JP3644069B2 - Method for maintaining buried objects - Google Patents

Method for maintaining buried objects Download PDF

Info

Publication number
JP3644069B2
JP3644069B2 JP05923595A JP5923595A JP3644069B2 JP 3644069 B2 JP3644069 B2 JP 3644069B2 JP 05923595 A JP05923595 A JP 05923595A JP 5923595 A JP5923595 A JP 5923595A JP 3644069 B2 JP3644069 B2 JP 3644069B2
Authority
JP
Japan
Prior art keywords
buried
reducing bacteria
iron
trivalent iron
iron compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05923595A
Other languages
Japanese (ja)
Other versions
JPH08252555A (en
Inventor
栄 福永
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP05923595A priority Critical patent/JP3644069B2/en
Publication of JPH08252555A publication Critical patent/JPH08252555A/en
Application granted granted Critical
Publication of JP3644069B2 publication Critical patent/JP3644069B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Processing Of Solid Wastes (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、ゴミなどの一般廃棄物,放射性廃棄物等の廃棄物を地中に埋設した廃棄処理物や地下埋設構造物(ガス管,下水管などの金属配管やコンクリート管、コンクリート壁等)等の埋設物を保全する埋設物保全方法に関するものである
【0002】。
【従来の技術】
ガス管,下水管などの地下埋設構造物は地中に埋設されている。また、ゴミ等の一般廃棄物は例えば金属容器、シート等で囲繞され、これが地中に埋設されて処分されることがあり、このように金属容器、シート等で廃棄物を囲繞しているため廃棄物による地下水汚染の防止等が図られる。
【0003】
放射性廃棄物の場合は、放射性廃棄物をセメント等で囲繞して固化し、これを金属容器に入れて地中に埋設するなど、より慎重な隔離策がとられるものと予想される。
【0004】
【発明が解決しようとする課題】
ところで、前述のように廃棄処理物や地下埋設構造物等の埋設物は地中に埋設されているため、地中の微生物例えば硫酸還元細菌により埋設物が腐食される可能性がある。すなわち、地中に埋設されている金属はその金属の周囲に生存する硫酸還元細菌により腐食される。また、その硫酸還元細菌の活動により発生する硫化水素(H2 S)がその金属の周囲に生存するイオウ酸化細菌により酸化され、これにより生成した酸によりコンクリートが腐食される。
【0005】
さらに、一般廃棄物を地中に埋設して処分する場合、廃棄物中の有機物から微生物の作用により各種のガスが発生し、悪影響を及ぼす可能性がある。例えばメタン生成細菌によりメタンが発生し、このメタンはCO2 以上に温室効果が大きく、温暖化の原因となる。
【0006】
放射性廃棄物の場合も、前記と同様のメカニズムでガスが発生する可能性があるが、この場合、発生したガスは地中を動きやすく、放射性核種の移行を早めたり、ガス自身が放射能を持っていたりして、処分場の核種閉じこめ性能が低下する。
【0007】
このため、微生物の活動を抑えるため等に殺菌剤を使うことが提案されるが、その殺菌剤が地下水等に流出して飲料水に混じったりして人の健康への害が心配されるので採用できない。
【0008】
そこで、本発明は、このような事情を考慮してなされたものであり、その目的は、埋設物を良好に保全することができる埋設物保全方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明の埋設物保全方法は、地中に埋設した埋設物の周囲に3価の鉄化合物又は3価の鉄化合物と鉄還元細菌とを散布するものである。その埋設物に3価の鉄化合物又は3価の鉄化合物と鉄還元細菌とを混合することが好ましい。その埋設物の周囲に3価の鉄化合物と3価の鉄還元細菌のいずれか一方又は両方を混合した、、地下水の浸入を防止するベントナイトなどの緩衝材を配置することが好ましい。
【0010】
また、廃棄物を地中に埋設して処分する際に、廃棄物に3価の鉄化合物と鉄還元細菌を混合するものである。
【0011】
【作用】
地中の埋設物の周囲すなわち地中には硫酸還元細菌等の腐食微生物が生存することがある。また、埋設物(廃棄物も含む)にはメタン生成細菌等のガス発生微生物が含まれることがある。それら硫酸還元細菌やメタン生成細菌等の微生物は地中や埋設物中の有機物を基質(エサ、栄養源)とする微生物で、その有機物をより優先的に消費する鉄還元細菌を廃棄物処分環境で増殖優先させれば、腐食微生物やガス発生微生物を相対的に抑える(基質を利用できなくする)ことができる。すなわち、硫酸還元細菌やメタン生成細菌等の微生物と鉄還元細菌とは有機物を奪い合う関係にあり、鉄還元細菌が優勢となる環境にすればよい。鉄還元細菌は、基質である3価の鉄化合物が多量にあれば硫酸還元細菌やメタン生成細菌等の微生物より優勢となる。そこで、3価の鉄化合物又は鉄還元細菌が不足する場合には鉄還元細菌自体も混合して、鉄還元細菌を繁殖させ、その結果として硫酸還元細菌やメタン生成細菌等の微生物の繁殖を抑える。つまり、鉄還元細菌という別の微生物により、硫酸還元細菌やメタン生成細菌等の微生物の栄養である有機物を消費させ、硫酸還元細菌やメタン生成細菌等の微生物が栄養不足で繁殖できないようにする。
【0012】
従って、埋設物の周囲に有機物がある場合には、埋設物の周囲の地中に3価の鉄化合物又は3価の鉄化合物と鉄還元細菌とを散布し、またその埋設物に3価の鉄化合物又は3価の鉄化合物と鉄還元細菌とを混合し、またその埋設物の周囲に3価の鉄化合物と3価の鉄還元細菌のいずれか一方又は両方を混合した緩衝材を配置しかつ、処分する廃棄物に有機物が含まれる場合には、廃棄物に3価の鉄化合物又は3価の鉄化合物と鉄還元細菌とを混合することで、埋設物の周囲、あるいは埋設物又はその両方が鉄還元細菌の繁殖に有利な環境になり、鉄還元細菌が有機物を優先的に消費して、硫酸還元細菌やメタン生成細菌等の微生物が活動できなく(又はしにくく)なり、埋設物を良好に保全することが可能となる。
【0013】
【実施例】
以下、本発明の実施例を添付図面に基づいて詳述する。
【0014】
図1は本発明の第1の実施例を示す図であり、(a)は埋設物の周囲の地中に3価の鉄化合物を散布した例を示す図、(b)は埋設物の周囲の地中に3価の鉄化合物と鉄還元細菌とを散布した例を示す図、(c)は埋設物の周囲に3価の鉄化合物を混合した緩衝材を配置した例を示す図、(d)は埋設物の周囲に3価の鉄化合物と鉄還元細菌とを混合した緩衝材を配置した例を示す図である。これらの例はいずれも埋設物の周囲で硫酸還元細菌等の微生物が活動できなく(又はしにくく)するものである。
【0015】
図1において、1は埋設物を示し、この埋設物1は、ゴミなどの一般廃棄物,放射性廃棄物等の廃棄物を地中に埋設した廃棄処理物や地下埋設構造物(ガス管,下水管などの金属配管やコンクリート管、コンクリート壁等)等で、具体的には一般廃棄物の場合は金属容器に入れたり、コンクリートで固めたり、シートを利用したりして埋設されたもので、放射性廃棄物の場合はセメント等で固化して金属容器に入れられたものである。
【0016】
(a)に示す例では埋設物1の周囲の地中には3価の鉄化合物2が散布されている。3価の鉄化合物2は、鉄還元細菌の基質(エサ、栄養源)であり、塩化第二鉄(FeCl3 )や酸化第二鉄(Fe2 3 )などがあげられる。また、埋設物1の周囲の地中に、3価の鉄化合物2と共に鉄還元細菌3を散布してもよい。鉄還元細菌3は、凍結乾燥処理したものをそのまま使用してもよく、また水等に入れて元気な状態にしてから使用してもよい。鉄還元細菌3を凍結乾燥処理するのは細菌を保存するためである。
【0017】
埋設物1の周囲には、地下水の浸入の防止等を図るためにベントナイトなどの緩衝材を配置することがある。この場合は、(c)及び(d)に示すように、その緩衝材4,5に3価の鉄化合物2又は3価の鉄化合物2と鉄還元細菌3とを混合する。
【0018】
このように、埋設物1の周囲に3価の鉄化合物2又は3価の鉄化合物2と鉄還元細菌3とを配することにより、硫酸還元細菌等の腐食微生物(悪影響を及ぼす微生物)の繁殖を抑制することができる。
【0019】
すなわち、地下に埋設された金属はその金属の回りに硫酸還元細菌が生存するとその細菌により腐食される。またコンクリートは、その硫酸還元細菌が生成した硫化水素をイオウ酸化細菌が酸化して生成する酸により腐食される可能性がある。硫酸還元細菌の基質(エサ、栄養源)は有機物であり、この有機物をより優先的に消費するのが鉄還元細菌である。つまり、硫酸還元細菌と鉄還元細菌とが共存する場合は後者の方が優先的に有機物を利用する。
【0020】
鉄還元細菌の栄養源は3価の鉄化合物(3価の鉄)と有機物であり、地中埋設物1の周囲の3価の鉄濃度が低かったり、あるいは長期間のうちに消費されて濃度が低くなったりすると鉄還元細菌は繁殖しない。このため、地中埋設物1の周囲に、3価の鉄化合物2のみ(鉄還元細菌は存在すると仮定)又は3価の鉄化合物2と鉄還元細菌3を配することで、埋設物1の周囲は鉄還元細菌3が増殖する環境になり、鉄還元細菌3が3価の鉄を利用して増殖する。これにより、有機物は鉄還元細菌3により消費されることになり、硫酸還元細菌の繁殖が抑えられ、硫酸還元細菌により埋設物1が腐食することが抑制される。
【0021】
図2は本発明の第2の実施例を示す図であり、この実施例は一般廃棄物(ゴミ)をシートを利用して処理する例である。図示するように、シート6を敷いた上に廃棄物(ゴミ)7を埋め立てていくが、このとき廃棄物7の層の隙間に3価の鉄化合物2と鉄還元細菌3との混合物、または、それを土に混ぜたものを入れるようにする。実際には、ある程度ゴミを埋めたあと、この上に3価の鉄化合物2等を被せ、更にゴミを埋める。
【0022】
図3は本発明の第2の他の実施例を示す図であり、この実施例は放射性廃棄物を処理する例で、図示するように、廃棄物8を固化剤例えばセメント9で固化しこのセメント9中に3価の鉄化合物2と鉄還元細菌3とを混合し、これを金属容器10内に入れる。
【0023】
このように、廃棄物8に3価の鉄化合物2と鉄還元細菌3とを混合することにより、メタン生成細菌等のガス発生微生物の繁殖を抑制することができる。
【0024】
すなわち、廃棄物7,8中にガス発生微生物例えばメタン生成細菌が生存するとその細菌が廃棄物7,8中の有機物を利用してメタン等のガスが発生する。その結果、大気へのメタンの放出や放射性核種の拡散が生じる可能性がある。メタン生成細菌の基質(エサ、栄養源)も有機物であり、この有機物をより優先的に消費するのが前述と同様に鉄還元細菌である。つまり、メタン生成細菌の代謝 (反応)は例えば次のようになる。
【0025】
CH3 COO- +H+ →CH4 +CO2
また、鉄還元細菌の代謝(反応)は例えば次のようになる。
【0026】
CH3 COO- +8Fe(III) +4H2 O→2HCO3 - +8Fe(II)+9H+ この場合、両方の細菌がCH3 COO- を奪い合うことになる。3価の鉄(Fe(III))がなければ、メタン生成細菌が優勢であるが、Fe(III) が十分あれば、鉄還元細菌が優勢となる。このため、廃棄物7,8に、3価の鉄化合物2と鉄還元細菌3を混合することで、廃棄物7,8は鉄還元細菌3が増殖する環境になり、鉄還元細菌3が優勢となって鉄還元細菌3が有機物を消費して増殖する。これにより、メタン生成細菌などガス発生微生物の繁殖が抑えられ、大気へのメタンの放出や放射性核種の拡散が生じる可能性が極めて少なくなる。
【0027】
図4は本発明の第3の実施例を示す図であり、この実施例は、図示するように、埋設物例えば廃棄物11に3価の鉄化合物2等を混合すると共に、その廃棄物11を埋設した地中の周囲に3価の鉄化合物2等を散布する例である。廃棄物11を固化する固化剤例えばセメント9の中に3価の鉄化合物2又は3価の鉄化合物2と鉄還元細菌3とを混合し、これを金属容器12内に収容する。この金属容器12を埋設する地中の周囲に3価の鉄化合物2又は3価の鉄化合物2と鉄還元細菌3とを散布する。
【0028】
このように、廃棄物11に3価の鉄化合物2又は3価の鉄化合物2と鉄還元細菌3とを混合すると共に、埋設物11の周囲に3価の鉄化合物2又は3価の鉄化合物2と鉄還元細菌3とを配することにより、硫酸還元細菌やメタン生成細菌等の悪影響を及ぼす微生物の繁殖が抑制される。
【0029】
なお、本発明の効果を実証するため、次の表の組成の液を容量70mlのバイアル瓶に入れ、ヘッドスペースをN2 で置換して35℃で培養し硫酸還元及びメタン生成の状況を比較した。
【0030】

Figure 0003644069
その結果、1日後の培養液(2価鉄を含む)の黒変(硫酸還元細菌による硫化水素が発生すれば、これと2価鉄が反応して黒色の硫化鉄ができる)は、3価の鉄化合物(FeCl3 ・6H2 O)を添加しないAでは明らかに認められたが、3価の鉄化合物を添加したBではごく僅かな黒変のみであった。これにより、3価の鉄化合物は硫酸還元細菌を抑える(硫酸還元細菌の活動や繁殖を抑制する)ことが定性的に確認できた。また、1日後のヘッドスペース中のメタン含有率は3価の鉄化合物(FeCl3 ・6H2 O)を添加しないCでは 2.7%、3価の鉄化合物を添加したDでは 1.5%であり、3価の鉄の添加がメタン発生をある程度抑えることがわかった。
【0031】
従って、埋設物1の周囲の地中に有機物又は硫酸還元細菌やメタン生成細菌等の微生物がいる場合には、その地中に3価の鉄化合物2又は3価の鉄化合物2と鉄還元細菌3とを散布する。また、埋設物7,8に有機物又は硫酸還元細菌やメタン生成細菌等の微生物が含まれる場合には、埋設物7,8に3価の鉄化合物2又は3価の鉄化合物2と鉄還元細菌3とを混合する。さらに、埋設物11の周囲の地中及び埋設物11の両方に3価の鉄化合物2又は3価の鉄化合物2と鉄還元細菌3とを配する。これにより、埋設物の周囲、あるいは埋設物又はその両方が鉄還元細菌の繁殖に有利な環境になり、鉄還元細菌が有機物を優先的に消費して、硫酸還元細菌やメタン生成細菌等の微生物が活動できなく(又はしにくく)なる。このように、殺菌剤と異なり人の健康への害がなく(鉄が流出しても除去技術がある)、硫酸還元細菌やメタン生成細菌等の悪影響を及ぼす微生物の活動や繁殖を抑制することができ、埋設物を良好に保全することができる。また、3価の鉄化合物2と共に鉄還元細菌3を配することにより、鉄還元細菌3が早く繁殖して、その効果が早くあらわれる。
【0032】
【発明の効果】
以上要するに本発明によれば、埋設物を良好に保全できるという優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明の第1の実施例を示す図である。
【図2】本発明の第2の実施例を示す図である。
【図3】本発明の第2の他の実施例を示す図である。
【図4】本発明の第3の実施例を示す図である。
【符号の説明】
1 埋設物
2 3価の鉄化合物
3 鉄還元細菌[0001]
[Industrial application fields]
The present invention is a waste disposal material or underground buried structure (general waste such as garbage, radioactive waste, etc.) buried in the ground (metal pipes such as gas pipes and sewage pipes, concrete pipes, concrete walls, etc.) It relates to a buried object maintenance method for protecting buried objects such as [0002].
[Prior art]
Underground structures such as gas pipes and sewage pipes are buried underground. In addition, general waste such as garbage is surrounded by, for example, metal containers, sheets, etc., which may be buried and disposed of in the ground. In this way, wastes are surrounded by metal containers, sheets, etc. Prevents groundwater contamination by waste.
[0003]
In the case of radioactive waste, it is anticipated that more careful isolation measures will be taken, such as surrounding and solidifying the radioactive waste with cement or the like, and placing it in a metal container and embedding it in the ground.
[0004]
[Problems to be solved by the invention]
By the way, as described above, since buried objects such as waste disposal products and underground buried structures are buried in the ground, the buried objects may be corroded by underground microorganisms such as sulfate-reducing bacteria. That is, the metal buried in the ground is corroded by sulfate-reducing bacteria that live around the metal. In addition, hydrogen sulfide (H 2 S) generated by the activity of the sulfate-reducing bacteria is oxidized by sulfur-oxidizing bacteria that live around the metal, and the resulting acid corrodes the concrete.
[0005]
Furthermore, when disposing of general wastes buried in the ground, various gases are generated from the organic matter in the wastes due to the action of microorganisms, which may have adverse effects. For example, methane is generated by methanogenic bacteria, and this methane has a larger greenhouse effect than CO 2 and causes warming.
[0006]
In the case of radioactive waste, gas may be generated by the same mechanism as described above. In this case, the generated gas is easy to move in the ground, and the radionuclide migration is accelerated, or the gas itself has a radioactivity. Doing so will reduce the nuclide confinement performance of the disposal site.
[0007]
For this reason, it is suggested to use a bactericidal agent to suppress the activity of microorganisms, but the bactericidal agent flows into the groundwater and mixes with drinking water, so there is a concern about harm to human health. Cannot be adopted.
[0008]
Then, this invention is made | formed in view of such a situation, The objective is to provide the buried thing maintenance method which can maintain a buried thing favorably.
[0009]
[Means for Solving the Problems]
In the buried object maintenance method of the present invention, a trivalent iron compound or a trivalent iron compound and iron-reducing bacteria are sprayed around the buried object buried in the ground. It is preferable to mix a trivalent iron compound or a trivalent iron compound and an iron-reducing bacterium into the buried object. Around the buried object, was mixed either or both trivalent iron compound and a trivalent iron-reducing bacteria, it is preferable to arrange a buffer material such as bentonite to prevent the ingress of groundwater.
[0010]
Further, when the waste is buried in the ground and disposed of, the trivalent iron compound and the iron-reducing bacteria are mixed with the waste.
[0011]
[Action]
Corrosive microorganisms such as sulfate-reducing bacteria may survive around underground objects, that is, underground. In addition, buried objects (including waste) may contain gas-producing microorganisms such as methanogenic bacteria. These microorganisms, such as sulfate-reducing bacteria and methanogenic bacteria, are microorganisms that use organic matter in the ground or buried materials as a substrate (food, nutrient source), and iron-reducing bacteria that consume the organic matter more preferentially in the waste disposal environment. If growth is prioritized in this case, corrosive microorganisms and gas-producing microorganisms can be relatively suppressed (the substrate cannot be used). That is, microorganisms such as sulfate-reducing bacteria and methanogenic bacteria and iron-reducing bacteria have a relationship of competing for organic matter, and an environment in which iron-reducing bacteria dominate may be used. Iron-reducing bacteria are superior to microorganisms such as sulfate-reducing bacteria and methanogenic bacteria if there is a large amount of trivalent iron compound as a substrate. Therefore, when trivalent iron compounds or iron-reducing bacteria are in short supply, iron-reducing bacteria themselves are also mixed to propagate the iron-reducing bacteria, and as a result, suppress the growth of microorganisms such as sulfate-reducing bacteria and methanogenic bacteria. . In other words, organic substances that are nutrients of microorganisms such as sulfate-reducing bacteria and methanogenic bacteria are consumed by another microorganism called iron-reducing bacteria, and microorganisms such as sulfate-reducing bacteria and methanogenic bacteria are prevented from breeding due to lack of nutrition.
[0012]
Therefore, when there is organic matter around the buried object, the trivalent iron compound or the trivalent iron compound and iron-reducing bacteria are sprayed into the ground around the buried object, and the buried object is trivalent. An iron compound or a trivalent iron compound and iron-reducing bacteria are mixed, and a buffer material in which one or both of the trivalent iron compound and the trivalent iron-reducing bacteria are mixed is arranged around the buried object. In addition, when the waste to be disposed of contains organic substances, the trivalent iron compound or the trivalent iron compound and iron-reducing bacteria are mixed with the waste to surround the buried object or the buried object or its Both have an advantageous environment for the propagation of iron-reducing bacteria, iron-reducing bacteria consume organic matter preferentially, and microorganisms such as sulfate-reducing bacteria and methanogenic bacteria cannot (or are difficult to) operate, and buried objects Can be well maintained.
[0013]
【Example】
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[0014]
FIG. 1 is a view showing a first embodiment of the present invention, (a) is a view showing an example in which a trivalent iron compound is dispersed in the ground around the buried object, and (b) is a view around the buried object. The figure which shows the example which spread | dispersed the trivalent iron compound and the iron-reducing bacteria in the ground of this, (c) is the figure which shows the example which has arrange | positioned the buffer material which mixed the trivalent iron compound around the buried object, ( d) is a diagram showing an example in which a buffer material in which a trivalent iron compound and iron-reducing bacteria are mixed is arranged around an embedded object. In any of these examples, microorganisms such as sulfate-reducing bacteria cannot be activated (or are difficult to perform) around the buried object.
[0015]
In FIG. 1, 1 indicates a buried object, and this buried object 1 is a waste-treated material or underground buried structure (gas pipe, below) in which waste such as general waste such as garbage or radioactive waste is buried underground. In particular, in the case of general waste, it is buried in a metal container, solidified with concrete, or using a sheet, such as water pipes, metal pipes, concrete pipes, concrete walls, etc. In the case of radioactive waste, it is solidified with cement or the like and placed in a metal container.
[0016]
In the example shown in (a), the trivalent iron compound 2 is sprayed in the ground around the buried object 1. The trivalent iron compound 2 is a substrate (food, nutrient source) of iron-reducing bacteria, and examples thereof include ferric chloride (FeCl 3 ) and ferric oxide (Fe 2 O 3 ). Further, iron-reducing bacteria 3 may be sprayed together with the trivalent iron compound 2 in the ground around the buried object 1. The iron-reducing bacteria 3 may be used as it is after being freeze-dried, or may be used after being put in water and in a healthy state. The reason for freeze-drying the iron-reducing bacteria 3 is to preserve the bacteria.
[0017]
A buffer material such as bentonite may be disposed around the buried object 1 in order to prevent infiltration of groundwater. In this case, as shown in (c) and (d), trivalent iron compound 2 or trivalent iron compound 2 and iron-reducing bacteria 3 are mixed in buffer materials 4 and 5.
[0018]
Thus, by arranging the trivalent iron compound 2 or the trivalent iron compound 2 and the iron-reducing bacteria 3 around the buried object 1, the propagation of corrosive microorganisms (microorganisms having an adverse effect) such as sulfate-reducing bacteria. Can be suppressed.
[0019]
In other words, the metal buried underground is corroded by sulfate-reducing bacteria that survive around the metal. In addition, concrete may be corroded by an acid produced by oxidation of sulfur sulfide bacteria by hydrogen sulfide produced by the sulfate-reducing bacteria. The substrate (food, nutrient source) of sulfate-reducing bacteria is organic matter, and it is iron-reducing bacteria that consume this organic matter more preferentially. That is, when sulfate-reducing bacteria and iron-reducing bacteria coexist, the latter uses organic matter preferentially.
[0020]
The nutrient source of iron-reducing bacteria is trivalent iron compounds (trivalent iron) and organic matter, and the concentration of trivalent iron around the underground buried object 1 is low or consumed over a long period of time. If it becomes low, iron-reducing bacteria will not propagate. For this reason, by arranging only the trivalent iron compound 2 (assuming that iron-reducing bacteria exist) or the trivalent iron compound 2 and the iron-reducing bacteria 3 around the underground buried object 1, The surrounding environment is an environment in which iron-reducing bacteria 3 grow, and iron-reducing bacteria 3 grow using trivalent iron. As a result, the organic matter is consumed by the iron-reducing bacteria 3, the reproduction of the sulfate-reducing bacteria is suppressed, and the buried object 1 is prevented from corroding by the sulfate-reducing bacteria.
[0021]
FIG. 2 is a diagram showing a second embodiment of the present invention, and this embodiment is an example in which general waste (dust) is processed using a sheet. As shown in the figure, waste (dust) 7 is buried on the sheet 6 laid, and at this time, a mixture of the trivalent iron compound 2 and the iron-reducing bacteria 3 in the gap between the layers of the waste 7, or , Make sure to put it in the soil. Actually, after filling up the garbage to some extent, the trivalent iron compound 2 or the like is covered on this, and the garbage is further buried.
[0022]
FIG. 3 is a diagram showing a second alternative embodiment of the present invention. This embodiment is an example of processing radioactive waste, and as shown in the figure, the waste 8 is solidified with a solidifying agent such as cement 9 and this is shown. Trivalent iron compound 2 and iron-reducing bacteria 3 are mixed in cement 9 and placed in metal container 10.
[0023]
In this way, by mixing the trivalent iron compound 2 and the iron-reducing bacteria 3 with the waste 8, the reproduction of gas-producing microorganisms such as methanogenic bacteria can be suppressed.
[0024]
That is, when a gas-producing microorganism such as a methanogenic bacterium survives in the wastes 7 and 8, the bacterium generates a gas such as methane using the organic matter in the wastes 7 and 8. As a result, the release of methane to the atmosphere and the diffusion of radionuclides may occur. The substrate of methanogenic bacteria (food, nutrient source) is also an organic substance, and it is iron-reducing bacteria that consume this organic substance more preferentially as described above. In other words, the metabolism (reaction) of methanogenic bacteria is as follows, for example.
[0025]
CH 3 COO + H + → CH 4 + CO 2
The metabolism (reaction) of iron-reducing bacteria is as follows, for example.
[0026]
CH 3 COO + 8Fe (III) + 4H 2 O → 2HCO 3 + 8Fe (II) + 9H + In this case, both bacteria compete for CH 3 COO . Without trivalent iron (Fe (III)), methanogenic bacteria predominate, but with enough Fe (III), iron-reducing bacteria predominate. Therefore, by mixing the trivalent iron compound 2 and the iron-reducing bacteria 3 with the wastes 7 and 8, the wastes 7 and 8 become an environment in which the iron-reducing bacteria 3 grow, and the iron-reducing bacteria 3 is dominant. Thus, the iron-reducing bacteria 3 consumes organic substances and grows. As a result, the growth of gas-producing microorganisms such as methanogenic bacteria is suppressed, and the possibility of the release of methane to the atmosphere and the diffusion of radionuclides is extremely reduced.
[0027]
FIG. 4 is a view showing a third embodiment of the present invention. In this embodiment, as shown in the figure, a trivalent iron compound 2 or the like is mixed with a buried material, for example, a waste material 11, and the waste material 11 is mixed. This is an example in which a trivalent iron compound 2 or the like is sprayed around the ground in which the material is buried. The trivalent iron compound 2 or the trivalent iron compound 2 and the iron-reducing bacteria 3 are mixed in a solidifying agent such as cement 9 for solidifying the waste 11 and accommodated in the metal container 12. The trivalent iron compound 2 or the trivalent iron compound 2 and the iron-reducing bacteria 3 are sprayed around the ground in which the metal container 12 is embedded.
[0028]
As described above, the trivalent iron compound 2 or the trivalent iron compound 2 and the iron-reducing bacteria 3 are mixed with the waste 11, and the trivalent iron compound 2 or the trivalent iron compound is disposed around the buried object 11. By arranging 2 and the iron-reducing bacteria 3, the propagation of microorganisms that have adverse effects such as sulfate-reducing bacteria and methanogenic bacteria is suppressed.
[0029]
In order to demonstrate the effect of the present invention, a solution having the composition shown in the following table was placed in a vial with a capacity of 70 ml, and the headspace was replaced with N 2 and cultured at 35 ° C. to compare the situation of sulfate reduction and methane production. did.
[0030]
Figure 0003644069
As a result, the blackening of the culture solution (including divalent iron) after one day (if hydrogen sulfide is generated by sulfate-reducing bacteria, this reacts with divalent iron to form black iron sulfide). The iron compound (FeCl 3 .6H 2 O) with no addition of iron was clearly recognized, but B with the addition of the trivalent iron compound had only a slight blackening. Thus, it was qualitatively confirmed that the trivalent iron compound suppresses sulfate-reducing bacteria (suppresses the activity and reproduction of sulfate-reducing bacteria). The methane content in the headspace after one day was 2.7% for C without the addition of the trivalent iron compound (FeCl 3 .6H 2 O) and 1.5% for D with the addition of the trivalent iron compound. The addition of valent iron was found to suppress methane generation to some extent.
[0031]
Accordingly, when there are organic matter or microorganisms such as sulfate-reducing bacteria or methanogenic bacteria in the ground around the buried object 1, the trivalent iron compound 2 or the trivalent iron compound 2 and the iron-reducing bacteria are present in the ground. 3 and spray. In addition, when the buried objects 7 and 8 contain organic matter or microorganisms such as sulfate-reducing bacteria or methanogenic bacteria, the buried objects 7 and 8 include the trivalent iron compound 2 or the trivalent iron compound 2 and the iron-reducing bacteria. 3 is mixed. Further, the trivalent iron compound 2 or the trivalent iron compound 2 and the iron-reducing bacteria 3 are arranged both in the ground around the embedded object 11 and in the embedded object 11. As a result, the environment around the buried object or the buried object or both becomes an environment favorable for the propagation of iron-reducing bacteria, and the iron-reducing bacteria preferentially consume organic matter, and microorganisms such as sulfate-reducing bacteria and methanogenic bacteria Becomes unable to (or harder to) act. In this way, unlike bactericides, there is no harm to human health (there is removal technology even if iron flows out), and it suppresses the activity and reproduction of microorganisms that have adverse effects such as sulfate-reducing bacteria and methanogenic bacteria. The buried object can be well preserved. Further, by arranging the iron-reducing bacteria 3 together with the trivalent iron compound 2, the iron-reducing bacteria 3 propagates quickly, and the effect appears quickly.
[0032]
【The invention's effect】
In short, according to the present invention, there is an excellent effect that a buried object can be well maintained.
[Brief description of the drawings]
FIG. 1 is a diagram showing a first embodiment of the present invention.
FIG. 2 is a diagram showing a second embodiment of the present invention.
FIG. 3 is a diagram showing a second other embodiment of the present invention.
FIG. 4 is a diagram showing a third embodiment of the present invention.
[Explanation of symbols]
1 buried object 3 trivalent iron compound 3 iron-reducing bacteria

Claims (6)

地中に埋設した埋設物の周囲に3価の鉄化合物を散布することを特徴とする埋設物保全方法。  A method for preserving buried objects, characterized in that a trivalent iron compound is dispersed around the buried objects buried in the ground. 地中に埋設した埋設物の周囲に3価の鉄化合物と鉄還元細菌とを散布することを特徴とする埋設物保全方法。  A method for preserving buried objects, characterized in that a trivalent iron compound and iron-reducing bacteria are sprayed around the buried objects buried in the ground. 前記埋設物に3価の鉄化合物を混合する請求項1又は2記載の埋設物保全方法。  The buried object maintenance method according to claim 1 or 2, wherein a trivalent iron compound is mixed in the buried object. 前記埋設物に3価の鉄化合物と鉄還元細菌とを混合する請求項1又は2記載の埋設物保全方法。  The buried object maintenance method according to claim 1 or 2, wherein a trivalent iron compound and iron-reducing bacteria are mixed in the buried object. 前記埋設物の周囲に3価の鉄化合物と3価の鉄還元細菌のいずれか一方又は両方を混合した、地下水の浸入を防止するベントナイトなどの緩衝材を配置した請求項1〜4記載の埋設物保全方法。Around the buried object, the trivalent iron compound and trivalent iron was mixed with either or both of reducing bacteria, of claim 1, wherein the cushioning material is arranged such bentonite which prevents the ingress of groundwater Method for preservation of buried objects. 廃棄物を地中に埋設して処分する際に、廃棄物に3価の鉄化合物と鉄還元細菌とを混合することを特徴とする埋設物保全方法。A buried material preservation method comprising mixing a trivalent iron compound and an iron-reducing bacterium into a waste when the waste is buried and disposed of in the ground.
JP05923595A 1995-03-17 1995-03-17 Method for maintaining buried objects Expired - Fee Related JP3644069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05923595A JP3644069B2 (en) 1995-03-17 1995-03-17 Method for maintaining buried objects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05923595A JP3644069B2 (en) 1995-03-17 1995-03-17 Method for maintaining buried objects

Publications (2)

Publication Number Publication Date
JPH08252555A JPH08252555A (en) 1996-10-01
JP3644069B2 true JP3644069B2 (en) 2005-04-27

Family

ID=13107529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05923595A Expired - Fee Related JP3644069B2 (en) 1995-03-17 1995-03-17 Method for maintaining buried objects

Country Status (1)

Country Link
JP (1) JP3644069B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5415915B2 (en) * 2009-11-26 2014-02-12 公立大学法人大阪府立大学 Electrocatalyst and fuel cell using the same
JP7100318B2 (en) * 2018-07-11 2022-07-13 Tnk水道コンサルタント株式会社 Sulfuric acid corrosion resistant concrete pipes, methods for preventing sulfuric acid corrosion of concrete pipes and methods for preventing corrosion of reinforcing bars

Also Published As

Publication number Publication date
JPH08252555A (en) 1996-10-01

Similar Documents

Publication Publication Date Title
CN106978190B (en) Stabilizing remediation agent for chromium-contaminated soil and method for applying stabilizing remediation agent to soil remediation
US6303367B1 (en) Method for purifying matter contaminated with halogenated organic compounds
US20070272609A1 (en) Reuse of waste materials via manure additive
Francis et al. Microbial activity of trench leachates from shallow-land, low-level radioactive waste disposal sites
JP2009045006A (en) Hydrated solidified body for underwater installation
CN109133551A (en) A kind of black and odorous water bed mud improved materials and application method
JP5244296B2 (en) Permeability purification wall and purification method of contaminated groundwater
JP2006204963A (en) Cleaning agent and cleaning method for soil, ground water and bottom sediment contaminated by hexavalent chromium
CA2111081C (en) Use of metallic peroxides in bioremediation
KR20190033890A (en) Microbial agent for simultaneous degradation of methane and odor and the method for simultaneous degradation of methane and odor using the same
JP3644069B2 (en) Method for maintaining buried objects
US20230050281A1 (en) Method for treating waters, sediments and/or sludges
US5501977A (en) Biofilter comprising leonardite, clay and lime
JP4554833B2 (en) Apparatus and method for removing nitrate nitrogen in waste water
Maeda et al. Nickel inhibition of the growth of a sulfur-oxidizing bacterium isolated from corroded concrete
White et al. The use of solid peroxides to stimulate growth of aerobic microbes in tundra
Francis Microbial transformation of low-level radioactive waste
US20160076057A1 (en) Inhibition of methane and hydrogen sulfide production in anaerobic digester animal farms, landfills, sediments and sewer systems
JP6713310B2 (en) Soil filler
JP2004298763A (en) Method and apparatus for removing nitrate nitrogen
JP2013245118A (en) Concrete block for cleaning water environment
JPH09155387A (en) Proliferation fixing material for denitrified bacteria
JP2013151384A (en) Hydrogen production method
KR100872862B1 (en) Remediation of the contaminated soil
JP2018201459A (en) Soil packing material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees