JP3644216B2 - Manufacturing method of high carbon hot rolled steel sheet - Google Patents

Manufacturing method of high carbon hot rolled steel sheet Download PDF

Info

Publication number
JP3644216B2
JP3644216B2 JP29452697A JP29452697A JP3644216B2 JP 3644216 B2 JP3644216 B2 JP 3644216B2 JP 29452697 A JP29452697 A JP 29452697A JP 29452697 A JP29452697 A JP 29452697A JP 3644216 B2 JP3644216 B2 JP 3644216B2
Authority
JP
Japan
Prior art keywords
hot
transformation
rolling
coil
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29452697A
Other languages
Japanese (ja)
Other versions
JPH11131137A (en
Inventor
真次郎 金子
一洋 瀬戸
修 古君
隆史 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP29452697A priority Critical patent/JP3644216B2/en
Publication of JPH11131137A publication Critical patent/JPH11131137A/en
Application granted granted Critical
Publication of JP3644216B2 publication Critical patent/JP3644216B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、機械構造用、工具用等に用いられる高炭素鋼板または高炭素合金鋼板の製造方法に関する。
【0002】
【従来の技術】
高炭素鋼板は、機械構造用、あるいは特殊用途用、例えば、工具、ばね、軸受用として利用され、焼入れ、焼なましなどの熱処理により強度、硬さや靱性などの特性を、要求特性に合致するように調整される。
これらの高炭素鋼板は、熱間圧延のままでは、フェライト・パーライトまたはパーライト組織を呈するのが一般的である。しかし、コイル巻取り前に変態が完了しない場合には、コイル内の各位置で冷却速度が異なるため、コイル内各位置で材質、とくに硬さの不均一を生じることが多い。一方、コイル巻取り前にパーライト変態を完了させる時間を確保しようとすると、ホットランテーブルを長くするか、通板速度を低下させる必要がある。しかし、通板速度の低下は生産効率を低下させ、生産性向上という最近の動向とは逆となる。また、ホットランテーブルの延長は、最近の高速通板の状況下では、変態を完了させるためには非常に長くする必要があり、レイアウト上問題がある。
【0003】
このような問題に対し、圧延条件やコイル巻取りまでの冷却条件を調整して、コイル巻取りまでにパーライト変態を進行させようとする技術が特開平3-174909号公報、特開平5-105961号公報に開示されている。
特開平3-174909号公報には、C:0.5 〜1.50%を含む高炭素鋼を熱間圧延後、ホットランテーブル上で冷却したのち巻取るに際し、ホットランテーブルを加速冷却ゾーンと空冷ゾーンとに分割するとともに、加速冷却の冷却停止温度を通板速度あるいはさらに鋼板組成(C、Si、Mn)により規定される臨界温度以下550 ℃以上とし、変態を完了させたのち巻取りコイル内の材質を均一化させる、高炭素鋼ホットコイルの製造方法が開示されている。しかし、この方法は、加速冷却中にパーライト変態をかなり進行させるべく制御するため、多様な鋼種、圧延条件に十分対応しうるものではなく、とくに焼入れ強度の増加の目的でCr、Ni、B等を添加し、パーライト変態挙動が著しく遅れる場合には、十分な効果を発揮できないという問題を残していた。
【0004】
また、特開平5-105961号公報には、熱間仕上圧延を700 〜800 ℃の温度域で終了し、ついで鋼成分により規定される冷却停止温度域まで加速冷却を施し、コイル巻取り前の変態を促進させ、材質を均一化させる高炭素鋼帯の製造方法が開示されている。しかしながら、この方法では、熱間圧延が、高変形抵抗温度域(低温)での圧延を含んでおり、圧延負荷が大きく操業上困難を伴ううえに、圧延条件、成分によっては巻取り前に変態が完了しない場合が生じ問題を残していた。
【0005】
【発明が解決しようとする課題】
本発明は、上記問題を解決し、コイル巻取り前にパーライト変態を安定して完了させ、材質均一性に優れた熱延高炭素鋼板を安定して製造する方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、圧延終了後パーライト変態挙動は、圧延条件、鋼組成、冷却条件に関連して変化することを見いだした。すなわち、
▲(1) ▼熱間圧延の仕上圧延温度および最終スタンド圧下率が、圧延終了後のパーライト変態に大きな影響を及ぼし、パーライト変態の促進のためには、仕上圧延温度を低温化する、あるいは最終スタンドで高圧下圧延を行うのが好ましい。
【0007】
▲(2) ▼熱間圧延後のパーライト変態は、ある特定の温度域で著しく促進される。
▲(3) ▼パーライト変態挙動は、添加される合金成分に大きく影響される。
という知見を得た。
本発明者らは、上記した知見をもとに、さらに検討を加えた結果、コイル巻取りまでに安定してパーライト変態を完了させるためには、(i) 仕上圧延温度および最終スタンド圧下率を所定の関係式に基づき調整すること、(ii)鋼成分、圧延条件、に関連する所定の関係式に基づいてホットランテーブル上に滞留する時間を調整する必要があることに想到した。一方、ホットランテーブル上の滞留時間が制限される場合には、上記関係式に基づき実施可能な滞留時間以下となるように圧延条件を調整すれば、コイル巻取り前にパーライト変態が完了することになる。
【0008】
本発明は、上記した知見をもとに構成されたものである。
すなわち、本発明は、重量%で、C:0.5 超〜 1.5%、Si:0.1 〜 2.2%、Mn:0.1 〜 1.7%を含有し、さらに、Cr:0.2 〜 1.2%、Ni:0.4 〜 2.0%、Mo:0.1 〜 0.7%、B:0.0005〜 0.003%のうちから選ばれた1種または2種以上を含有し、残部がFeおよび不可避的不純物からなる組成の鋼素材を、Ar3点以上の温度域で、かつ仕上げ圧延温度Tf (℃)および仕上げ圧延最終スタンド圧下率Rf (%)が次(1)式
{(Tf /300 −Rf /60)−2.5 }≦0.25 …………(1)
を満足するように熱間圧延を施したのち、ホットランテーブル上の滞留時間t(sec )が次(2)式
t≧t* …………(2)
(ここに、logt* =Tf /300 −Rf /60−1.5 +β、β= 0.4(Si%−0.2 )+ 0.6(Mn%−0.5 )+ 0.2(Ni %) + 0.6(Cr %) + 0.7(Mo %) +50( B%) − 0.7|C%−0.77|)を満足するように調整された条件下で、ホットランテーブル上で、600 〜650 ℃の温度域まで強制冷却し、好ましくは、変態開始前のオーステナイト粒径を20μm 以下に制御しその後空冷する冷却を行い、変態を完了させたのち巻取ることを特徴とする高炭素熱延鋼板の製造方法である。
【0009】
【発明の実施の形態】
まず、本発明に用いる鋼素材の化学組成の限定理由について説明する。
C:0.5 超〜 1.5%
Cは焼入れ性を向上させる元素であり、焼入れ後の硬度を増加させ、耐磨耗性を向上させる。C含有量は所望の特性に応じ調整されるが、0.5 %以下では、所望の硬さ、焼入れ性が確保できない。一方、 1.5%を超えると硬度、耐磨耗性の増加が飽和する。このため、Cは0.5 超〜 1.5%の範囲に限定した。
【0010】
Si:0.1 〜 2.2%
Siは、焼入れ性を向上させる元素であり、0.1 %未満では、その効果が小さく、 2.2%を超えるとその効果が飽和するうえ表面性状や耐食性を劣化させる。このため、Siは0.1 〜 2.2%の範囲に限定した。
Mn:0.1 〜 1.7%
Mnは焼入れ性を向上させる元素であり、焼入れ後の耐磨耗性を向上させ、さらにSと結合しMnS を形成し固溶Sを減少させる作用を有している。0.1 %未満ではその効果が小さく、固溶Sが増大し鋼の脆化を招く。一方 1.7%を超えると焼入れ後の靱性が劣化する。このため、Mnは0.1 〜 1.7%の範囲に限定した。
【0011】
Cr:0.2 〜 1.2%、Ni:0.4 〜 2.0%、Mo:0.1 〜 0.7%、B:0.0005〜 0.003%のうちから選ばれた1種または2種以上
Cr、Ni、Mo、Bはいずれも鋼の焼入れ性を高め、鋼の強度を増加させる元素であり1種または2種以上添加できる。
Crは、鋼の焼入れ性を高め、さらに焼入れ後の耐磨耗性を向上させる。0.2 %未満ではその効果が小さく、一方、3.5 %を超えるとその効果が飽和するうえCr炭化物量が多くなり鋼を脆化させる。このため、Crは、0.2 〜 1.2%の範囲とする。
【0012】
Niは、鋼の焼入れ性を高め、同時に焼入れ後の靱性を向上させ、鋼の軟質化にも効果がある。 0.4%より少ないとその効果が小さく、 2.0%を超えるとその効果が飽和する。このため、Niは、0.4 〜 2.0%の範囲とする。
Moは鋼の焼入れ性を高め、さらに焼入れ後の靱性を向上させる。0.1 %未満ではその効果が小さく、 0.7%を超えるとその効果が飽和する。このため、Moは0.1 〜 0.7%の範囲とする。
【0013】
Bは、鋼の焼入れ性を高め、さらに焼入れ後の靱性を向上させる。0.0005%未満ではその効果が小さく、 0.003%を超えるとその効果が飽和するうえ靱性が劣化する。このため、Bは0.0005〜 0.003%の範囲とする。
残部はFeおよび不可避的不純物からなる。不可避的不純物は、できるだけ低減するのが好ましいが、Pは0.05%、Sは0.05%まで許容できる。
【0014】
P:0.05%以下
Pは焼入れ後の靱性を劣化させるうえに低温で鋼を脆化させる元素であるため、できるだけ低減するのが望ましいが、0.05%までは許容できるため、0.05%を上限とした。
S:0.05%以下
Sは固溶状態で存在すると焼入れ後の靱性を劣化させるうえ赤熱状態で鋼を脆化させる元素であるため、できるだけ低減するのが望ましいが、0.05%までは許容できるため、0.05%を上限とした。
【0015】
つぎに、製造方法について説明する。
上記した組成の鋼を溶製し、連続鋳造法または造塊、分塊法によりスラブとする。スラブに熱間粗圧延を施しシートバーとした後、仕上げ圧延を行う。
仕上げ圧延温度はAr3変態点以上とする。
仕上げ圧延温度をAr3変態点以上とすることにより、仕上げ圧延中の変態を抑制し、加工組織の残存を防止する。これにより鋼板の硬質化およびそれに起因する板割れなどの問題を回避することができる。
【0016】
仕上げ圧延においては、仕上げ圧延温度Tf (℃)および仕上げ圧延最終スタンド圧下率Rf (%)が次(1)式
{(Tf /300 −Rf /60)−2.5 }≦0.25 …………(1)
を満足するように仕上げ圧延を施す。
(1)式を満足させるためには、仕上げ圧延温度をできるだけ低温とし、仕上げ圧延最終スタンド圧下率をできるだけ高くとるのが好ましい。仕上げ圧延温度の低温化、最終スタンド圧下率の増加は、(1)式左辺の値を低減させ、(1)式を満足させ易くする。仕上げ圧延温度の低温化、最終スタンド圧下率の増加はいずれもオーステナイト粒を微細化する効果がある。オーステナイト粒界はパーライト変態核としての機能があり、粒界面積の増加は変態核の増加に繋がる。したがって、オーステナイト粒の微細化はパーライト変態を促進することになる。
【0017】
(1)式が満たされた場合には、変態前のオーステナイト粒を微細化することができ、パーライト変態が促進され、ホットランテーブル上で変態が完了しやすくなり、コイル内の材質が均一化される。(1)式が満たされない場合には、その後の工程によらず、コイル巻取りまでに変態を完了させることが困難となり、コイル内の材質が不均一となる。
【0018】
(1)式の左辺、α=(Tf /300 −Rf /60)−2.5 と、熱延コイル内の硬さばらつきΔHv の関係を図1に示す。αが0.25以下の場合に、硬さばらつきが15以下となり、コイル内の材質の均一性が向上する。この範囲外では、コイル内の材質ばらつきが増加している。この図のデータは、仕上げ圧延後600 〜650 ℃まで水冷したのち空冷し巻取ったコイルについて測定したものである。
【0019】
なお、オーステナイトの微細化は、上記した仕上げ圧延条件に加えて、圧延終了後、パーライト変態開始温度まで急冷し、オーステナイト粒の成長を抑制することもまた必要である。
仕上げ圧延を終了した熱延鋼板は、ホットランテーブル上で600 〜650 ℃の温度域まで強制冷却し、その後空冷する冷却を施される。この温度域まで強制冷却する理由は、オーステナイト粒の成長を抑制し、さらにパーライト変態の進行速度が速い温度域まで空冷を行うことにより、効率よく変態を進行させるためである。強制冷却の冷却停止温度が650 ℃を超える場合には、パーライト変態が著しく遅延し、ホットランテーブル上で十分に変態を完了させることができない。一方、強制冷却の冷却停止温度が600 ℃未満では、ベイナイト、マルテンサイトといった硬質な相が析出しやすくなり、板割れ、材質のばらつきなどの不具合を生じ、生産性、歩留り等を低下させる。
【0020】
なお、強制冷却時の冷却速度はとくに限定しないが、オーステナイト粒の成長を抑制し、変態開始前のオーステナイト粒径を20μm 以下に制御できればよい。このためには、強制冷却は、水冷とするのが好ましく、冷却速度は15℃/sec以上150 ℃/sec以下とするのが好ましい。変態開始時のオーステナイト粒径が20μm を超えると、変態の進行が遅れ、ホットランテーブル上で充分変態を完了させることが困難になる。
【0021】
仕上げ圧延を施され、600 〜650 ℃の温度域まで強制冷却された熱延鋼板は、ついで、ホットランテーブル上を搬送され巻取られるまで空冷される。空冷中に変態が開始され、コイル巻取り前までに変態が完了する。
本発明では、ホットランテーブル上で変態が完了するように、ホットランテーブル上の熱延鋼板の滞留時間t(sec )を、鋼組成、圧延条件と関連づけて調整する。
【0022】
ホットランテーブル上の滞留時間t(sec )は、次(2)式
t≧t* …………(2)
ここに、logt* =Tf /300 −Rf /60−1.5 +β、
β= 0.4(Si%−0.2 )+ 0.6(Mn%−0.5 )+ 0.2(Ni %) + 0.6(Cr %) + 0.7(Mo %) +50( B%) − 0.7|C%−0.77|)
の関係を満たすように調整される。
【0023】
ホットランテーブル上の熱延鋼板の滞留時間tは、t=(ホットランテーブル長さ)/(ホットランテーブル通板速度)、で表され、ホットランテーブル通板速度を変更することにより、tが調整できる。(2)式を満足する条件下で、ホットランテーブル上を通板することにより、コイル巻取りまでにパーライト変態が完了し、コイル内の材質が均一となる。tがt* 未満の場合には、ホットランテーブル上でパーライト変態が十分進行しないため、コイル内の材質均一性が低下する。
【0024】
【実施例】
表1に示す組成の鋼スラブを、加熱し熱間粗圧延を経て40mm厚のシートバーとした。ついでこれらシートバーに表2に示す条件で仕上げ圧延を施し、2.0mm 厚の熱延板としたのち、表2に示す冷却停止温度まで水冷し、その後空冷してコイルに巻取った。得られた各鋼板について、硬さばらつき、旧オーステナイト粒径を測定した。
【0025】
硬さばらつきは、各鋼板について、板厚中心部のビッカース硬度(Hv)をコイル全長、全幅について測定し、このコイル内の硬さの最大値(Hvmax)と最小値(Hvmin)の差をとり、これをコイル内の平均値(Hvav )で割った、ΔHv(=(Hvmax−Hvmin)/Hvav )で評価した。なお、ビッカース硬さHvの測定にあたっては、鋼板断面を研磨により平滑化し、試験荷重:1kgf で行った。
【0026】
旧オーステナイト粒径は、上記した研磨試料について、ピクリン酸飽和水溶液に界面活性剤を添加したエッチング液を用いて、旧オーステナイト粒界を現出させて測定した。結晶粒径の測定は、ASTM規定に準じ切断法を用いて行った。
【0027】
【表1】
【0028】
【表2】
【0029】
表2から、本発明例の熱延鋼板は、いずれも旧オーステナイト粒径が20μm 以下となり、硬度のばらつきΔHv が著しく小さく、コイル内の硬さが均一であることがわかる。これに比べ、本発明の範囲を外れる比較例は、ΔHv が大きく、コイル内の硬さばらつきが大きい。
【0030】
【発明の効果】
本発明によれば、コイル巻取り前にパーライト変態を完了させることができ、コイル内の材質均一性に優れた熱延高炭素鋼板を安定して製造できる。また、本発明は、生産性、歩留り向上に寄与すること大であり、産業上格段の効果を奏する。
【図面の簡単な説明】
【図1】コイル内の硬度ばらつきΔHv とαの関係を示すグラフである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a high carbon steel plate or a high carbon alloy steel plate used for machine structures, tools and the like.
[0002]
[Prior art]
High-carbon steel sheets are used for machine structures or special applications such as tools, springs, and bearings, and meet the required characteristics such as strength, hardness and toughness by heat treatment such as quenching and annealing. To be adjusted.
In general, these high carbon steel sheets exhibit a ferrite pearlite or pearlite structure as hot rolled. However, when the transformation is not completed before winding the coil, the cooling rate is different at each position in the coil, and therefore the material, especially the hardness, is often uneven at each position in the coil. On the other hand, in order to secure the time for completing the pearlite transformation before winding the coil, it is necessary to lengthen the hot run table or reduce the sheet passing speed. However, the decrease in the sheet feeding speed decreases the production efficiency, which is contrary to the recent trend of improving productivity. Further, the extension of the hot run table needs to be very long in order to complete the transformation under the recent high-speed threading situation, which causes a problem in layout.
[0003]
In order to solve these problems, Japanese Patent Application Laid-Open No. 3-174909 and Japanese Patent Application Laid-Open No. 5-105961 disclose techniques for adjusting the rolling conditions and the cooling conditions until coil winding to advance the pearlite transformation before coil winding. It is disclosed in the gazette.
In Japanese Patent Laid-Open No. 3-174909, when a high carbon steel containing C: 0.5 to 1.50% is hot-rolled and then cooled on a hot run table, the hot run table is divided into an acceleration cooling zone and an air cooling zone. At the same time, the cooling stop temperature of accelerated cooling is passed through the plate speed or further below the critical temperature specified by the steel plate composition (C, Si, Mn) and above 550 ℃, and after the transformation is completed, the material in the winding coil is uniform A method for producing a high carbon steel hot coil is disclosed. However, since this method controls the pearlite transformation to proceed considerably during accelerated cooling, it cannot sufficiently cope with various steel types and rolling conditions, and particularly Cr, Ni, B, etc. for the purpose of increasing the quenching strength. When the pearlite transformation behavior is significantly delayed, a problem remains that the sufficient effect cannot be exhibited.
[0004]
Japanese Patent Laid-Open No. 5-105961 discloses that hot finish rolling is finished in a temperature range of 700 to 800 ° C., and then accelerated cooling is performed up to a cooling stop temperature range defined by a steel component, before coil winding. A method for producing a high carbon steel strip that promotes transformation and makes the material uniform is disclosed. However, in this method, the hot rolling includes rolling in a high deformation resistance temperature range (low temperature), and the rolling load is large and difficult to operate. In addition, depending on the rolling conditions and components, transformation before winding is performed. Could not be completed and left a problem.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned problems, to stably complete pearlite transformation before coil winding, and to provide a method for stably producing a hot-rolled high carbon steel sheet having excellent material uniformity. .
[0006]
[Means for Solving the Problems]
As a result of intensive studies in order to solve the above problems, the present inventors have found that the pearlite transformation behavior after rolling changes in relation to rolling conditions, steel composition, and cooling conditions. That is,
▲ (1) ▼ finishing up rolling temperature and the final stand reduction ratio in hot rolling, have a significant impact on pearlite transformation after rolling completion, to promote the pearlite transformation, a low temperature the finish down rolling temperature, Alternatively, it is preferable to perform rolling under high pressure at the final stand.
[0007]
(2) The pearlite transformation after hot rolling is significantly promoted in a specific temperature range.
(3) The pearlite transformation behavior is greatly influenced by the added alloy composition.
I got the knowledge.
The present inventors, on the basis of the findings described above, further investigation was added result, in order to complete the stable pearlitic transformation by coiling is (i) finish up rolling temperature and the final stand rolling reduction It has been conceived that it is necessary to adjust the dwell time on the hot run table based on a predetermined relational expression related to (ii) steel components and rolling conditions. On the other hand, if the residence time on the hot run table is limited, the pearlite transformation can be completed before coil winding if the rolling conditions are adjusted to be less than the residence time that can be performed based on the above relational expression. Become.
[0008]
The present invention is configured based on the above-described knowledge.
That is, the present invention contains, by weight percentage, C: more than 0.5 to 1.5%, Si: 0.1 to 2.2%, Mn: 0.1 to 1.7%, Cr: 0.2 to 1.2%, Ni: 0.4 to 2.0% , Mo: 0.1 to 0.7%, B: 0.0005 to 0.003% of one or more selected from steel composition of the composition consisting of Fe and inevitable impurities with the balance of Ar 3 points or more In the temperature range, the finish rolling temperature Tf (° C.) and the finish rolling final stand reduction ratio Rf (%) are expressed by the following formula (1) {(Tf / 300−Rf / 60) −2.5} ≦ 0.25 (1) )
After performing hot rolling so as to satisfy the above, the residence time t (sec) on the hot run table is expressed by the following equation (2):
t ≧ t * (2)
(Where logt * = Tf / 300−Rf / 60−1.5 + β, β = 0.4 (Si% −0.2) +0.6 (Mn% −0.5) +0.2 (Ni%) + 0.6 (Cr%) + 0.7 ( Mo%) +50 (B%) −0.7 | C% −0.77 |), and forcibly cooled to a temperature range of 600 to 650 ° C. on a hot run table, preferably transformation A method for producing a high-carbon hot-rolled steel sheet, characterized in that the austenite grain size before the start is controlled to 20 μm or less, and then cooling by air cooling is performed, and after completion of transformation, winding is performed.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
First, the reasons for limiting the chemical composition of the steel material used in the present invention will be described.
C: Over 0.5 to 1.5%
C is an element that improves hardenability, increases the hardness after quenching, and improves wear resistance. The C content is adjusted according to the desired properties, but if it is 0.5% or less, the desired hardness and hardenability cannot be ensured. On the other hand, if it exceeds 1.5%, the increase in hardness and wear resistance will be saturated. For this reason, C was limited to the range of more than 0.5 to 1.5%.
[0010]
Si: 0.1-2.2%
Si is an element that improves hardenability. If it is less than 0.1%, the effect is small, and if it exceeds 2.2%, the effect is saturated and the surface properties and corrosion resistance deteriorate. For this reason, Si was limited to the range of 0.1 to 2.2%.
Mn: 0.1 to 1.7%
Mn is an element that improves hardenability, and has the effect of improving wear resistance after quenching, and further combining with S to form MnS to reduce solid solution S. If it is less than 0.1%, the effect is small, so that the solid solution S increases and the steel becomes brittle. On the other hand, if it exceeds 1.7%, the toughness after quenching deteriorates. For this reason, Mn was limited to the range of 0.1 to 1.7%.
[0011]
One or more selected from Cr: 0.2-1.2%, Ni: 0.4-2.0%, Mo: 0.1-0.7%, B: 0.0005-0.003%
Cr, Ni, Mo, and B are all elements that increase the hardenability of the steel and increase the strength of the steel, and can be added alone or in combination of two or more.
Cr improves the hardenability of steel and further improves the wear resistance after quenching. If the content is less than 0.2%, the effect is small. On the other hand, if the content exceeds 3.5%, the effect is saturated and the amount of Cr carbide increases and the steel becomes brittle. For this reason, Cr is made into the range of 0.2 to 1.2%.
[0012]
Ni increases the hardenability of the steel and at the same time improves the toughness after quenching, and is effective in softening the steel. If it is less than 0.4%, the effect is small, and if it exceeds 2.0%, the effect is saturated. For this reason, Ni is made into the range of 0.4 to 2.0%.
Mo increases the hardenability of the steel and further improves the toughness after quenching. If the content is less than 0.1%, the effect is small, and if it exceeds 0.7%, the effect is saturated. For this reason, Mo is made 0.1 to 0.7% in range.
[0013]
B improves the hardenability of steel and further improves the toughness after quenching. If it is less than 0.0005%, the effect is small, and if it exceeds 0.003%, the effect is saturated and toughness deteriorates. For this reason, B is taken as 0.0005 to 0.003% of range.
The balance consists of Fe and inevitable impurities. Inevitable impurities are preferably reduced as much as possible, but P is acceptable up to 0.05% and S is acceptable up to 0.05%.
[0014]
P: 0.05% or less P is an element that deteriorates toughness after quenching and embrittles steel at a low temperature, so it is desirable to reduce it as much as possible, but 0.05% is acceptable, so 0.05% was made the upper limit. .
S: 0.05% or less Since S is an element that deteriorates toughness after quenching when it exists in a solid solution state and embrittles steel in a red hot state, it is desirable to reduce it as much as possible, but 0.05% is acceptable, The upper limit was 0.05%.
[0015]
Next, a manufacturing method will be described.
The steel having the above composition is melted and formed into a slab by a continuous casting method, ingot forming, or ingot method. Hot rough rolling is performed on the slab to form a sheet bar, and then finish rolling is performed.
The finish rolling temperature is not less than the Ar 3 transformation point.
By making the finish rolling temperature equal to or higher than the Ar 3 transformation point, the transformation during finish rolling is suppressed and the remaining of the processed structure is prevented. As a result, problems such as hardening of the steel plate and cracking due to it can be avoided.
[0016]
In finish rolling, the finish rolling temperature Tf (° C.) and the finish rolling final stand reduction ratio Rf (%) are expressed by the following equation (1) {(Tf / 300−Rf / 60) −2.5} ≦ 0.25 (1) )
Finish rolling to satisfy
In order to satisfy the formula (1), it is preferable that the finish rolling temperature is as low as possible and the finish rolling final stand reduction ratio is as high as possible. Lowering the finish rolling temperature and increasing the final stand reduction ratio reduce the value on the left side of equation (1) and make it easier to satisfy equation (1). Both lowering the finish rolling temperature and increasing the final stand reduction ratio have the effect of refining austenite grains. Austenite grain boundaries function as pearlite transformation nuclei, and an increase in grain interfacial area leads to an increase in transformation nuclei. Therefore, refinement of austenite grains promotes pearlite transformation.
[0017]
When the formula (1) is satisfied, austenite grains before transformation can be refined, pearlite transformation is promoted, transformation is easily completed on the hot run table, and the material in the coil is made uniform. The When the formula (1) is not satisfied, it becomes difficult to complete transformation by coil winding regardless of the subsequent steps, and the material in the coil becomes uneven.
[0018]
FIG. 1 shows the relationship between the left side of equation (1), α = (Tf / 300−Rf / 60) −2.5, and the hardness variation ΔHv in the hot rolled coil. When α is 0.25 or less, the hardness variation is 15 or less, and the uniformity of the material in the coil is improved. Outside this range, material variations within the coil increase. The data in this figure was measured with respect to a coil that was water-cooled to 600 to 650 ° C. after finish rolling and then air-cooled and wound.
[0019]
In addition to the above-described finish rolling conditions, the austenite refinement needs to be rapidly cooled to the pearlite transformation start temperature after rolling to suppress the growth of austenite grains.
The hot-rolled steel sheet that has undergone finish rolling is forcibly cooled to a temperature range of 600 to 650 ° C. on a hot run table, and then cooled by air. The reason for forcibly cooling to this temperature range is to suppress the growth of austenite grains and to allow the air to cool to a temperature range where the progress rate of the pearlite transformation is high, thereby allowing the transformation to proceed efficiently. When the cooling stop temperature of forced cooling exceeds 650 ° C., the pearlite transformation is significantly delayed, and the transformation cannot be completed sufficiently on the hot run table. On the other hand, if the cooling stop temperature of forced cooling is less than 600 ° C., a hard phase such as bainite and martensite is likely to precipitate, causing problems such as sheet cracking and material variations, and lowering productivity and yield.
[0020]
The cooling rate at the time of forced cooling is not particularly limited as long as the growth of austenite grains can be suppressed and the austenite grain diameter before the start of transformation can be controlled to 20 μm or less. For this purpose, the forced cooling is preferably water cooling, and the cooling rate is preferably 15 ° C./sec or more and 150 ° C./sec or less. If the austenite grain size at the start of transformation exceeds 20 μm, the progress of transformation is delayed and it becomes difficult to complete transformation on the hot run table.
[0021]
The hot-rolled steel sheet that has been subjected to finish rolling and forcibly cooled to a temperature range of 600 to 650 ° C. is then air-cooled until it is conveyed and wound on the hot run table. Transformation is started during air cooling, and transformation is completed before coil winding.
In the present invention, the residence time t (sec) of the hot-rolled steel sheet on the hot run table is adjusted in association with the steel composition and rolling conditions so that the transformation is completed on the hot run table.
[0022]
The residence time t (sec) on the hot run table is expressed by the following equation (2) t ≧ t * (2)
Where logt * = Tf / 300-Rf / 60-1.5 + β,
β = 0.4 (Si% -0.2) + 0.6 (Mn% -0.5) + 0.2 (Ni%) + 0.6 (Cr%) + 0.7 (Mo%) +50 (B%)-0.7 | C% -0.77 |)
It is adjusted to satisfy the relationship.
[0023]
The residence time t of the hot-rolled steel sheet on the hot run table is expressed by t = (hot run table length) / (hot run table passing speed), and t can be adjusted by changing the hot run table passing speed. By passing the plate on the hot run table under the condition that satisfies the expression (2), the pearlite transformation is completed before the coil is wound, and the material in the coil becomes uniform. When t is less than t * , the pearlite transformation does not proceed sufficiently on the hot run table, so that the material uniformity in the coil decreases.
[0024]
【Example】
The steel slab having the composition shown in Table 1 was heated and subjected to hot rough rolling to obtain a 40 mm thick sheet bar. Subsequently, these sheet bars were finish-rolled under the conditions shown in Table 2 to form hot-rolled sheets having a thickness of 2.0 mm, then cooled to the cooling stop temperature shown in Table 2, and then air-cooled and wound on a coil. About each obtained steel plate, the dispersion | variation in hardness and the prior austenite particle size were measured.
[0025]
For hardness variations, measure the Vickers hardness (Hv) at the center of the thickness of each steel sheet for the entire length and width of the coil, and take the difference between the maximum value (Hvmax) and minimum value (Hvmin) of the hardness in the coil. This was divided by the average value (Hvav) in the coil and evaluated by ΔHv (= (Hvmax−Hvmin) / Hvav). In measuring the Vickers hardness Hv, the cross section of the steel plate was smoothed by polishing and the test load was 1 kgf.
[0026]
The prior austenite grain size was measured by exposing the prior austenite grain boundary to the above-described polished sample using an etching solution obtained by adding a surfactant to a picric acid saturated aqueous solution. The crystal grain size was measured using a cutting method according to ASTM regulations.
[0027]
[Table 1]
[0028]
[Table 2]
[0029]
From Table 2, it can be seen that the hot-rolled steel sheets of the examples of the present invention all have a prior austenite grain size of 20 μm or less, the hardness variation ΔHv is remarkably small, and the hardness in the coil is uniform. In comparison, the comparative example outside the scope of the present invention has a large ΔHv and a large variation in hardness in the coil.
[0030]
【The invention's effect】
According to the present invention, pearlite transformation can be completed before coil winding, and a hot-rolled high carbon steel sheet excellent in material uniformity in the coil can be manufactured stably. Further, the present invention greatly contributes to the improvement of productivity and yield, and has a remarkable industrial effect.
[Brief description of the drawings]
FIG. 1 is a graph showing a relationship between hardness variations ΔHv and α in a coil.

Claims (2)

重量%で、
C:0.5 超〜 1.5%、
Si:0.1 〜 2.2%、
Mn:0.1 〜 1.7%、
を含み、かつ、Cr:0.2 〜 1.2%、Ni:0.4 〜 2.0%、Mo:0.1 〜 0.7%、B:0.0005〜 0.003%のうちから選ばれた1種または2種以上を含有し、残部がFeおよび不可避的不純物からなる組成の鋼素材を、Ar3点以上の温度域で、かつ仕上げ圧延温度Tf (℃)および仕上げ圧延最終スタンド圧下率Rf (%)が下記(1)式を満足するように熱間圧延を施したのち、ホットランテーブル上の滞留時間t(sec )が下記(2)式を満足するように調整された条件下で、ホットランテーブル上で、600 〜650 ℃の温度域まで強制冷却し、その後空冷する冷却を行い変態を完了させたのち巻取ることを特徴とする高炭素熱延鋼板の製造方法。

{(Tf /300 −Rf /60)−2.5 }≦0.25 …………(1)
t≧t* …………(2)
ここに、 Tf :仕上げ圧延温度(℃)
Rf :仕上げ圧延最終スタンド圧下率(%)
t:ホットランテーブル上の滞留時間(sec )
logt* =Tf /300 −Rf /60−1.5 +β
β= 0.4(Si%−0.2 )+ 0.6(Mn%−0.5 )+ 0.2(Ni %) + 0.6(Cr %) + 0.7(Mo %) +50( B%) − 0.7|C%−0.77|
% By weight
C: More than 0.5 to 1.5%,
Si: 0.1-2.2%
Mn: 0.1-1.7%
And Cr: 0.2 to 1.2%, Ni: 0.4 to 2.0%, Mo: 0.1 to 0.7%, B: 0.0005 to 0.003%, and the balance is one or more. A steel material composed of Fe and inevitable impurities is subjected to the following formula (1) in the temperature range of Ar 3 or higher, the finish rolling temperature Tf (° C.) and the finish rolling final stand reduction ratio Rf (%). After the hot rolling as described above, the temperature range of 600 to 650 ° C. on the hot run table under the condition that the residence time t (sec) on the hot run table is adjusted to satisfy the following formula (2) A method for producing a high carbon hot-rolled steel sheet, which is forcibly cooled to air and then cooled by air to complete the transformation and then wound.
{(Tf / 300 -Rf / 60) -2.5} ≦ 0.25 (1)
t ≧ t * (2)
Where, Tf: finish rolling temperature (° C)
Rf: Final rolling final stand rolling reduction (%)
t: Residence time on the hot run table (sec)
logt * = Tf / 300-Rf / 60-1.5 + β
β = 0.4 (Si% -0.2) + 0.6 (Mn% -0.5) + 0.2 (Ni%) + 0.6 (Cr%) + 0.7 (Mo%) +50 (B%)-0.7 | C% -0.77 |
変態開始前のオーステナイト粒径が20μm 以下である請求項1に記載の高炭素熱延鋼板の製造方法。The method for producing a high carbon hot-rolled steel sheet according to claim 1, wherein the austenite grain size before the start of transformation is 20 µm or less.
JP29452697A 1997-10-27 1997-10-27 Manufacturing method of high carbon hot rolled steel sheet Expired - Fee Related JP3644216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29452697A JP3644216B2 (en) 1997-10-27 1997-10-27 Manufacturing method of high carbon hot rolled steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29452697A JP3644216B2 (en) 1997-10-27 1997-10-27 Manufacturing method of high carbon hot rolled steel sheet

Publications (2)

Publication Number Publication Date
JPH11131137A JPH11131137A (en) 1999-05-18
JP3644216B2 true JP3644216B2 (en) 2005-04-27

Family

ID=17808931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29452697A Expired - Fee Related JP3644216B2 (en) 1997-10-27 1997-10-27 Manufacturing method of high carbon hot rolled steel sheet

Country Status (1)

Country Link
JP (1) JP3644216B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100388041B1 (en) * 1999-07-29 2003-06-18 주식회사 포스코 A Method for Manufacturing Hot-rolled Steels Having High Hardness
EP1143019B1 (en) 1999-09-29 2014-11-26 JFE Steel Corporation Method for manufacturing a coiled steel sheet
ATE490349T1 (en) * 1999-09-29 2010-12-15 Jfe Steel Corp STEEL SHEET AND METHOD FOR THE PRODUCTION THEREOF
KR100516460B1 (en) * 2000-11-09 2005-09-23 주식회사 포스코 Method for hot rolling of high carbon steel in low prevent edge crack
KR100946063B1 (en) * 2002-12-13 2010-03-10 주식회사 포스코 Method for Manufacturing High Carbon Hot-Rolled Steel Sheet
KR101150365B1 (en) * 2008-08-14 2012-06-08 주식회사 포스코 High carbon hot rolled steel coil and manufacturing method thereof
JP6104163B2 (en) * 2010-09-16 2017-03-29 ポスコPosco High carbon hot-rolled steel sheet, cold-rolled steel sheet and method for producing the same

Also Published As

Publication number Publication date
JPH11131137A (en) 1999-05-18

Similar Documents

Publication Publication Date Title
JP5050433B2 (en) Method for producing extremely soft high carbon hot-rolled steel sheet
KR101050698B1 (en) Ultra-thin high carbon hot rolled steel sheet and manufacturing method thereof
JP5667977B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP4650006B2 (en) High carbon hot-rolled steel sheet excellent in ductility and stretch flangeability and method for producing the same
CN108315637B (en) High carbon hot-rolled steel sheet and method for producing same
JP3915460B2 (en) High strength hot rolled steel sheet and method for producing the same
JP3644216B2 (en) Manufacturing method of high carbon hot rolled steel sheet
JPH08337843A (en) High carbon hot rolled steel sheet excellent in punching workability and its production
JP3800902B2 (en) High carbon steel sheet for processing with small in-plane anisotropy and method for producing the same
JP3713804B2 (en) Thin hot-rolled steel sheet with excellent formability
JPH09324212A (en) Production of hot rolled high carbon steel strip excellent in hardenability and cold workability
JPS6159379B2 (en)
JP4300672B2 (en) Stainless steel plate for motorcycle disc brakes requiring no quenching and manufacturing method thereof
JP4765388B2 (en) Manufacturing method for cold rolled steel sheet with excellent flatness after punching
JP3272804B2 (en) Manufacturing method of high carbon cold rolled steel sheet with small anisotropy
JP4048675B2 (en) High carbon steel sheet for machining with low in-plane anisotropy with excellent hardenability and toughness and method for producing the same
JP4023225B2 (en) Hot-rolled steel sheet for rotating ironing process, method for producing the same, and automotive part
JP3806958B2 (en) Manufacturing method of high-tensile hot-rolled steel sheet
JPH10251800A (en) High carbon hot rolled thin steel sheet and its production
JP3474544B2 (en) Linear or rod-shaped steel with reduced deformation resistance at room temperature and in the heating area
JP4331646B2 (en) Rolled steel bar and manufacturing method thereof
JPH0213004B2 (en)
JP3684850B2 (en) High-strength, high-workability hot-rolled steel sheet excellent in impact resistance and material uniformity and method for producing the same
JP3417588B2 (en) Method for producing thin high-strength hot-rolled steel sheets with excellent stretch formability at high yield
JPH1036917A (en) Production of high strength hot-rolled steel plate excellent in stretch-flanging property

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees