, the use of austenite coarsening suppression and ferrite transformation nuclei by fine dispersion of TiN has been put into practical use. In addition, Japanese Patent Publication No. 03-53367 and Japanese Patent Application Laid-Open No. Sho 60-184663, which aims to improve the toughness at a weld bond with a heat input of 230 kJ / cm, are combined with rare earth elements (REM) and Ti. A method is disclosed in which fine particles are dispersed in steel to prevent austenite grain growth and to improve the toughness of the weld. Furthermore, a technique for combining a Ti oxide dispersion technique and a BN ferrite nucleation ability has been developed. In addition, it is known that addition of Ca or REM can control the form of the sulfide to obtain higher toughness.
[0004]
[Problems to be solved by the invention]
However, these conventional techniques have problems that it is difficult to produce a steel material capable of obtaining stable toughness, or that sufficient toughness cannot be obtained in a high heat input weld portion exceeding 300 kJ / cm. That is, in the technology mainly using TiN, the effect is lost in the weld zone heated to the temperature range where TiN dissolves, and the toughness is significantly reduced due to the embrittlement of the ground structure by the solid solution Ti and N. It was. Further, the technique using Ti oxide has a problem that the fine dispersion of the oxide cannot be made sufficiently uniform.
Further, even in the technique of adding Ca or REM, it has been difficult to ensure high toughness of the heat affected zone by high heat input welding exceeding 300 kJ / cm 2.
[0005]
On the other hand, in recent years, ships and structures have further increased in size, and steel materials used are required to have higher strength and thickness. However, in order to increase the strength and thickness, it is necessary to add an alloy element, and the addition of this alloy element generally causes a decrease in the toughness of the weld. Therefore, even when the cooling rate at the time of manufacture is relatively slow like a thick material, there is an increasing need to improve the strength of the base material without increasing the alloy element addition amount.
Therefore, the present invention has a thickness of 50 mm or more, the yield strength of the base material is 390 N / mm 2 or more, the absorbed energy vE-40 at −40 ° C. is 200 J or more, and a large value exceeding 300 kJ / cm 2. An object of the present invention is to propose a manufacturing method for stably and effectively manufacturing a non-tempered thick high-tensile steel that can obtain sufficient toughness even in heat input welding. The weld heat-affected zone toughness of high heat input welding targeted by the present invention is vE-40 of 41 J or more.
[0006]
[Means for Solving the Problems]
The inventors have repeatedly studied and studied a method for improving the base material strength and toughness of the thick-walled material as well as the toughness of the high heat input weld.
As a result, first, the toughness of the high heat input weld, especially the weld bond, is affected by the embrittlement structure, and this embrittlement structure can be greatly improved by controlling the Ca addition method that plays the role of sulfide morphology control. Newly discovered. In other words, to achieve high toughness of high heat input welds, it is necessary to suppress austenite coarsening in the region heated to high temperature and to finely disperse transformation nuclei to promote ferrite transformation during cooling after heating. In the prior art, these were insufficient.
In the present invention, CaS is crystallized in the solidification stage when melting steel. Since CaS crystallizes at a lower temperature than oxides, fine uniform dispersion in steel is possible. Then, by controlling the amount of Ca and S added and the amount of dissolved oxygen in the molten steel at the time of addition, it is found that MnS precipitates on the surface of CaS if the amount of dissolved S is ensured after crystallization of CaS. It was. It is known that MnS has a ferrite nucleation ability. Further, when a thin Mn band is formed around the MnS, ferrite transformation is promoted. It was also newly found that ferrite transformation is further promoted by precipitation of ferrite-forming nuclei such as TiN, BN, and AlN on MnS. Based on these findings, we succeeded in finely dispersing ferrite transformation nuclei that do not dissolve even at high temperatures, making it possible to refine the structure and toughness of the heat-affected zone of high heat input welding.
[0007]
Next, when the influence of rolling conditions on the base material characteristics was examined, the cooling after rolling was divided into two stages consisting of a first stage cooling with a large cooling rate and a second stage cooling with a small cooling rate. Was found to be a structure mainly composed of acicular-ferrite and capable of producing a thick high-strength steel excellent in the strength and toughness of the base material.
The present invention completed based on such knowledge has the following configuration.
[0008]
(1) C: 0.05 to 0.15 mass%, Si: 0.05 to 0.50 mass%, Mn: 1.0 to 2.0 mass%, P: 0.015 mass% or less, S: 0.0050 mass% or less, Al: 0.005 to 0.06 mass%, Nb : 0.05 mass% or less, Ti: 0.005 to 0.02 mass%, N: 0.0035 to 0.0075 mass%, Ca: 0.0005 to 0.0030 mass%, and each content of Ca, O, and S is represented by the following formula (1) The steel material consisting of Fe and inevitable impurities is heated to 1050-1200 ° C, and the cumulative rolling reduction in the temperature range of 950 ° C or higher is 30% or higher and the cumulative in the temperature range of less than 950 ° C The hot rolling is performed so that the rolling reduction is 30 to 70%, and the pre-cooling from the hot rolling end temperature to the pre-cooling stop temperature of 600 to 450 ° C. is performed at a cooling rate of 7 to 20 ° C./s. The latter stage cooling from the stop temperature of the former stage cooling to the latter stage cooling stop temperature between 450 ° C. and 200 ° C. is performed at a cooling rate of 1 to 7 ° C./s, and then air cooling or gradual cooling is performed. Method for producing a non-heat treated thick high strength steel sheet excellent in weld heat-affected zone toughness in high heat input welding exceeding 300kJ to.
0 <(Ca− (0.18 + 130 × Ca) × O) /1.25/S <1 ---- (1)
However, Ca, O, and S represent content (mass%) of each component.
[0009]
(2) In (1) above, the steel material is further selected from B: 0.0003 to 0.0025 mass% , Cu : 1.0 mass% or less, Ni: 1.5 mass% or less, Cr: 0.7 mass% or less, Mo: 0.7 mass% or less A method of producing a non- tempered thick high-tensile steel sheet having a composition containing at least one kind or two or more kinds and having excellent weld heat affected zone toughness in high heat input welding exceeding 300 kJ .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
First, the experimental results on which the present invention is based will be described.
After heating a steel with the basic components of C: 0.08%, Si: 0.2%, and Mn: 1.5% in mass% to 1150 ° C, the rolling reduction above 950 ° C is 40%, and the cumulative rolling reduction is below 950 ° C. After rolling at a cooling rate of 2 to 25 ° C / s from the end of rolling to 500 ° C at the cooling rate of 2 to 25 ° C / s, and then cooling to 350 ° C at a cooling rate of 3 ° C / s. Subsequent cooling was performed, followed by air cooling to obtain a thick steel plate. About the obtained thick steel plate, the area ratio of the acicular ferrite structure, strength, and toughness were investigated.
FIG. 1 shows the influence of the cooling rate of the pre-stage cooling on the base material characteristics and the acicular-ferrite area ratio. From FIG. 1, as the cooling rate of the pre-stage cooling increases, the strength increases and the toughness (absorbed energy vE-40 at −40 ° C.) decreases. Further, the area ratio of the acicular-ferrite structure increases with an increase in the cooling rate, but the gradient tends to become gentle at about 10 ° C./s. In this way, by increasing the cooling rate of the pre-stage cooling to a certain rate or more, it is possible to suppress polygonal ferrite generated at a relatively high temperature, and to make a structure mainly composed of acicular ferrite, a steel plate with a balance between strength and toughness can be obtained. I found that it can be manufactured.
[0011]
Next, the reason for limitation of each component is demonstrated.
C: 0.05-0.15 mass%
The amount of C needs to be 0.05 mass% in order to obtain the strength required for structural steel, and if it is too much, the occurrence of weld cracks is promoted, so the upper limit is made 0.15 mass%.
[0012]
Si: 0.05-0.50mass%
For Si, 0.05 mass% or more is necessary for steelmaking, and if it exceeds 0.50 mass%, the toughness of the base material deteriorates.
[0013]
Mn: 1.0-2.0 mass%
Mn needs to be 1.0 mass% or more in order to ensure the strength of the base material, and if it exceeds 2.0 mass%, the toughness of the welded portion is significantly deteriorated.
[0014]
P: 0.015 mass% or less When P exceeds 0.015 mass%, the toughness of the weld is deteriorated.
[0015]
S: 0.0050 mass% or less When S is contained in excess of 0.0050 mass%, the toughness of the base material and the welded portion is deteriorated.
[0016]
Al: 0.005 to 0.06 mass%
Al is required to be 0.005 mass% or more in terms of deoxidation of steel, and if it exceeds 0.06 mass%, the toughness of the base metal is lowered and the toughness is reduced by mixing in the weld metal part by dilution during welding. Deteriorate.
[0017]
Nb: 0.01 7mass% or less
Nb is an indispensable element in steel for controlled rolling, and is an effective element for strengthening steel. However, inclusion exceeding 0.017 mass% deteriorates the toughness of the weld.
[0018]
Ti: 0.005 to 0.02 mass%
Ti precipitates as TiN during solidification and contributes to high toughness by suppressing the coarsening of austenite at the weld and ferrite transformation nuclei. If it is less than 0.005 mass%, the effect is small, and if it exceeds 0.02 mass%, the expected effect cannot be obtained due to the coarsening of TiN particles.
[0019]
N: 0.0035-0.0075mass%
N is an element necessary for securing the necessary amount of TiN. If the amount is less than 0.0035 mass%, a sufficient amount of TiN cannot be obtained, and if it exceeds 0.0075 mass%, solid solution in the region where TiN is dissolved by the welding heat cycle. The toughness is significantly reduced due to the increase in N content.
[0020]
Ca: 0.0005 to 0.0030 mass%
Ca is an element having an effect of improving toughness by fixing S. In order to exhibit such an effect, it is necessary to contain at least 0.0005 mass%, but even if it exceeds 0.0030 mass%, the effect is saturated. For this reason, in this invention, it limits to the range of 0.0005 mass% to 0.0030 mass%.
[0021]
0 <(Ca− (0.18 + 130 × Ca) × O) /1.25/S <1 (where Ca, O, S: content of each element (mass%))
Ca and S must be contained so as to satisfy the relationship of 0 <(Ca− (0.18 + 130 × Ca) × O) /1.25/S <1. In this case, it becomes a form of a composite sulfide in which MnS is deposited on CaS. In the case of (Ca− (0.18 + 130 × Ca) × O) /1.25/S≦0, since CaS does not crystallize, S precipitates in the form of MnS alone. This MnS is elongated by rolling at the time of manufacturing the steel sheet to cause a decrease in the toughness of the base material, and fine dispersion in the weld heat affected zone, which is the main point of the present invention, is not achieved. On the other hand, in the case of 1 ≦ (Ca− (0.18 + 130 × Ca) × O) /1.25/S, S is completely fixed by Ca, which is sufficient because MnS acting as a ferrite formation nucleus does not precipitate on CaS. The function is not demonstrated.
[0022]
In the present invention, in order to further enhance the strength and toughness, at least one selected from B 2 , Cu 2 , Ni, Cr, and Mo can be contained.
B: 0.0003-0.0025 mass%
B has the effect of suppressing the ferrite transformation from the grain boundary by segregating at the austenite grain boundary and increasing the strength, but if added over 0.0025%, the toughness deteriorates conversely.
[0024]
Ni: 1.5 mass% or less
Ni increases the strength while maintaining the high toughness of the base material, but it is expensive, so the upper limit was made 1.5%.
[0025]
Cu: 1.0 mass% or less
Cu has the same function as Ni, but if it exceeds 1.0%, it will cause hot brittleness and deteriorate the surface properties of the steel sheet.
[0026]
Cr: 0.7 mass% or less
Cr is an effective element for increasing the strength of the base material, but if it is contained in a large amount, it adversely affects toughness, so the upper limit is set to 0.7 mass%.
[0027]
Mo: 0.7 mass% or less
Mo is an element effective for increasing the strength of the base material, but if it is contained in a large amount, the toughness is adversely affected, so the upper limit is set to 0.7 mass%.
[0028]
Next, the manufacturing process of the present invention will be described. Molten steel having the above composition is melted by a normal method such as a converter, electric furnace, vacuum melting furnace or the like, and used as a rolling material such as a slab by a normal casting method such as a continuous casting method or an ingot-making method. A thick high-strength steel is manufactured from this material by the following process. That is, a steel material whose components are adjusted to the basic composition described above is first heated to a temperature range of 1050 to 1200 ° C. Heating to 1050 ° C. or higher is to completely dissolve Nb carbonitride, while heating to temperatures exceeding 1200 ° C. deteriorates the toughness of the weld due to coarsening of TiN. Therefore, the heating temperature is in the range of 1050 to 1200 ° C.
[0029]
Following the heating of the steel material, hot rolling is performed at a cumulative reduction of 30% or more in a temperature range of 950 ° C. or higher. In this temperature range, the austenite grains are recrystallized by rolling, so that the structure can be made fine. If it is less than 30%, abnormally large grains remain during heating and adversely affect the toughness of the base material, so the lower limit is made 30%.
[0030]
Subsequently, hot rolling is performed at a cumulative reduction of 30 to 70% in a temperature range of less than 950 ° C. In this temperature range, austenite grains do not recrystallize, the austenite grains are deformed flat, and defects such as deformation bands are introduced inside. This stored internal energy is added to the driving force for the subsequent ferrite transformation. When the rolling reduction is less than 30%, the accumulated internal energy is not sufficient, so that ferrite transformation hardly occurs and a bainite structure is generated. On the other hand, at 70% or more, the formation of polygonal ferrite is conversely promoted and the formation of acicular ferrite is suppressed.
[0031]
Cooling after hot rolling is divided into pre-stage cooling and post-stage cooling, and the former cooling rate is relatively larger than that of the latter. That is, in the pre-stage cooling, the temperature range from the hot rolling end temperature to the pre-stage cooling stop temperature between 600 to 450 ° C., preferably from the hot rolling end temperature to the pre-stage cooling stop temperature between 580 to 480 ° C. Is cooled at a cooling rate of 7 to 20 ° C./s, preferably 8 to 16 ° C./s. In the latter stage cooling, the temperature from the stop temperature of the former stage cooling to the latter stage cooling stop temperature between less than 450 to 200 ° C., preferably the temperature from the first stage cooling stop temperature to the latter stage cooling stop temperature between 400 to 300 ° C. The zone is cooled at a cooling rate of less than 1-7 ° C / s, preferably 2-6 ° C / s.
In the pre-stage cooling, if the stop temperature is higher than the upper limit of the stop temperature range, there is almost no increase in strength, and if it is lower than the lower limit, the toughness deteriorates. Further, if the cooling rate is less than the lower limit of the above range, the structure is mainly composed of polygonal ferrite, and the effect of increasing the strength cannot be obtained. If the upper limit of the above range is exceeded, the toughness deteriorates.
Further, in the latter stage cooling, when the cooling stop temperature is higher than the upper limit of the stop temperature range, the amount of increase in strength becomes insufficient, and when the cooling stop temperature is lower than the lower limit, the removal of hydrogen becomes insufficient and hydrogen-induced defects occur. If the cooling rate is less than the lower limit of the above range, there is no effect of increasing the strength. As mentioned above, by controlling the reduction ratio of hot rolling and the two-stage cooling conditions after rolling, especially by increasing the cooling rate of the pre-stage cooling, the base material becomes a structure mainly composed of acicular ferrite, and has excellent strength and toughness. Steel can be manufactured.
[0032]
【Example】
Next, effects of the present invention will be described based on examples.
Using steel slabs adjusted to various component compositions shown in Table 1, steel plates having a thickness of 55 or 65 mm (water-cooled after hot rolling) were produced according to the conditions shown in Tables 2 and 3. Thus, about each obtained thick steel plate, the base material's tensile test and Charpy test were implemented. In the tensile test, JIS No. 4 tensile test specimens were sampled from the position of 1/4 of the thickness of each steel sheet, and yield strength YP and tensile strength TS were obtained. In the Charpy impact test, JIS No. 4 impact test specimens were sampled from the position of 1/4 of the thickness of each steel sheet, and the absorbed energy (vE-40) at -40 ° C was determined.
[0033]
Further, a V-groove was applied to a joint test plate collected from each steel plate, and a welded joint was produced by electrogas arc welding (350 or 450 kJ / cm 2). From these welded joints, JIS No. 4 impact test specimens with the notch position as the bond portion were collected and subjected to a Charpy impact test at a test temperature of −40 ° C. to determine the absorbed energy (vE-40).
[0034]
[Table 1]
Figure 0003644398
[0035]
[Table 2]
Figure 0003644398
[0036]
[Table 3]
Figure 0003644398
[0037]
From these tables, according to the present invention, the yield strength is 390 N / mm 2 or more, the vE-40 has an absorbed energy of 200 J or more, and the strength and toughness of the base material is excellent, and further, electrogas arc welding. The joint bond part has a vE-40 of 85 J or more, and it has excellent weld heat affected zone toughness even if high heat input welding is performed. On the other hand, comparative examples out of the scope of the present invention include a base material with insufficient strength (yield stress 390 N / mm 2 or less), a poor base metal toughness, poor toughness in the heat affected zone, hydrogen cracking, and material variations. At least one of the characteristics is inferior.
[0038]
【The invention's effect】
As described above, according to the present invention, excellent weld heat affected zone toughness can be obtained even in the case of high heat input welding exceeding 300 kJ / cm, yield strength is 390 N / mm 2 or more, and plate thickness exceeds 50 mm. Thick, non-tempered steel can be manufactured at low cost. Therefore, the present invention greatly contributes to an increase in the size of a structure and an improvement in construction efficiency.
[Brief description of the drawings]
FIG. 1 is a graph showing the influence of the cooling rate of the former stage cooling (cooling rate up to a temperature range of 600 to 450 ° C.) on the acicular ferrite area ratio, strength, and toughness.

Claims (2)

C:0.05〜0.15mass%、Si:0.05〜0.50mass%、Mn:1.0〜2.0mass%、P:0.015mass%以下、S:0.0050mass%以下、Al:0.005〜0.06mass%、Nb:0.017mass%以下、Ti:0.005〜0.02mass%、N:0.0035〜0.0075mass%、Ca:0.0005〜0.0030mass%を含み、かつ、Ca、O、Sの各含有量は、下記(1)式を満たして含有し、残部はFeおよび不可避的不純物からなる鋼素材を1050〜1200℃に加熱後、950℃以上の温度域における累積圧下率が30%以上かつ、950℃未満の温度域における累積圧下率が30〜70%となる熱間圧延を施し、熱間圧延終了温度から、600〜450℃間とする前段冷却停止温度までの前段冷却を7〜20℃/sの冷却速度で、該前段冷却の停止温度から、450未満〜200℃間とする後段冷却停止温度までの後段冷却を1〜7℃/s未満の冷却速度で行い、その後は空冷または徐冷することを特徴とする300kJ を超える大入熱溶接における溶接熱影響部靱性に優れた非調質厚肉高張力鋼板の製造方法。

0 <(Ca−(0.18+130 × Ca)×O)/1.25/S < 1 ---- (1)
ただし、Ca、O、Sは各成分の含有量(mass%)を表す。
C: 0.05 to 0.15 mass%, Si: 0.05 to 0.50 mass%, Mn: 1.0 to 2.0 mass%, P: 0.015 mass% or less, S: 0.0050 mass% or less, Al: 0.005 to 0.06 mass%, Nb: 0.017 mass %, Ti: 0.005 to 0.02 mass%, N: 0.0035 to 0.0075 mass%, Ca: 0.0005 to 0.0030 mass%, and each content of Ca, O, and S satisfies the following formula (1) Contain the balance after heating steel material consisting of Fe and unavoidable impurities to 1050-1200 ° C, the cumulative reduction rate in the temperature range of 950 ° C or higher is 30% or more and the cumulative reduction rate in the temperature range of less than 950 ° C is 30% to 70% hot rolling is performed, and the preceding stage cooling from the hot rolling end temperature to the preceding stage cooling stop temperature of 600 to 450 ° C. is performed at a cooling rate of 7 to 20 ° C./s. The second stage cooling from the stop temperature to the second stage cooling stop temperature between 450 ° C. and 200 ° C. is performed at a cooling rate of 1 to 7 ° C./s, and then air cooling or gradual cooling is performed. A manufacturing method for non- tempered thick high-tensile steel sheets with excellent weld heat affected zone toughness in high heat input welding exceeding 300kJ .
0 <(Ca− (0.18 + 130 × Ca) × O) /1.25/S <1 ---- (1)
However, Ca, O, and S represent content (mass%) of each component.
請求項1において鋼素材が、さらにB:0.0003〜0.0025mass% Cu:1.0mass%以下、Ni:1.5mass%以下、Cr:0.7mass%以下、Mo:0.7mass%以下から選ばれる少なくとも1種または2種以上を含有する組成になる、300kJ を超える大入熱溶接における溶接熱影響部靱性に優れた非調質厚肉高張力鋼板の製造方法。The steel material according to claim 1, further comprising at least one selected from B: 0.0003 to 0.0025 mass% , Cu : 1.0 mass% or less, Ni: 1.5 mass% or less, Cr: 0.7 mass% or less, Mo: 0.7 mass% or less. Alternatively , a method for producing a non- tempered thick-walled high-tensile steel sheet having a composition containing two or more and excellent in weld heat-affected zone toughness in high heat input welding exceeding 300 kJ .
JP2001089295A 2001-03-27 2001-03-27 Manufacturing method of non-tempered thick high-tensile steel sheet with excellent weld heat-affected zone toughness Expired - Fee Related JP3644398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001089295A JP3644398B2 (en) 2001-03-27 2001-03-27 Manufacturing method of non-tempered thick high-tensile steel sheet with excellent weld heat-affected zone toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001089295A JP3644398B2 (en) 2001-03-27 2001-03-27 Manufacturing method of non-tempered thick high-tensile steel sheet with excellent weld heat-affected zone toughness

Publications (2)

Publication Number Publication Date
JP2002285239A JP2002285239A (en) 2002-10-03
JP3644398B2 true JP3644398B2 (en) 2005-04-27

Family

ID=18944247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001089295A Expired - Fee Related JP3644398B2 (en) 2001-03-27 2001-03-27 Manufacturing method of non-tempered thick high-tensile steel sheet with excellent weld heat-affected zone toughness

Country Status (1)

Country Link
JP (1) JP3644398B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101019791B1 (en) * 2002-12-24 2011-03-04 신닛뽄세이테쯔 카부시키카이샤 High strength steel sheet exhibiting good burring workability and excellent resistance to softening in heat-affected zone
JP4539100B2 (en) * 2004-02-03 2010-09-08 Jfeスチール株式会社 Super high heat input welded heat affected zone
JP4507669B2 (en) * 2004-03-31 2010-07-21 Jfeスチール株式会社 Manufacturing method of low yield ratio steel for low temperature with excellent weld toughness
JP5287553B2 (en) * 2009-07-02 2013-09-11 新日鐵住金株式会社 Non-tempered high-tensile steel plate with yield strength of 885 MPa or more and method for producing the same
JP5842574B2 (en) * 2011-11-28 2016-01-13 Jfeスチール株式会社 Manufacturing method of steel for large heat input welding
KR101767771B1 (en) 2015-12-22 2017-08-14 주식회사 포스코 The steel sheet for welding structure having excellent heat affected zone toughness and method for manufacturing the same

Also Published As

Publication number Publication date
JP2002285239A (en) 2002-10-03

Similar Documents

Publication Publication Date Title
JP4946092B2 (en) High-strength steel and manufacturing method thereof
JP5076658B2 (en) Steel material for large heat input welding
JPH11140582A (en) High toughness thick steel plate excellent in toughness in weld heat-affected zone, and its production
JP2002235114A (en) Method for producing thick high tensile strength steel excellent in toughness of high heat input weld zone
EP1533392A1 (en) Steel product for high heat input welding and method for production thereof
JP4035990B2 (en) Super high heat input welding HAZ toughness and low yield ratio steel plate for building structure and method for producing the same
JP2005068519A (en) Method for producing high strength thick steel plate for building structure, having excellent toughness to super-large heat input welding-affected zone
JP3546308B2 (en) Large heat input welding steel
JP4981262B2 (en) Manufacturing method of low yield ratio steel for low temperature with excellent weld toughness
JP4096839B2 (en) Manufacturing method of high yield thick steel plate with low yield ratio and excellent toughness of heat affected zone
JP2005187853A (en) Method for producing high strength thick steel plate excellent in toughness in extra-high heat input welded-heat affected part
JP3733898B2 (en) Manufacturing method of thick high-tensile steel with excellent heat input weld toughness
JP4507669B2 (en) Manufacturing method of low yield ratio steel for low temperature with excellent weld toughness
JP3644398B2 (en) Manufacturing method of non-tempered thick high-tensile steel sheet with excellent weld heat-affected zone toughness
JP5233364B2 (en) Steel material for large heat input welding
JP4144123B2 (en) Non-tempered high-tensile steel with excellent base material and weld heat-affected zone toughness
JP4539100B2 (en) Super high heat input welded heat affected zone
JP4066850B2 (en) Method for producing high-tensile steel with excellent CTOD characteristics of welds
JP4066879B2 (en) Manufacturing method of thick-walled high-tensile steel plate with excellent weld heat affected zone CTOD characteristics
JP2003221643A (en) Steel product showing excellent toughness of heat- affected zone in ultra-high heat input welding
JP4144121B2 (en) Non-tempered high strength steel with excellent toughness of base metal and weld heat affected zone
JP3635803B2 (en) Method for producing high-tensile steel with excellent toughness
JP4039223B2 (en) Thick steel plate with excellent super tough heat input weld heat affected zone toughness and method for producing the same
JP3941596B2 (en) Manufacturing method of steel plate for building structure
JP3733922B2 (en) Manufacturing method of thick high-strength steel sheet with excellent heat-affected zone toughness of super high heat input welding

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3644398

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees