JP3642979B2 - Conducted immunity tester - Google Patents

Conducted immunity tester Download PDF

Info

Publication number
JP3642979B2
JP3642979B2 JP11439099A JP11439099A JP3642979B2 JP 3642979 B2 JP3642979 B2 JP 3642979B2 JP 11439099 A JP11439099 A JP 11439099A JP 11439099 A JP11439099 A JP 11439099A JP 3642979 B2 JP3642979 B2 JP 3642979B2
Authority
JP
Japan
Prior art keywords
interference wave
level
device under
under test
coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11439099A
Other languages
Japanese (ja)
Other versions
JP2000304794A (en
Inventor
国主男 高木
誠 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Advanced Technology Corp
Original Assignee
NTT Advanced Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Advanced Technology Corp filed Critical NTT Advanced Technology Corp
Priority to JP11439099A priority Critical patent/JP3642979B2/en
Publication of JP2000304794A publication Critical patent/JP2000304794A/en
Application granted granted Critical
Publication of JP3642979B2 publication Critical patent/JP3642979B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Monitoring And Testing Of Exchanges (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、通信機器等の電子情報技術装置の通信線や電力線に伝導妨害波を印加し、被試験装置の妨害波耐力(イミュニティ)を評価する試験器に関する。
【0002】
【従来の技術】
従来、この種の伝導イミュニティ試験方法としては、図2のような個別の試験構成手段を組み合わせ接続した試験系が用いられている。すなわち、図2で、1は被試験装置(以下、EUTという)、2はEUT1を通信動作状態にするため通信線の対向側に接続した補助装置(以下、AEという)、3はEUT1とAE2とを交換接続するための擬似交換機、4はEUT1の通信線、5は通信線4を介してEUT1にコモンモ−ドの試験用の電磁妨害波(以下、単に妨害波という)を結合・印加する妨害波結合器、6は試験用妨害波の発生器、7はEUT1に通信動作機能の異常を発生させるのに必要なレベルまで妨害波発生器6の出力を増加する増幅器、8はEUT1への印加妨害波を計測する妨害波計測器である。
また、図3は妨害波発生器6の出力波形例であり、(a)はラジオ放送等のAM変調波、(b)はAC電源等の周期に同期した矩形パルス波(パルス幅t、周期T)、(c)は蛍光灯等の家電機器等から発生するバ−スト波(バ−スト幅W、周期T、パルス周期d)、(d)は(b)、(c)と同一周期の減衰振動波である。
【0003】
図4は、図3(a)のAM変調波のような連続性伝導妨害波を印加する場合に、通常用いられる妨害波結合器5のコンデンサ結合型回路構成例である。(a)は電話加入者線路等の平衡2線通信線用の結合・減結合回路(CDN−2W)であり、5Aはその筐体、5A−1はEUT側の接続端子、5A−2はAE側の接続端子、5A−3は、妨害波入力端子である。また、(b)はホ−ムバス等の平衡4線通信線用の結合・減結合回路(CDN−4W)であり、5Bはその筐体、5B−1はEUT側の接続端子、5B−2はAE側の接続端子、5B−3は、妨害波入力端子である。このほか平衡8線程度までの多線条線路に対しては、同様の構成のものが用いられる。
【0004】
図3(a)のAM変調波のような連続性の伝導妨害波を印加して、通信機器のようなEUT1のイミュニティを試験・評価するには、通常以下のような手順がとられる。すなわち図2で、
▲1▼AE2を操作し、擬似交換機3を介してEUT1にアクセスし(またはEUT1からAE2にアクセスし)、EUT1を通信動作状態にする。
▲2▼妨害波発生器6のAM変調波出力信号を設定し(搬送周波数fc、変調周波数f、変調度M等)、増幅器7および妨害波結合器5を介して通信線4にコモンモ−ドで結合させ、EUT1に試験妨害波を印加する。
▲3▼妨害波発生器6のAM変調波出力レベルを増加していき、通信動作中のEUT1に機能異常(誤動作や通信品質劣化)が発生したときの印加レベル(≒イミュニティレベル)を、妨害波計測器8により測定する。(なお、イミュニティレベルは正確には機能異常が発生する直前の印加レベルをいうが、ここでは実際の測定の容易性上から発生時の印加レベルをもってイミュニティレベルとする。)
▲4▼または、あらかじめ定められたイミュニティ試験レベルがEUT1に加わるよう、AM変調波出力レベルを設定して印加し、EUT1の機能異常発生の有無を確認して合否判定する。
▲5▼AM変調信号の搬送周波数fcを順次変えて▲2▼〜▲4▼を繰り返し、試験周波数帯域におけるEUT1のイミュニティレベルを求めるか合否を判定するなどにより、EUT1の耐力を評価する。
【0005】
【発明が解決しようとする課題】
このように、イミュニティ試験は一般に印加妨害波に対するEUTの耐力限界を求める試験であるため、まず周波数等の印加条件を設定し、EUTに機能異常が発生するまで印加妨害波レベルを増加して、発生後は周波数等を変えて繰り返し試験する必要があること、特にEUTが通信機器の場合には、機能異常の発生形態が誤動作、符号誤り、同期はずれ、画像品質劣化、雑音可聴など種々あり、メイン機能に対してこれらの異常動作モ−ドの検出手段が必要なこと、これらの機能異常発生時には直ちに印加を停止しないと通信動作状態に復帰しない場合があること、復帰しない場合は改めてAE等からアクセスしてEUTを立ち上げ、通信動作状態にした上で印加を繰り返す必要があることなどにより、膨大な時間と手間のかかる欠点があった。
【0006】
また、通信機器のイミュニティ試験系は、図2から明らかなように通信交換接続系と妨害波結合・印加系の両者が必要であるが、従来はそれぞれ個別の試験構成手段を組み合わせて構成していたため、接続系が複雑となり、かつ、EUTの機能異常を目視によりそのつど見知してからEUTを立ち上げ、印加条件を手動可変設定するなど人力に頼っていたため、操作性がきわめて悪い欠点もあった。
【0007】
さらに、EUTが線数の異なる複数の多線条通信線で接続された複合システム機器の伝導イミュニティを試験するには、複合システム機器に接続する多くのラインのおのおのから妨害波の印加が可能で、妨害波を印加しない非印加ラインは終端してEUT配置系のコモンモ−ドインピ−ダンスを安定化させる必要があるが、従来のものでこのような配置構成とするには、試験系が大がかりで広い占有場所を要するなどの欠点があった。
【0008】
本発明の目的は、このように規模が大がかりで時間と手間のかかるイミュニティ試験系を簡易化および自動化することにより、イミュニティ試験が容易かつ短時間に行え、操作性および再現性にもすぐれた試験器を提供することにある。
【0009】
【課題を解決するための手段】
上記課題を解決するために、本発明による伝導イミュニティ試験器は、被試験装置の対向通信線に接続され該被試験装置の通信動作状態を可能にする通信交換接続手段と、電磁妨害波を発生する妨害波発生手段と、前記被試験装置の通信線に前記電磁妨害波をコモンモードで結合する妨害波結合手段と、該妨害波結合手段を介して前記電磁妨害波を印加した時に生じる前記被試験装置の機能異常信号を検出し通信品質劣化度を測定する障害度測定手段と、前記妨害波発生手段による前記被試験装置への電磁妨害波の印加条件を設定制御する妨害波制御手段とから構成され、該妨害波制御手段は、前記被試験装置が前記妨害波結合手段に対して非接続の状態において、前記妨害波発生手段に複数の出力電圧レベルを設定すると共に、該設定がなされた前記妨害波発生手段によって順次発生された電磁妨害波の各出力電圧レベルと、前記妨害波結合手段の出力電圧レベルとを対応づけた校正電圧情報を記憶し、前記被試験装置が前記妨害波結合手段に接続された状態において、前記校正電圧情報を用いて、複数の所定の妨害波印加レベルに対応した出力電圧レベルを前記妨害波発生手段に設定すると共に、前記複数の所定の妨害波印加レベルの電磁妨害波を順次前記被試験装置へ印加した時の前記障害度測定手段で測定される通信品質劣化度が前記被試験装置の障害モードによりあらかじめ定められた評価レベルとなった時の前記披試験装置への前記妨害波印加レベルを出力・表示することを特徴とする。
【0010】
本発明による伝導イミュニティ試験器は、EUTの有する各種機能に対応した異常検出手段を設け、異常発生と連動して印加妨害波の周波数をステップさせる等妨害波印加条件を制御し、もしくは妨害波印加停止時にEUTが自動復帰しない場合にも、EUTを通信動作状態に自動的に立ち上げる等の手段を設け、これらによって操作容易で試験時間を大幅に短縮できるようにしたことを特徴としている。また、EUTに生じる誤動作、符号誤り、画質劣化、雑音可聴等の種々の機能異常モ−ドに対しても、電磁気的、光学的、または音響的検出手段等、各種の方法で検出可能なようにしてある。
【0011】
また、アナログ・デジタル擬似交換機能を有する通信交換接続系と、アナログ平衡2/4線やデジタルインタフェ−スU点・S/T点への印加が可能な妨害波結合・印加系とを一体化配置構成にして試験系を簡易化すると共に、大半のアナログ・デジタル通信機器の通信動作状態が実現でき、これによるイミュニティ試験が実施可能なようにしてある。
【0012】
さらに、可聴雑音評価試験では、音声劣化の評価基準を設定するために必要な連続性正弦波およびパルス波の信号源を試験器内に組み込むと共に、EUT側と対向通信線側にそれぞれ基準信号レベルと妨害波信号レベルとの検出手段を設け、これらの各側における検出信号の比較によって、音量調整つまみの設定やマイクロホンの設置位置で受話音量が異なるEUTに対しても、適正な可聴雑音の評価ができる特徴を有する。また、EUT側だけでなく対向機器側への影響や、連続性正弦波だけでなく、連続性パルスに対する可聴雑音の評価もできるようにしてある。
【0013】
【発明の実施の形態】
以下に、本発明の実施形態について図面を用いて詳細に説明する。
【0014】
【実施例1】
図1は本発明の第1の実施例を示す図であり、9は本試験器の構成各部を含む筐体、3’、5’、6’、7’は、それぞれ従来の擬似交換機3、妨害波結合器5、妨害波発生器6、および増幅器7と同様の機能を有するそれぞれ擬似交換部、妨害波結合部、妨害波発生部、および増幅部、4はEUT1の通信線、3−1および5−1はそれぞれ擬似交換部3’および妨害波結合部5’の外部接続端子である。
【0015】
また、1AはEUT1に組み込まれ、EUT1に通信誤動作や同期はずれ等の機能異常が発生した時に点灯または発光する警報ランプ等の発光素子、10はEUT1の発光素子1A等の機能異常発生箇所に接近または接触して装着する等の方法で結合させた障害信号検出部、10−0は障害信号検出部10の内部に組み込まれたLED等の受光素子、11は障害信号検出部10で検出した障害信号のレベルや頻度等を測定したり、あらかじめ定められた所定の評価基準値と比較する等により機能異常の程度を評価する障害度測定部、11−1は本試験器の筐体9に設けられた障害信号検出部10の入力接続端子、12は通信線に接続された妨害波結合部5’と擬似交換部3’との間に接続挿入され、線路損失を可変設定する擬似線路、13は妨害波発生部6’の出力信号の周波数やレベル、および出力タイミング等を設定制御する制御部、14は制御部13の制御操作の設定画面および障害度測定部11で測定した結果を表示する表示部、15は制御部13と、障害度測定部11や妨害波発生部6’および表示部14等とを結ぶGP−IBケ−ブル、15−1と15−1’はGP−IBケ−ブル15の外部接続端子、16は妨害波結合部5’の出力を試験前または試験後に所定のレベルに校正したり、EUT1に印加される妨害波を測定する印加出力測定部、16−1は印加出力測定部16の外部接続端子である。
【0016】
また、図5は、図1の制御部13を用いて妨害波発生部6’のAM変調波信号を出力制御する方法を説明する図である。
【0017】
以下に図1および図5を用いて、図3(a)のようなAM変調波を印加時に、EUT1のイミュニティ特性を試験・評価するために必要な動作を説明する。すなわち図1で、まず、補助装置AE2を操作して擬似交換部3’、擬似線路12、妨害波結合部5’を介してEUT1にアクセスし、またはEUT1から逆にAE2にアクセスしてEUT1を立ち上げ、通信動作状態を実現する。このとき擬似線路12を可変して実回線条件を模擬した線路損失を設定しておく。
【0018】
次に、制御部13において、妨害波発生部6’から発生させるAM変調波の変調周波数fや変調度Mおよび出力レベルの上昇速度を定めると共に、搬送周波数fcを図5(a)に示す試験帯域(fl〜fh)内の最初の任意ポイントfiに設定し、妨害波発生部6’を動作させる。この出力信号を増幅部7’で増幅し、妨害波結合部5’を介してコモンモ−ドの伝導妨害波としてEUT1の通信線4からEUT1に印加し、その印加レベルを次第に増加していく。
【0019】
この結果、EUT1の内部回路が妨害波に耐えきれなくなった時に論理素子等が反転して誤動作や同期はずれ等の機能異常を発生し、EUT1の警報ランプ等の発光素子1Aが発光する。この発光を発光素子1Aに接近または接触装着した受光素子10−0が検知して、検知信号を障害度測定部11に入力する。これによる障害度測定部11からの出力信号がGP−IBケ−ブル15を介して制御部13に伝達すると、制御部13ではこのときの妨害波発生部6’の出力信号レベル(図5(a)のei)を記憶した後、その出力レベルをすみやかにゼロまたは所定レベル以下に減少させて、EUT1への妨害波印加を解除する。すると発光素子1Aが消灯してEUT1は正常動作に復帰し、通信動作状態を継続する。制御部13では、図5(a)に示すように妨害波発生部6’の上記出力レベル低下時点からEUT1が正常動作に復帰するのに要する所定時間経過後に、搬送周波数fiをあらかじめ設定した次の任意のfjにΔfだけ可変ステップした後、その出力レベルを前と同様に次第に増加させる。
【0020】
これによって、前の設定周波数fiによる印加時と同様に、EUT1の発光素子1Aが再発光し、EUT1の機能異常発生信号が障害度測定部11およびGP−IBケ−ブル15を介して制御部13に伝達し、この時の妨害波発生部6’の出力信号レベル(図5(a)のej)を、前と同様に記憶する。これらの制御動作を試験帯域(fl〜fh)内であらかじめ設定した全周波数ポイントについて実行した後、各周波数ポイント毎に記憶した妨害波発生部6’の出力レベルeを妨害波結合部5’からEUT1への印加レベルVに換算してプロットすれば、図6のようなEUT1のイミュニティ特性が得られる。同図で、VrefはあらかじめEUT1の設置される電磁環境条件などから定めたイミュニティ評価基準レベルであり、Vrefと各周波数ポイントにおけるイミュニティ特性値を比較することにより、EUT1が試験帯域内で許容レベルを満足するかどうかや、どの周波数範囲やポイントでどの程度不満足かなどの評価が容易に可能となる。なお、上記の出力レベル低下時点から再印加までの時間は、それぞれのEUT1による復帰特性を考慮し、制御部13であらかじめ可変設定できるようにしてある。
【0021】
また、全試験帯域にわたってEUT1のイミュニティが評価基準レベルVrefを満足しているかどうかの合否判定結果のみを知ればよい場合には、妨害波発生部6’の出力レベルを図5(a)のように1つの周波数ポイント毎に増減させずに、図5(b)のように各所定の出力レベルとなるよう試験帯域内を周波数ステップさせて掃引し、発光素子1Aの発光による障害度測定部11への信号入力がなければ合格を、掃引の途中で発光による信号入力があれば不合格を容易に確認できる。また、信号入力時の掃引停止周波数ポイントから、不合格となった周波数がただちにわかる。
【0022】
このように、本実施例では、EUT1の機能異常発生と連動して妨害波発生部6’の出力を低下させ、EUT1の通信動作状態の復帰を待って周波数ステップさせた信号を再印加する等により妨害波発生部6’の周波数掃引制御を行っているため、全試験帯域にわたりイミュニティ試験を自動化でき、容易かつ短時間の試験・評価が可能となる。
【0023】
なお、図1で通信動作中のEUT1に対して、通信線4に妨害波を結合する前と、障害信号検出部10の出力信号をトリガとする妨害波結合後の通信線間信号を障害度測定部11で測定・比較することにより、妨害波の影響によるAE2に与える通信の伝送品質等の評価も可能となる。
【0024】
一方、以上の動作で、妨害波結合部5’からEUT1へ適正な所定の妨害波レベルVを結合・印加するには、各周波数ポイントにおける妨害波発生部6’の出力eをどのように制御部13で設定し出力したらよいかが問題となる。その理由は、妨害波発生部6’の出力点からEUT1の通信線入力点までの経路に増幅部7’や妨害波結合部5’が介在し、これら増幅部7’の増幅度特性や妨害波結合部5’の内部浮遊容量などによる損失の周波数特性があるため、これらの補正を行っておく必要があることによる。
【0025】
図7は制御部13により設定する妨害波発生部6’の出力eと、これによって妨害波結合部5’からEUT1へ実際に印加される妨害波レベルVとの対応をとる方法、すなわち妨害波結合部5’の出力の校正方法を説明する図である。両者の対応をとるには、EUT1のイミュニティ試験に先だって(または試験後に)、図7(a)のようにEUT1の接続される妨害波結合部5’の接続端子5−1と印加出力測定部16の接続端子16−1とを接続線17で接続する。
【0026】
次に、試験帯域内の任意の周波数ポイントfiにおいて妨害波発生部6’の出力を増加し、印加出力測定部16で測定される妨害波結合部5’の出力レベルの読み(=EUT1への印加レベル V)が所定の試験レベルViとなるよう制御部13を調整して、妨害波発生部6’の出力レベルeiを設定した後記憶する。次に、周波数をΔfだけステップさせたfjにおいて、同一のViとなるようejを設定して記憶する。これらの操作を図7(b)の試験帯域(fl〜fh)内の各周波数ポイントについて実行することにより、EUT1へ全帯域にわたり同一の試験レベルVを印加するのに必要な各周波数ポイントにおけるeの値が設定できる。Δfのステップ幅を細かくするほど多数の周波数ポイントにおけるeの値が測定され精度が向上する。さらに試験レベルVを設定印加レベルの範囲(Vl〜Vh)内で任意に変えて同様の測定を行うことにより、任意の所定印加レベルVに対するeの設定値が確定する。
【0027】
このように、多数の設定V値に対してそれぞれのeを細かく測定しておけば、印加レベル設定の精度が向上するが、校正時間の短縮をはかるには、EUTへの印加レベルの範囲内で、例えば最小値Vlと最大値Vh、またはこれらと任意の中間値との複数の特定Vに対してのみ各eを測定し、これらの間のVに対しては上記の各測定e値を比例配分した計算値を用いれば、精度は落ちるが校正時間を短縮できる。
【0028】
これらの校正値を用いれば、図5のような周波数設定・掃引に当たって、試験帯域内の任意の限定した帯域部分のみを詳細に設定して掃引したり、あらかじめ定めた複数の特定周波数ポイントのみを設定して妨害波を印加する等の掃引・印加が可能となり、目的に応じた妨害波の印加制御ができる。
【0029】
なお、上記EUT1への印加レベルVの実際の校正時には、EUT1の試験帯域におけるコモンモ−ドインピ−ダンスが機種により異なるため、これによってVが変化するのを避けるため、図4の妨害波結合器5の2線や4線の通信線をコモンモ−ドとみなして一つにまとめて表した図7(c−1)に示すような妨害波結合部5’の出力端子5−1に、校正用抵抗18(=R1+R2)で置き換えたEUT1のコモンモ−ド入力インピ−ダンス相当の回路を接続し、印加出力測定部16の入力インピ−ダンスに相当するR2の両端電圧V1を測定して、これを信号源の起電力Vemf=V1(r+R+R1+R2)/R2として換算して(Rは通信線4の対地抵抗を模擬した妨害波結合部5’の合成抵抗、rは信号源の内部抵抗)、EUT1の印加レベルVとする。Vemfはまた、図7(c−2)のように端子5−1を開放時の開放端電圧V0(=Vemf)として直接測定することもできる。
【0030】
【実施例2】
図8は本発明の第2の実施例を示す図であり、図1の実施例で、EUT1に印加した妨害波を除去しても通信動作が継続せず、EUT1が正常な動作状態に自動復旧しない場合の構成を示す。図8で、図1と同じ部分には同じ記号を用いた(1〜16)。19および19’は図1のEUT1およびAE2にそれぞれ設けた通信動作を再起動するためのGP−IB制御の起動部、20および20’はその中のそれぞれの起動手段である。また図9は、起動手段20または20’部分の具体的実施例であり、1BはEUT1やAE2に組み込まれた押ボタンやタッチパネル、電源スイッチ等の通信動作の起動素子、20−1は起動素子1Bに対向して起動手段20内に装着したマグネット等の駆動手段、20−2は複数の駆動手段20−1を任意に選択作動させるGP−IB制御可能な駆動回路である。
【0031】
以下に本実施例の動作を説明する。すなわち前述の図1の試験系で、EUT1への妨害波印加を例えば図5(a)のfiについて妨害波発生部6’で出力レベルeiまで出力した後妨害波を除去した時等に、EUT1の通信動作が正常に復帰しないとその後の試験が実施できなくなる。このような場合、妨害波除去時にも発光素子1Aが発光したままになるので、障害度測定部11およびGP−IB線15を介して制御部13に検出信号が伝送されると、制御部13ではGP−IB線15を介して図8の起動手段20または20’内の駆動回路20−2を選択駆動して通信動作の再立ち上げに必要な押しボタンや電源スイッチなどの起動素子1Bに対応した駆動手段20−1を作動させ、EUT1またはAE2を再起動して通信動作状態を実現する。このようにしてEUT1を再起動した後に図5と同様の掃引制御を続けることによって図6のようなイミュニティ特性を容易に得ることができる。このように本実施例では、イミュニティ試験中に通信動作が停止し、復帰しないようなEUT1に対しても、機能異常を検知してEUT11やAE2を再起動する手段を設けたため、通信動作が自動的に確保され、一連のイミュニティ試験を簡単かつ確実で短時間に実行できる。
【0032】
以上の2つの実施例では、EUTへの印加妨害波の波形として図3(a)のようなAM変調波を対象に、EUT1の機能異常発生と連動した印加周波数の制御法について説明したが、図3(b)ないし図3(d)のような連続パルス性の妨害波を印加する場合には、これらの波形の送出機能を有する妨害波発生部6’と、各パルスの線路への結合・印加に適合した妨害波結合部5’とを用いて、それぞれのパルス幅や周期またはバ−スト幅やバ−スト周期等の波形を制御部13で設定してEUT1にパルスの波高値を可変しながら印加し、AM変調波印加時と同様に機能異常発生時の印加レベル(パルス波高値)を測定すれば、EUT1のパルスに対するイミュニティ特性や合否判定試験が容易に実行できることは明らかである。
【0033】
【障害信号検出手段の実施例】
以上、EUT1の誤動作を対象としたイミュニティ試験方法を、警報ランプ等の発光素子を有し機能異常時にはこの発光信号を検出して妨害波印加系を制御するEUT1の事例について説明したが、通信機器のようなEUT1の場合、機能異常の発生状況は警報ランプの誤点灯だけでなく様々であり、これらに対応した障害信号の検出手段が必要となる。図10は、図1や図8の障害信号検出部10について、上述の発光信号検出を含む具体的検出手段の実施例を示す説明図であり、EUT1の種々の機能異常発生形態に対応して、電気、磁気、光、音などを用いた検出手段を示す。すなわち図10で、10AはEUT1の機能異常発生の電気的検出手段であり、10A−0はEUT1内部の機能異常発生要因と考えられるトランジスタやIC等の論理素子もしくはスイッチング素子、10A−1は論理素子等10A−0の端子間に接触させた電圧プロ−ブ等の電圧検出手段、10A−2は論理素子等10A−0のケ−ブルにクランプした電流プロ−ブ等の電流検出手段である。EUT1への印加妨害波によりその内部の論理素子等10A−0に誤動作等の機能異常が発生すると、電圧検出手段10A−1や電流検出手段10A−2によりその異常がそれそれ電圧vまたは電流iの電気的出力信号として検出される。
【0034】
次に、図10で、10BはEUT1の機能異常発生の磁気的検出手段であり、10B−0はEUT1内部の機能異常発生要因と考えられるコイル等の漏洩磁界発生素子、10B−1は漏洩磁界発生素子10B−0に接近して配置した磁界コイルなどの磁気検出手段であり、EUT1への印加妨害波によりその内部の漏洩磁界発生素子10B−0から磁束Φが発生すると、磁気検出手段10B−1によりEUT1の機能異常発生が磁気出力信号として検出される。
【0035】
また、図10で、10CはEUT1の機能異常発生の前記図1の10−0と同様の発光検出手段であり、10C−0は、EUT1に配設された警報・同期はずれ・誤動作等の発光表示用ランプや発光ダイオ−ドなどからなる単一または複数個の機能異常表示素子、10C−1は機能異常表示素子10C−0の個々または全体を覆うように接近または接触して装着したLED等の発光検出手段で、10C−0のいづれかの発光に対して受光検出するようになっている。10C−0’はEUT1に接続されたCRTや液晶等の表示画面を有する付属EUT、10C−2は付属EUT10C−0’の表示画面に接近または接触して装着した集合光ファイバ等からなる画素拡大機能を有するマトリクス型等の画素検出手段である。EUT1への印加妨害波によりEUT1内の回路が誤動作して、これに配設された機能異常表示素子10C−0や付属EUT10C−0’の表示画面に、ランプ点灯や画像劣化等の機能異常が発生すると、発光検出手段10C−1や画素検出手段10C−2によりEUT1や付属EUT10C−0’の機能異常発生が受光出力信号として検出される。
【0036】
さらに、図10で、10DはEUT1の機能異常発生の音響検出手段であり、10D−0はEUT1に組み込まれたスピ−カやブザ−などの音響発生器、10D−1は音響発生器10D−0の近傍に設置したマイクロホンなどの音響検出手段、10D−1’はEUT1に接続されたハンドセット1−1の受話器に勘合したマイクロホンなどの音響検出手段である。EUT1への印加妨害波によりEUT1に組み込まれた音響発生器10D−0やハンドセット1−1の受話器から異常音や雑音などの可聴音が発生すると、音響検出手段10D−1や10D−1’によりEUT1の機能異常発生が音響出力信号として検出される。
【0037】
また、図10で、10EはEUT1の機能異常発生の電気的検出手段10Aとは異なる電気的検出手段であり、10E−0はEUT1に組み込まれた音響出力等、他の機器等とのインタフェ−ス用接続端子、10E−1はインタフェ−ス用接続端子10E−0からの入力信号を他の機器等へ出力するインタフェ−ス回路である。EUT1への印加妨害波によりEUT1のインタフェ−ス用接続端子10E−0に異常信号が出力すると、インタフェ−ス回路10E−1を介してEUT1の機能異常発生がインタフェ−ス出力信号として検出される。
【0038】
以上、EUTの機能異常発生の状況に合わせて、図10の各種障害信号検出手段のいずれかまたは複数を図1もしくは図8の障害信号検出部10に用い、それぞれ所定の検出レベルを越えた時のEUT1への妨害波印加レベルを求めれば、誤動作を対象としたイミュニティ試験を簡単・確実に、かつ稼働をかけずに短時間に実施できる。
【0039】
【アナログ的通信品質劣化に対する試験の実施例】
次に、上記図10の障害信号検出手段を用い、EUT1が前述の誤動作や同期はずれなど、異常状態の出力がゼロか1かのようなデジタル的な発生とは異なり、符号誤りやスル−プット、画像品質劣化、雑音可聴等、アナログ的な品質劣化の生じる機能異常モ−ドを対象とした場合のイミュニティ試験方法について説明する。
【0040】
すなわち、EUT1がデ−タ通信機器でその符号誤りを対象とする時、障害信号検出部10を図10の電圧検出手段10A−1や電流検出手段10A−2、またはインタフェ−ス回路10E−1を用い、障害度測定部11を符号誤り測定機能を有する測定部として、EUT1の障害信号を検出する。これによる障害度測定部11の符号誤り率が方式上から定められた所定の値になった場合にGP−IBケ−ブル15を介して制御部13に障害信号を伝達し、前と同様の制御を行うことによってEUT1の符号誤りに対するイミュニティ特性が求まる。
【0041】
また、図10で、EUT1が簡易携帯電話機(PHS)等の基地局(CS)または携帯端末機(PS)で、障害信号検出部10を図10のインタフェ−ス回路10E−1、障害度測定部11をスル−プット測定機能を有する測定部として、障害度測定部11で測定されるスル−プット値が所定の値になった場合にGP−IBケ−ブル15を介して制御部13に障害信号を伝達し、前と同様の制御を行うことによってEUT1のスル−プットに対するイミュニティ特性が求まる。
【0042】
次に、EUT1がCRTや液晶表示画面を有する画像通信機器で、その画像品質の劣化を対象とするとき、障害信号検出部10を図10のマトリクス型画素検出手段10C−2、障害度測定部11を画像品質劣化測定機能を有する測定部として、障害度測定部11で測定される画像劣化値が所定の値になった場合にGP−IBケ−ブル15を介して制御部13に障害信号を伝達し、前と同様の制御を行うことによってEUT1の画像劣化に対するイミュニティ特性が求まる。
【0043】
さらに、EUT1が受話器やスピ−カを有する音響通信機器で、その雑音可聴等の音声の品質劣化を対象とする時、障害信号検出部10を図10のマイクロホン等の音響検出手段10D−1または10D−1’、障害度測定部11を可聴雑音測定機能を有する測定部として、障害度測定部11で測定される雑音可聴値や音声劣化値が所定の値になった場合にGP−IBケ−ブル15を介して制御部13に障害信号を伝達し、前と同様の制御を行うことによってEUT1の雑音可聴や音声劣化に対するイミュニティ特性が求まる。
【0044】
なお、これらの符号誤りやスル−プット、画像品質劣化、雑音可聴等、アナログ的な品質劣化の生じる機能異常モ−ドを対象とした場合のイミュニティ試験・評価方法には、上述のように、I.所定の品質劣化量が生じる時のEUT1への妨害波印加レベルを測定して評価する方法と、これ以外に、II.EUT1に所定の妨害波印加レベルを印加した時に生じる品質劣化量を測定して評価する方法もある。本発明の雑音可聴試験に関する以降の実施例の説明では、上記 II.の方法を用いて説明する。
【0045】
【実施例3】
図11はEUT1が受話器やスピ−カを有する電話機等の音響通信機器の場合に、AM変調波印加時の雑音可聴特性を測定・評価する本発明の第3の実施例を説明する図であり、21は可聴雑音の評価基準信号を発生するGP−IB制御が可能な基準信号発生部、22はEUT1がアナログ通信機器の場合に、これを擬似交換部3’を介してAE2と接続しなくても通話状態にすることが可能な基準信号重畳の直流供給回路(フィ−ディングブリッジ)、23はEUT1の対向通信線側に接続する擬似交換部3’または直流供給回路22等の通話状態実現手段を選択する切り替えスイッチ、24はハンドセット1−1の受話口と勘合させたマイクロホン10D−1’を組み込んだ擬似耳、25はハンドセットコ−ドの接続された受話器端子に接触させ受話器端子間に生じる微小検波電圧を検出する高周波コモンモ−ドインピ−ダンスが大きく、接触による受話器音圧の変動を無視し得る差動プロ−ブである。また図12は直流供給回路22の具体的実施例であり、基準信号発生部21からの基準信号fと直流電圧Eとを重畳させてEUT1の接続される通信線4(負荷)側に供給し、EUT1がアナログ通信機器の場合にはこれによって通話状態が確保できるようになっている。さらに図13は基準信号発生部21が有する可聴帯域周期の信号波形例であり、(a)は前述の図3(a)のAM変調波の変調波成分のような可聴帯域周波数からなる連続性正弦波の波形、図13の(b)ないし(d)は図3の(b)ないし(d)の波形とそれぞれ同様な可聴帯域の周期を有する連続性のパルス波形である。
【0046】
図11で、EUT1へのAM変調波印加時の雑音可聴特性を測定・評価するには、スイッチ23を切り替えて、基準信号発生部21から図13(a)のような可聴周波数fの基準正弦波信号を直流供給回路22を介してEUT1の対向側通信線4間に印加し、障害度測定部11で測定されるこの印加線間電圧が所定の基準可聴レベル(例えば レベルa)となるよう、制御部13において基準信号発生部21の出力を設定する。また、この設定状態において、ハンドセット1−1の受話口に勘合させた擬似耳24内のマイクロホン10D−1’、EUT1のスピ−カ近傍の任意位置に配設したマイクロホン10D−1、または差動プロ−ブ25のいずれかで検出され障害度測定部11で測定される基準信号発生部21の出力信号fによる基準信号レベル(=評価基準値)VrefをGP−IB線15を介して制御部13に伝達し記憶する。次に、上記基準信号fの印加を除去し、EUT1へ所定の妨害波レベルV=V0が全試験帯域にわたって印加されるよう、図5(b)の掃引方法によって制御部13を設定・制御し、妨害波発生部6’からAM変調妨害波を印加する。この結果ハンドセット1−1の受話口に勘合させた擬似耳24内のマイクロホン10D−1’、EUT1のスピ−カ近傍の任意位置に配設したマイクロホン10D−1、または差動プロ−ブ25のいずれかで検出され障害度測定部11で測定されるAM変調波がEUT1内の回路で検波された可聴雑音信号レベルVの曲線と、上記Vrefとを表示部14画面上のグラフにプロットする。
【0047】
図14(a)はこのようにして求められる可聴雑音特性例の説明図であり、妨害波印加による可聴雑音特性曲線が、図中に太線で示した評価基準値Vrefに対して例えば周波数fn以下の帯域では小さく満足しているが、周波数fn以上は評価基準値をオ−バしており、その量が周波数によりどの程度か等の雑音可聴特性の評価が容易にできる。また図14(b)は、(a)と異なる評価基準値Vrefの与え方をした場合、すなわち評価基準値をVref±ΔVとして、試験帯域(fl〜fh)内の周波数fk以下ではこの下限値、fk以上では上限値とした場合である。同図より、このような評価基準値に対しては、周波数fがfn1<f<fk およびfn2<f において基準値をオ−バしていることなどがわかる。なお、上記Vrefを図14(a)、(b)の右側縦軸の換算雑音音圧Pとして音圧の絶対値で表示する場合には、マイクロホン10D−1’に標準周波数(1kHz等)と標準出力音圧Ps(dBspl) とを有する標準音源を勘合させ、障害度測定部11で測定される基準出力信号レベルVsが音圧の校正基準値Psに等しいとして、Vrefを比例配分により音圧P0=Ps・Vref/Vsのように換算すればよい。
【0048】
マイクロホンのかわりに差動プロ−ブ25を使用する時には、まず、上記校正に使用したマイクロホン10D−1’を障害度測定部11に接続して、基準信号発生部21の印加信号によるマイクロホン10D−1’の検出レベルが上記VSとなるよう、基準信号発生部21の出力を設定する。この設定状態のまま障害度測定部11で測定される差動プロ−ブ25の検出レベルVspが音圧の校正基準値Psに等しいとみなして、Vrefを比例配分により音圧P0=Ps・Vref/Vspとして換算することにより、音圧の絶対値が得られる。なお、図11の実施例で、妨害波発生部6’からEUT1へ妨害波印加の結果、EUT1の内部回路で変換・検波され対向通信線側に伝送される通信線間の可聴雑音レベルを障害度検出部11で測定し、図14(a)、(b)の左側縦軸をこれで置き換えた同様のグラフを作成することにより、EUT1の対向通信機器であるAE2側の可聴雑音特性も、同様に相対評価および絶対評価が可能である。
【0049】
以上のように、本発明の実施例では、EUT1の対向通信線間に所定レベルの上記基準信号を印加した時に、EUT1側の各マイクロホンや受話器端子間に生じる可聴信号レベルを相対評価の基準値として、これに対する妨害波印加時の可聴雑音特性を相対的に比較・評価する方法を用いているので、音量可変調整つまみの設定状態やマイクロホンの設置位置などで音響出力の異なるEUT1に対しても可聴雑音の適正な評価ができる。また標準音源を用いて上記相対評価値を音圧の絶対値に換算すれば、可聴雑音特性の絶対値評価も可能となる。さらにEUT1の対向通信線間に生じる可聴雑音レベルも障害度検出部11で測定できる構成にしてあるため、対向通信線間の可聴雑音レベルも同様に相対および絶対評価が可能となり、EUT1の雑音可聴のAE2側への影響も明らかにできる。
【0050】
また、本発明の実施例では、可聴雑音評価のための基準信号やEUT1を通話状態にする給電回路を組み込んであるため、AE2を接続しなくてもアナログEUT1の通話状態が実現できる。なお、デジタルEUT1を試験する場合には、選択スイッチ23を切り替えてデジタル擬似交換部3’を接続し、これにデジタルAE2を接続して発信接続し通話状態とした上で同様の試験を実施すればよいことは明らかである。
【0051】
次に図11の本発明による実施例を用いて、図3の(b)ないし(d)のようなパルス性妨害波に対する雑音可聴特性を試験・評価するには、これらの妨害波と波形もしくは少なくとも周期が同等な図13の(b)ないし(d)の基準信号を、基準信号発生部21からEUT1の対向通信線間にそれぞれ所定の基準可聴レベル(例えばそれぞれレベルb、c、d)となるよう印加して、AM変調波印加の場合と同様にEUT1の各マイクロホン10D−1や10D−1’、または差動プロ−ブ25の検出信号を測定して、図14と同様のグラフを求めることにより可能となる。
【0052】
なお、図13(a)ないし(d)の各基準信号をEUT1の対向通信線間に印加時の上記基準レベル(それぞれレベルa〜d)を設定するに当たっては、予め各基準信号のレベルを可変した音声を多人数の被験者に聞かせて図15のような音声劣化評価尺度による聴感特性を求めておき、この中のいずれかのランク、例えばランク3(わずかにうるさい)の該当する印加レベルV(または音圧P)の値、それぞれレベルa〜dをもって評価基準とする方法等が考えられる。
【0053】
図16ないし図19は、図11をより具体化した本発明の実施例を説明する図であり、図16で妨害波結合部5’を3つのCDNで構成し、本体内部構成の簡易化のため、図11の妨害波発生部6’、増幅部7’、制御部13および表示部14からなる妨害波印加制御系と、擬似線路12とを本体外部に外付け配置構成としたものである。図16で、5’−1および5’−2は図4(a)および(b)とそれぞれ同様のCDN−2WおよびCDN−4W、5’−3はCDN−2WをAC線用にしたAC−CDN、11−1は障害度測定部11の入力接続部端子、11−2および11−3は障害度測定部11内に設けたそれぞれEUT側および対向通信線側の可聴雑音電圧を測定するGP−IB制御可能な可聴雑音測定計、26は高周波コモンモ−ドおよびディファレンシャルモ−ドのインピ−ダンスが大きく接続による通信線の伝送信号への影響を無視し得る可聴帯域通過フィルタ、3Aは擬似交換部3’内に配設したアナログ擬似交換部、3Bは同デジタル擬似交換部、23’はこれらのアナログ・デジタル交換部それぞれ3Aおよび3Bとフィ−ディングブリッジ22のいずれかをEUT1の対向通信線に選択接続する切り替えスイッチ、27は、基準信号発生部21または終端抵抗や外部信号入力のいずれかをフィ−ディングブリッジ22の入力部に選択接続する切り替えスイッチ、29は筐体内に配置した3つのCDN部分からの漏洩放射雑音が内部の他のブロック構成部分に影響を与えないよう設けた遮蔽板、30は擬似線路12をショ−トして対向通信線の挿入損失をゼロに設定するショ−トバ−、31は妨害波を印加しないCDNの妨害波入力端子に接続したライン終端用の抵抗、32は擬似大地板、33はEUT1を擬似大地板32上に所定高hで設置する非金属製の絶縁支持台、34はハンドセット1−1およびこの受話口と勘合さたマイクロホン10D−1’を組み込んだ擬似耳24の周辺を囲って外部騒音の影響を除去する遮音箱、35はハンドセットを人が握った状態を模擬した擬似手回路である。
【0054】
また、図17は、図16のデジタル擬似交換部3B部分の詳細ブロック構成図であり、デジタル交換部3Bは、4つのS/T点接続端子を有するISDN擬似交換部3B−1の内2つのS/T点接続端子と、U点およびS/T点各2接続端子を有するS/T点−U点変換部3B−2の2つのS/T点接続端子とを接続して、全体としてS/T点およびU点接続端子各2端子、それぞれ3B−1’および3B−2’を有するよう構成してある。
【0055】
さらに、図18は、図16のEUT1の配置を含む試験系構成の概略外観図であり、図16の3つのCDNそれぞれ5’−1、5’−2、5’−3は実際には図18に示すように擬似大地板32の上に並べて筐体が擬似アース板と同電位になるよう配設され、絶縁支持台33の上に設置されたEUT1の通信線4やAC線とほぼ同一高さで接続し、CDN5’−1〜5’−3を介してEUT1に結合・印加されるコモンモ−ドの試験妨害波電圧がCDN5’−1〜5’−3からEUT1にレベル変動が少なく安定して印加されるよう構成してある。
【0056】
図16ないし図18で、EUT1の雑音可聴イミュニティ特性を試験・評価するには、試験に先だって印加出力測定部16を用いて妨害波結合に用いるCDN(ここではCDN−2W(5’−1))を図7の箇所で説明した方法で校正すると共に、妨害波を印加しないがEUT1に接続されるAC−CDN(5’−3)の妨害波入力端子を終端抵抗31で終端する。次に図11の動作説明の箇所で述べた方法と同様に、まず基準信号発生部21からの基準正弦波信号fが直流供給回路22を介してEUT1の対向側通信線4間に印加されるよう、スイッチ27および23’を切り替える。また、対向通信線間に挿入接続する擬似線路12の損失を設定し、損失ゼロとする場合には擬似線路12を損失ゼロに設定するか、擬似線路12を除去してショ−トバ−30を接続し、EUT1を通話状態にする。この後可聴帯域通過フィルタ26を介して障害度測定部11内の可聴雑音測定計11−3で測定される上記基準正弦波信号レベルが所定の基準可聴レベル(例えば 前述のレベルa)となるよう、基準信号発生部21の出力を制御部13で設定する。
【0057】
この設定状態において、ハンドセット1−1の受話口に勘合させた擬似耳24内のマイクロホン10D−1’、EUT1のスピ−カ近傍の任意位置に配設したマイクロホン10D−1、または差動プロ−ブ25のいずれかで検出され可聴雑音測定計11−2で測定される基準信号発生部21の出力信号fによる基準信号レベルVref(=評価基準値)を記憶する。次に上記基準信号発生部21の出力を停止し、スイッチ27を切り替えて直流供給回路22の入力端子を終端抵抗で終端した後、EUT1へ所定の妨害波レベルV0が全試験帯域にわたって印加されるよう、制御部13を図5(b)の掃引方法によって設定・制御し、妨害波発生部6’からAM変調妨害波を印加する。この結果生じるハンドセット1−1の受話口に勘合させた擬似耳24内のマイクロホン10D−1’、EUT1のスピ−カ近傍の任意位置に配設したマイクロホン10D−1、または差動プロ−ブ25のいずれかで検出され可聴雑音測定計11−2で測定された可聴雑音信号レベル曲線と上記Vrefとを表示部14画面上のグラフにプロットする。
【0058】
図19は、このようにして求めたEUTがアナログ電話機の場合で、試験周波数帯域が0.5〜80MHz、評価基準値Vref±ΔVはΔV=10dBで0.5〜30MHzはこの下限値、30〜80MHzは上限値として、Vrefを雑音音圧65dBsplとした場合の可聴雑音特性例である。図より評価基準値をオ−バする周波数帯域は、8〜50MHzであり、オ−バ量の最大は周波数30MHzで約30dBとなっており、このオ−バ帯域に対策を施す必要があることなどが容易にわかる。
【0059】
以上、図16では、EUT1への妨害波の結合・印加を通信線から行う場合について説明したが、AC線から行う場合には、AC−CDN(5’−3)の妨害波入力端子に 妨害波発生部6’の出力部を増幅部7’を介して接続すると共に、CDN−2W(5’−1)の妨害波入力端子を抵抗31で終端した後に同様の方法によって試験を行えば、EUT1のAC線伝導妨害波に対する雑音可聴イミュニティ特性が求まり、AC線伝導イミュニティを容易に評価できる。また、EUT1が電話機の親機または主装置で、内線からEUT1側に妨害波を印加したい場合には、ホ−ムバス等の内線は一般に平衡4線であることから、CDN−4W(5’−2)の妨害波入力端子に 妨害波発生部6’の出力部を増幅部7’を介して接続すると共に、CDN−2W(5’−1)およびAC−CDN(5’−3)の各妨害波入力端子をそれぞれ抵抗31で終端した後に同様の方法によって試験を行えば、EUT1の内線伝導妨害波に対する雑音可聴イミュニティ特性が求まり、内線伝導イミュニティを容易に評価できる。
【0060】
なお、図16の上記説明では、試験器筐体9に内蔵した基準信号発生部21から可聴周波数の正弦波信号を印加して評価基準レベルを設定したが、スイッチ27を切り替えて外部からあらかじめ録音された標準音声信号や、内蔵の基準信号発生部21の出力をいったん外部に引き出しこれと他の信号とを合成した信号等を、直流供給回路22や対向AE2側に入力して評価基準レベルを設定することもできる。またEUT1がデジタル電話機等のデジタル通信機器の場合には、スイッチ23’を切り替えて対向通信線にデジタル擬似交換部3Bを接続し、これにデジタルAE2を接続すると共に、妨害波印加点がデジタル通信線のインタフェ−スU点であればCDN−2W(5’−1)を、S/T点であればCDN−4W(5’−2)をそれぞれ用いて妨害波を結合・印加して試験を行えばよい。さらに、EUT1の可聴雑音以外の機能異常を試験・評価する場合には、図16の可聴雑音測定計11−2への入力をマイクロホンなどの可聴信号入力にかえて、EUT1の機能異常発生状況に対応した図10の電気、磁気、光などの各種検出信号を用い、可聴雑音測定計11−2にかえてそれぞれの機能異常測定手段を用いると共に、基準信号発生部21も画像品質評価やデ−タ伝送品質評価等の基準となる各テストパタ−ン信号等の送出が可能な信号発生部に置き換えて、同様の方法によって実行できる事は明らかである。
【0061】
【妨害波結合手段の実施例】
図20ないし図30は、本発明の妨害波結合部5’の実施例を説明する図であり、図4に示したコンデンサ結合型で平衡8線程度のものよりも線数の多い多線条通信線路への妨害波の結合に適した構成としたもので、図20は、図18の3つの妨害波結合部5’−1〜5’−3の中のいずれか一つ例えば5’−3に変えて、静電結合と電磁結合との複合化した結合機能を有する妨害波結合部5’−4または5’−5を用いた実施例であり、線路長方向に沿って半分に割った2つの構成部分で多線条線路4−1を両側からはさみこむようにしてある。図21は図20の妨害波結合部5’−4または5’−5の片側について、線路4−1をはさみこむ内側を見た斜視図であり、(a)の5’A1は多線条通信線4−1の半外周に沿って囲むように配置した金属製の静電結合板、5’B1は静電結合板5’−A1の外側からこれを囲むように長さ方向に複数個配設したフェライトなどの磁性コアであり、それぞれ巻線がコイル状に施されている。(b)の妨害波結合部5’−5は(a)の磁性コア5’B1の複数個をまとめて長さDの1個のコア5’B2に置き換えたものである。また図22は、図21(a)、(b)の長さ方向に垂直な面の概略断面図である。図21の妨害波結合部5’−4または5’−5を線路4−1に装着するには、図20や図22から明らかなように、それぞれ妨害波結合部5’−4または5’−5同士を用いて線路4−1を両側からはさみこみ、図示しない固定治具等を用いて図20のように装着する。この時、図22に示した各磁性コア5’B1または5’B2同士および各静電結合板5’A1同士の対向間隔それぞれdcおよびdsを、dcはゼロで互いに良好に接触させる一方、dsは所定の間隔を保つように構成すると共に、装着後の2つの静電結合板5’A1は、図示しない擬似ア−ス面に対して対称になるよう配置する。
【0062】
図23(a)はこのような妨害波結合部5’−4の線路4−1への妨害波結合・印加原理を説明する図であり、磁性コア5’B1が1組のみの場合を示し、多線条通信線4−1は代表的に1本の線路4として表してある。ZsおよびZrは線路4の両側に接続した機器等のコモンモ−ドインピ−ダンスであり、並列接続した静電結合板5’A1と磁性コア5’B1に捲回したコイルLとからなる回路に妨害波発生部6’から妨害波信号を供給すると、線路4には静電結合板5’A1との間に生じる浮遊容量Csによる静電誘導電圧Vsと、磁性コア5’B1のコイルLによる電磁誘導電圧Vcとが同方向に発生し、これらの合成された妨害波電圧が線路4の各心線に結合・印加される。一方、コイルLを流れる妨害波電流によって、間隔dsをおいて対向する2つの静電結合板5’A1にも上記Vcと同方向の電磁誘導電圧それぞれVc1が発生するが、2つの静電結合板5’A1が擬似ア−ス面に対して対称に配置され長さ方向の片端でのみ接続されているため、Vc1は大きさが等しく方向が逆向きとなって互いに打ち消し合い回路へ影響を与えない。このような妨害波の結合・印加は多線条線路のすべての心線に対してなされ、印加周波数が低い場合はコイルによる電磁誘導が、高い場合は静電結合板による静電誘導がそれぞれ有効に作用して、広い帯域の妨害波結合が可能となる。また、多線条線路の心線が撚り線で構成されていれば、上記2つの手段による各心線への結合がアンバランスなく行われる。
【0063】
図23(b)および(c)は、図21(a)に示したn個の磁性コア5’B1を直列接続し、これと静電結合板5’A1とをそれぞれ直列接続および並列接続した場合の回路構成であり、複数個の磁性コアによる電磁結合と静電結合板による静電結合の作用で線路4へ大きな結合電圧が生じる。
【0064】
図24は妨害波の結合量をさらに増加させるため、図20の3つの妨害波結合部にいずれも妨害波結合部5’−4または5’−5を用いて構成し、筐体9の外部において多線条線路4−1を多線条線路接続用コネクタ4−2を用いて接続したもので、多線条線路4−1に対する長さDの静電結合部分と電磁結合部分からなる結合部分を全体的に拡大して、妨害波発生部6’の出力が小さい場合でも大きな妨害波結合出力が得られるようにしたものである。
【0065】
図25の妨害波結合部5’−6の5’A2は、図21(a)の静電結合板5’A1について外周の各磁性コアの配設された長さ方向の半円周部分を切断して除去すると共に、装着後それぞれ対向する2つの静電結合板5’A2同士の間隔dsをゼロとして接触するよう構成したものである。図26(a)はこのような妨害波結合部5’−6の線路4への妨害波結合・印加原理を説明する図であり、磁性コア5’B1は1個のみの場合を示し、静電結合板5’A2を除去した長さ方向の間隔lの部分に磁性コア5’B1に捲回したコイルLが配設されている。並列接続した静電結合板5’A2とコイルLとからなる回路に妨害波発生部6’からの妨害波信号を供給すると、線路4には静電結合板5’A2との間に生じる浮遊容量Csによる静電誘導電圧Vsと、コイルLによる電磁誘導電圧Vcとが同方向に発生し、これらの合成された妨害波電圧が線路4の各心線に結合・印加される。この場合、同一長さ方向位置で対向する2つの静電結合板5’A2が接触しリング状に構成されているが、コイルLは静電結合板のない間隔lの長さ方向部分に配置されているため、コイルを流れる妨害波電流は静電結合板5’A2には何ら影響を与えない。図26(b)および(c)は、図25に示したn個の磁性コア5’B1を直列接続し、これと静電結合板5’2Aとをそれぞれ直列接続および並列接続した場合の回路構成であり、複数個の磁性コアによる電磁結合と静電結合板による静電結合の作用で線路4へ大きな結合電圧が生じる。
【0066】
図27は妨害波の結合量をさらに増加させるため、長さDの多線条線路の外周を円筒状の導体からなる静電結合板5’A3で覆ったものを複数個並列に並べて妨害波結合部5’−7を構成し、これらの入出力部分を除く両端を筐体9の外部において多線条線路接続用の非シ−ルドコネクタ4−2により接続し、このコネクタ部分を磁性ル−プコアにコイルを施した磁性コア5’B3で結合したもので、円筒状導体5’A3とコイルとを図23(b)、(c)と同様に接続することにより、多線条線路4に対する長さDの静電結合部分および電磁結合部分を等価的に拡大して、妨害波発生部6’の出力が小さい場合でも大きな妨害波結合出力が得られる。
【0067】
図28および図29は、静電結合型の妨害波結合部の実施例を説明する図であり、シ−ルド付きの多線条線路または非シ−ルド多線条線路の外周に円筒状の導体を施した線路を用いて、それぞれ妨害波結合部5’−8および5’−9を構成したものである。図28で、5’A3は、長さDの多線条線路の外周に施したシ−ルドまたは円筒状外部導体、5’Cは多線条線路の外部導体のおのおのと接続したバ−、5’Dは妨害波発生部からバ−5’Cを介してシ−ルド外部導体と擬似大地板間に妨害波信号を印加するための接続コネクタ、4−2は筐体9の外部において多線条線路の外部導体5’A3同士を接続するコネクタである。また、図29は柔軟性のあるシ−ルド付き多線条線路または非シ−ルド多線条線路の外周を導体5’A4で覆った線路を複数回捲回して、妨害波結合部5’−7を構成した実施例の説明図である。コネクタ5’Dの中心導体が外部導体5’A4の複数箇所で接続され、コネクタ5’Dの外部導体と擬似大地板(底面)とが接続されており、コネクタ5’Dを介して外部導体5’A4と擬似大地板との間の妨害波を印加する構成として、線路長を大きくして多線条線路の心線と外部導体との間に存在する浮遊容量を増加して、静電結合効率の改善をはかったものである。
【0068】
図30の妨害波結合部5’−8は、図29の束に巻いた線路の一部の外周に図27の5’B3と同様の磁性ル−プコア5’B4を装着したもので、多線条線路の外周に施した外部導体5’A4は、長さ方向には一様で半円筒状に割れたものを、間隙を有するように対向させてあるか、もしくは磁性コア5’B4の貫通した長さdの部分のみ除去した構成としてある。このような外部導体5’A4と磁性コア5’B4のコイルとを図23(b)、(c)または図26(b)、(c)のように直・並列接続しこれに妨害波信号を供給することにより、図29の静電結合に電磁結合の効果が加わって結合効率の一層の増加が可能となる。
【0069】
以上の図20ないし図30の妨害波結合部の内、線路の途中にコネクタを用いていない構成のものは両側から多線条線路の外周を囲むように装着するだけで、線路を切断せずに多線条線路の各心線に静電結合と電磁結合の両者または一方の手段により妨害波を有効に結合できる利点がある。また高速度のパルス伝送等を行う多線条線路を用いた通信装置の場合でも、途中に何ら損失回路等が挿入されないため通信系へ影響を与えず、妨害波が容易に結合できる利点もある。さらに、図28および図29の静電結合型の妨害波結合部の構成では、静電結合板の浮遊容量を通して妨害波を結合するので、結合系の損失が小さくパルス性妨害波を有効に結合できる等の利点もある。なお図20ないし図30の妨害波結合部を用いて、多線条線路のEUT1側にのみ妨害波を結合する場合は、多線条線路のAE側に図示しない減結合回路などの伝導妨害波阻止手段を接続して使用する。
【0070】
【被試験装置の接続・配置例】
図31および図32は、図16の本発明の実施例を用いて、EUT1がそれぞれアナログ通信機器およびデジタル通信機器について、誤動作を対象とするイミュニティ試験系の接続・配置例を示したもので、EUT1に接続する妨害波結合・印加部分と非印加ラインの終端状況、および擬似交換部を含むAE2との接続部分のみについて示してある。
【0071】
図31はアナログボタン電話装置等のシステム(複合)EUTの例であり、これに接続するラインに対応して妨害波を(a)は外線通信線、(b)は内線通信線で、▲1▼は主装置等のM(メイン)−EUT側に、▲2▼は子機などのS(サブ)−EUT側に、また(c)はAC線に それぞれ結合・印加する場合の接続例である。また、図32はデジタル電話機やISDNタ−ミナルアダプタ(TA)等のデジタルEUTの例であり、妨害波を(a)は通信線のインタフェ−スU点から回線終端装置(DSU)内蔵型のEUTに、(b)は同じく通信線のU点からPHS−CSなどのDSU内蔵型の無線機器に、(c)はS/T点からDSU分離型のEUTに それぞれ印加する場合の接続例である。このように本発明の実施例は、平衡2線・4線の通信線に接続するアナログ機器や、ISDN回線のインタフェ−スU点およびS/T点に接続するデジタル機器等、多くの通信機器の通信動作状態を実現できる。また、通信線やAC線等複数のラインが接続した複合システム機器のようなEUTの場合にも、各種ラインから試験妨害波を結合・印加できると共に、非印加ラインに対してはCDNの妨害波入力端子を終端することにより、EUT配置系のコモンモ−ドインピ−ダンスを安定化させ、試験の再現性を向上できる。
【0072】
なお、これらの試験系では妨害波結合部5’に3種類のCDNを用いたもので説明したが、CDN−4Wは筐体9から除去して外部に取り出す構成にすれば、試験器が小型化すると共に、EUTが複数の線路で接続された複合システムのような場合には、接続配置系を簡易化できる。また、CDNに変えて図20ないし図30のような結合手段を用いれば、図3(b)ないし(d)のような連続性パルス波や、これらの単発パルス波およびランダムパルス波等の妨害波も有効に結合・印加され、これらによる伝導イミュニティ試験が実現できる。
【0073】
【発明の効果】
以上説明したように、本発明による伝導イミュニティ試験器は、妨害波印加時のEUTの誤動作や通信品質劣化等の機能異常を、電磁気的、光学的、または音響的に検出する手段を設け、これらによる異常発生検出後直ちに印加を停止し、EUTの通信動作の自動復旧を待って周波数ステップさせた妨害波を再印加したり、自動復旧しないEUTに対してはEUTに装着した起動手段を用いて再起動させる等、異常発生と連動した妨害波印加制御を行うようにしてあるため、稼働のかかる一連のイミュニティ試験が自動化され、操作が容易で試験時間の大幅な短縮がはかれる利点がある。
【0074】
アナログおよびデジタル擬似交換機能を有する通信交換接続系と、通信線のアナログ平衡2/4線やデジタルインタフェ−スU点、S/T点等への印加が可能な妨害波結合系とを同一試験器筐体内に一体的に組み込んだ構成であるため、アナログ系またはデジタル系通信機器等、各種EUTの伝導イミュニティ試験が実施でき、試験系の配置構成も簡易化されて操作性が向上する利点がある。
【0075】
多線条通信線用やAC線用のコンデンサ結合型妨害波結合部を複数台組み込んだ試験器では、複合システム機器の有する多くのラインのいずれかから妨害波を結合・印加できると共に、妨害波を印加しない非印加ラインに接続した妨害波結合部を終端用として用いることにより、EUT配置系のコモンモ−ドインピ−ダンスを安定化でき、試験の再現性向上がはかれる利点がある。
【0076】
本発明の静電結合型、またはこれと電磁結合型とを複合化した妨害波結合部を用いることにより、通信伝送信号に影響を与えず、多くの心線を有する多線条線路の外部から静電誘導および電磁誘導の一方または両方の手段で妨害波を結合・印加できるため、多線条線路に接続した通信システムや機器の伝導イミュニティを試験・評価でき、かつパルス性妨害波のような高周波成分を有する試験信号も有効に印加できる利点がある。
【0077】
可聴雑音の評価基準信号源を筐体内に組み込み、この基準信号印加によりEUT側に生じる可聴信号レベルを評価基準値として、印加妨害波の検波出力特性を相対的に評価する方法を用いたものは、音量調整つまみの設定やスピ−カに対するマイクロホンの設置位置で受話音量が変わるEUTに対しても、適正な可聴雑音の評価ができる利点がある。また、標準音源を用いて上記可聴雑音の相対値評価の音響検出系を校正することにより、音響圧力を絶対値として評価することも可能となる利点がある。
【0078】
スピ−カや受話器などEUT側からの音響出力信号と、対向通信線間信号の両者の検出手段を設けた構成としているため、EUT側だけでなく対向通信機器側の可聴雑音評価もできる利点がある。また、可聴雑音の評価基準信号源として、連続性の正弦波信号だけでなく、可聴帯域周期の連続性パルス信号波も内蔵しているため、同周期のパルス性妨害波を印加時の可聴雑音評価も可能となる利点がある。
【図面の簡単な説明】
【図1】本発明の第1の実施例を説明する図である。
【図2】従来の伝導イミュニティ試験系の構成図である。
【図3】妨害波発生器の出力波形例を示す図である。
【図4】妨害波結合器の構成例を示す図で、(a)は平行2線通信線用結合・減結合回路(CDN−2W)、(b)は平行4線通信線用結合・減結合回路(CDN−4W)を示す図である。
【図5】制御部を用いて妨害波発生部のAM変調信号を出力制御する方法の説明図であり、(a)は周波数ポイントごとに妨害波発生部の出力を増減しながら周波数を可変させる方法示す図、(b)はEUTへの印加レベルを一定として周波数を可変させる方法を示す図である。
【図6】図5の制御方法によって得られるイミュニティ特性の説明図である。
【図7】妨害波結合部の校正方法を説明する図であり、(a)は接続方法の説明図、(b)は制御部における妨害波発生部の出力制御を説明する図、(c−1)、(c−2)は妨害波結合部の起電力と負荷の誘起電圧との関係を求めるコモンモ−ド等価回路図である。
【図8】本発明の第2の実施例を説明する図である。
【図9】図8中の起動手段部分の実施例を説明する図である。
【図10】図1や図8の障害信号検出部の実施例を説明する図である。
【図11】本発明の第3の実施例を説明する図であり、音響通信機器等のEUTを対象とした場合の可聴雑音特性を測定・評価するブロック構成図である。
【図12】図11中の直流供給回路の具体的構成を説明する図である。
【図13】図11の中の基準信号発生部の出力波形を説明する図である。
【図14】図11を用いて測定される可聴雑音特性の説明図であり、(a)は試験帯域内で評価基準値が一定の場合、(b)は所定の帯域で異なる評価基準値とした場合の評価方法の説明図である。
【図15】評価基準レベルを設定するための音声劣化評価尺度による聴感特性を説明する図である。
【図16】本発明の図11をより具体化した実施例を説明する図である。
【図17】図16の中のデジタル擬似交換部3Bの詳細構成ブロック図である。
【図18】図16の試験系構成の概略外観図である。
【図19】EUTがアナログ電話機の場合の可聴雑音特性例の図である。
【図20】図18の3つの妨害波結合部の1つを他の結合部で置き換えた本発明による妨害波結合手段の実施例の図である。
【図21】本発明の静電結合と電磁結合とを複合化した妨害波結合部の実施例について線路をはさみこむ内側を見た斜視図である。
【図22】本発明の静電結合と電磁結合とを複合化した妨害波結合部の実施例について線路長方向に垂直な断面図である。
【図23】図21の妨害波結合部の結合・印加原理を説明する図である。
【図24】図21の妨害波結合部を直列接続した実施例の図である。
【図25】本発明による妨害波結合部の他の実施例を説明する図である。
【図26】図25の妨害波結合部の結合・印加原理を説明する図である。
【図27】図25の妨害波結合部の磁性コア装着位置を変えた実施例の構成を説明する図である。
【図28】本発明の静電結合型結合部のさらに他の実施例の構成を説明する図である。
【図29】本発明の静電結合型結合部のさらに他の実施例の構成を説明する図である。
【図30】図29の応用を示す妨害波結合部の構成図である。
【図31】本発明試験器の使用例として、EUTがアナログ通信機器の場合で、誤動作を対象としたイミュニティ試験系の接続・配置例を示す図である。
【図32】本発明試験器の使用例として、EUTがデジタル通信機器の場合で、誤動作を対象としたイミュニティ試験系の接続・配置例を示す図である。
【符号の説明】
1:被試験装置(EUT)
1A:発光素子、1B:通信動作の起動素子
2:補助装置(AE)
3:擬似交換機、3’:擬似交換部
3A:アナログ擬似交換部、3B:デジタル擬似交換部
4:被試験装置の通信線
4−1:多線条線路、4−2:多線条線路用コネクタ
5:妨害波結合器、5’:妨害波結合部
5’−1:CDN−2W、5’−2:CDN−4W、5’−3:AC−CDN 5’−4、5’−5、5’−6、5’−10:静電・電磁複合型妨害波結合部
5’−7、5’−8、5’−9:静電結合型妨害波結合部
5’A1、5’A2、5’A3、5’A4:静電結合板
5’B1、5’B2、5’B3、5’B4:磁性コア
6:妨害波発生器、6’:妨害波発生部
7:増幅器、7’:増幅部
8:妨害波計測器、8’:妨害波計測部
9:筐体
10:障害信号検出部
10−0:受光素子、10A:電気的検出手段、10B:磁気的検出手段
10C:発光検出手段、10D:音響検出手段、10E:電気的検出手段
11:障害度測定部
11−2、11−3:可聴雑音測定計
12:擬似線路
13:制御部
14:表示部
15:GP−IBケーブル
16:印加出力測定部
17:接続線
18:校正用抵抗
19、19’:起動部
20、20’:起動手段
20−1:駆動手段、20−2:駆動回路
21:基準信号発生部
22:直流供給回路
23、23’:通話状態実現手段の選択切り替えスイッチ
24:擬似耳
25:差動プロ−ブ
26:可聴帯域通過フィルタ
27:基準信号・終端切り替えスイッチ
29:遮蔽板
30:擬似線路ショ−トバ−
31:終端抵抗
32:擬似大地板
33:絶縁支持台
34:遮音箱
35:擬似手回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a tester that applies a conducted interference wave to a communication line or a power line of an electronic information technology apparatus such as a communication device and evaluates an interference wave resistance (immunity) of a device under test.
[0002]
[Prior art]
Conventionally, as this type of conduction immunity test method, a test system in which individual test constituent means as shown in FIG. 2 are connected in combination is used. That is, in FIG. 2, 1 is a device under test (hereinafter referred to as EUT), 2 is an auxiliary device (hereinafter referred to as AE) connected to the opposite side of the communication line to bring the EUT 1 into a communication operation state, and 3 is EUT1 and AE2. 4 is an EUT1 communication line, 5 is connected to EUT1 via the communication line 4 and an electromagnetic interference wave for testing a common mode (hereinafter simply referred to as an interference wave) is applied to the EUT1. Jammer coupler, 6 is a test jammer generator, 7 is an amplifier that increases the output of jammer generator 6 to a level required to cause EUT 1 to malfunction in communication operation, and 8 is an EUT 1 amplifier. It is a disturbance wave measuring device for measuring an applied disturbance wave.
FIG. 3 is an example of an output waveform of the interference wave generator 6. (a) is an AM modulated wave such as radio broadcast, and (b) is a rectangular pulse wave (pulse width t, period synchronized with the period of the AC power source). T) and (c) are burst waves (burst width W, period T, pulse period d) generated from home appliances such as fluorescent lamps, and (d) is the same period as (b) and (c). This is a damped oscillation wave.
[0003]
FIG. 4 shows a capacitor-coupled circuit configuration example of the interference wave coupler 5 that is normally used when a continuous conduction interference wave such as the AM modulation wave of FIG. 3A is applied. (A) is a coupling / decoupling circuit (CDN-2W) for a balanced two-wire communication line such as a telephone subscriber line, where 5A is the casing, 5A-1 is a connection terminal on the EUT side, and 5A-2 is Connection terminals 5A-3 on the AE side are interference wave input terminals. Further, (b) is a coupling / decoupling circuit (CDN-4W) for a balanced four-wire communication line such as a home bus, 5B is its casing, 5B-1 is a connection terminal on the EUT side, and 5B-2. Are connection terminals on the AE side, and 5B-3 is an interference wave input terminal. In addition, a multi-strip line having up to about 8 balanced lines has the same configuration.
[0004]
In order to test and evaluate the immunity of the EUT 1 such as a communication device by applying a continuous conduction interference wave such as the AM modulation wave of FIG. 3A, the following procedure is usually taken. That is, in FIG.
(1) AE2 is operated, EUT1 is accessed via pseudo-switch 3 (or EUT1 is accessed from AE2), and EUT1 is put into a communication operation state.
(2) Set the AM modulation wave output signal of the interference wave generator 6 (carrier frequency f c , Modulation frequency f, modulation degree M, etc.), coupled to the communication line 4 via the amplifier 7 and the interference wave coupler 5 in a common mode, and applies a test interference wave to the EUT 1.
(3) The AM modulation wave output level of the interference wave generator 6 is increased to obstruct the applied level (≈ immunity level) when a functional abnormality (malfunction or communication quality degradation) occurs in the EUT 1 during communication operation. Measurement is performed by the wave measuring instrument 8. (Note that the immunity level refers to the applied level immediately before the occurrence of the functional abnormality, but here, the applied level at the time of occurrence is used as the immunity level for ease of actual measurement.)
{Circle over (4)} Alternatively, the AM modulated wave output level is set and applied so that a predetermined immunity test level is applied to the EUT 1, and the pass / fail decision is made by checking whether or not the EUT 1 has malfunctioned.
(5) AM modulation signal carrier frequency f c By sequentially changing (2) to (4), the proof strength of the EUT1 is evaluated by determining whether or not to obtain the immunity level of the EUT1 in the test frequency band.
[0005]
[Problems to be solved by the invention]
As described above, since the immunity test is generally a test for obtaining a tolerance limit of the EUT with respect to the applied disturbance wave, first, an application condition such as a frequency is set, and the applied disturbance wave level is increased until a functional abnormality occurs in the EUT. After the occurrence, it is necessary to repeatedly test by changing the frequency, etc.Especially when the EUT is a communication device, there are various forms of functional abnormality such as malfunction, code error, loss of synchronization, image quality degradation, noise audibility, The means for detecting the abnormal operation mode is required for the main function, the communication operation state may not be restored unless the application is immediately stopped when these functional abnormalities occur, and the AE or the like is reinstated if the application does not recover. Since it is necessary to repeat the application after starting up the EUT and setting it to the communication operation state, it takes a lot of time and trouble. Was Tsu.
[0006]
In addition, as is apparent from FIG. 2, the immunity test system for communication equipment requires both a communication switching connection system and an interference wave coupling / applying system. As a result, the connection system becomes complicated, and since the EUT was started up after detecting each EUT functional abnormality by visual inspection and the application conditions were manually variably set, the operability was extremely poor. there were.
[0007]
Furthermore, in order to test the conduction immunity of complex system equipment connected by multiple multi-wire communication lines with different numbers of EUTs, it is possible to apply disturbing waves from each of the many lines connected to the complex system equipment. However, it is necessary to terminate the non-applied line that does not apply the interference wave and stabilize the common mode impedance of the EUT arrangement system. There were drawbacks such as requiring a large occupied area.
[0008]
The purpose of the present invention is to simplify and automate an immunity test system that is large in scale and time consuming as described above, so that the immunity test can be performed easily and in a short time, and has excellent operability and reproducibility. Is to provide a vessel.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, a conduction immunity tester according to the present invention generates a communication interference connection means that is connected to an opposite communication line of a device under test and enables a communication operation state of the device under test, and generates an electromagnetic interference wave. An interference wave generating means that couples the electromagnetic interference wave to the communication line of the device under test in a common mode, and the electromagnetic interference generated when the electromagnetic interference wave is applied via the interference wave coupling means. Disturbance level measuring means for detecting a function abnormality signal of a test apparatus and measuring a communication quality deterioration level, and the interference wave generating means by The interference wave control means for setting and controlling the application condition of the electromagnetic interference wave to the device under test, the interference wave control means, When the device under test is not connected to the interference wave coupling means, a plurality of output voltage levels are set in the interference wave generation means, and the generated interference wave generation means are sequentially generated. Calibration voltage information associating each output voltage level of the electromagnetic interference wave with the output voltage level of the interference wave coupling means is stored, and the calibration is performed in a state where the device under test is connected to the interference wave coupling means. Using the voltage information, an output voltage level corresponding to a plurality of predetermined interference wave application levels is set in the interference wave generating means, and electromagnetic interference waves of the plurality of predetermined interference wave application levels are sequentially applied to the device under test. When applied to When the communication quality degradation degree measured by the failure degree measuring means reaches an evaluation level predetermined by the failure mode of the device under test, Said The interference wave application level is output and displayed.
[0010]
The conduction immunity tester according to the present invention is provided with an anomaly detection means corresponding to various functions of the EUT, and controls the condition for applying an interference wave such as stepping the frequency of the applied interference wave in conjunction with the occurrence of the abnormality, or applying the interference wave Even when the EUT does not automatically return at the time of stoppage, it is characterized in that means such as automatically starting the EUT to the communication operation state is provided so that the operation time can be easily reduced and the test time can be greatly shortened. In addition, various functional abnormality modes such as malfunctions, code errors, image quality degradation, and noise audibility that occur in the EUT can be detected by various methods such as electromagnetic, optical, or acoustic detection means. It is.
[0011]
Integrated communication switching connection system with analog / digital pseudo switching function and interference wave coupling / application system that can be applied to analog balanced 2/4 wire and digital interface U point / S / T point. The arrangement configuration simplifies the test system and realizes the communication operation state of most analog / digital communication devices so that the immunity test can be performed.
[0012]
Furthermore, in the audible noise evaluation test, a continuous sine wave and pulse wave signal source necessary for setting an evaluation standard for voice degradation is incorporated in the tester, and the reference signal level is set on the EUT side and the opposite communication line side, respectively. By comparing the detection signals on each side, the appropriate audible noise is evaluated even for the EUT in which the received sound volume varies depending on the setting of the volume control knob and the position of the microphone. It has the characteristics that can be. In addition, it is possible to evaluate not only the EUT side but also the opposing device side, and the audible noise for continuous pulses as well as continuous sine waves.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below in detail with reference to the drawings.
[0014]
[Example 1]
FIG. 1 is a diagram showing a first embodiment of the present invention, wherein 9 is a housing including the constituent parts of the tester, 3 ′, 5 ′, 6 ′, and 7 ′ are a conventional pseudo-exchanger 3, A pseudo-switching unit, an interfering wave coupling unit, an interfering wave generating unit, and an amplifying unit having functions similar to those of the interfering wave coupler 5, the interfering wave generator 6, and the amplifier 7, respectively, are a communication line of the EUT 1, 3-1 And 5-1 are external connection terminals of the pseudo-switching unit 3 ′ and the interference wave coupling unit 5 ′, respectively.
[0015]
In addition, 1A is incorporated in the EUT 1, and a light emitting element such as an alarm lamp that lights or emits light when a functional abnormality such as a communication malfunction or loss of synchronization occurs in the EUT 1, and 10 is close to the location where the functional abnormality occurs such as the light emitting element 1A of the EUT 1 Or, a fault signal detection unit 10-0 coupled by a method such as mounting in contact with each other, 10-0 is a light receiving element such as an LED incorporated in the fault signal detection unit 10, and 11 is a fault detected by the fault signal detection unit 10. The failure level measuring unit 11-1 for measuring the level of the signal and evaluating the degree of functional abnormality by comparing it with a predetermined evaluation reference value, etc., is provided in the casing 9 of the tester. The input connection terminal 12 of the fault signal detection unit 10 is connected and inserted between the interference wave coupling unit 5 ′ connected to the communication line and the pseudo switching unit 3 ′, and the pseudo line 13 for variably setting the line loss, 13 Is disturbing A control unit for setting and controlling the frequency and level of the output signal of the wave generation unit 6 ′, the output timing, and the like, and 14 is a display unit for displaying a control operation setting screen of the control unit 13 and a result measured by the failure degree measuring unit 11 , 15 is a GP-IB cable connecting the control unit 13 to the failure degree measuring unit 11, the interference wave generating unit 6 ′, the display unit 14 and the like, and 15-1 and 15-1 ′ are GP-IB cables. 15 is an external connection terminal, 16 is an applied output measuring unit that calibrates the output of the interference wave coupling unit 5 'to a predetermined level before or after the test, or measures an interference wave applied to the EUT 1, and 16-1 is an application It is an external connection terminal of the output measuring unit 16.
[0016]
FIG. 5 is a diagram for explaining a method of controlling the output of the AM modulated wave signal of the interference wave generating unit 6 ′ using the control unit 13 of FIG.
[0017]
The operation necessary for testing and evaluating the immunity characteristics of the EUT 1 when an AM modulated wave as shown in FIG. 3A is applied will be described below with reference to FIGS. That is, in FIG. 1, first, the auxiliary device AE2 is operated to access the EUT1 through the pseudo switching unit 3 ′, the pseudo line 12, and the interference wave coupling unit 5 ′, or from the EUT1 to the AE2 and to access the EUT1. Start up and realize communication operation status. At this time, the line loss simulating the actual line condition is set by changing the pseudo line 12.
[0018]
Next, the control unit 13 determines the modulation frequency f, the modulation degree M, and the output level increase rate of the AM modulation wave generated from the interference wave generation unit 6 ′, and the carrier frequency f. c Is a test band (f) shown in FIG. l ~ F h The first arbitrary point f in) i And the interference wave generator 6 ′ is operated. The output signal is amplified by the amplifying unit 7 ′, applied to the EUT 1 from the communication line 4 of the EUT 1 as a common mode conduction disturbance wave through the interference wave coupling unit 5 ′, and the application level is gradually increased.
[0019]
As a result, when the internal circuit of the EUT 1 cannot withstand the interference wave, the logic element or the like is inverted to cause a malfunction such as malfunction or loss of synchronization, and the light emitting element 1A such as an alarm lamp of the EUT 1 emits light. This light emission is detected by the light receiving element 10-0 that is close to or in contact with the light emitting element 1A, and a detection signal is input to the failure degree measuring unit 11. When the output signal from the failure degree measurement unit 11 is transmitted to the control unit 13 via the GP-IB cable 15, the control unit 13 outputs the output signal level of the disturbing wave generation unit 6 ′ at this time (FIG. 5 ( a) e i ) Is immediately stored, the output level is immediately reduced to zero or below a predetermined level, and the application of the disturbing wave to the EUT 1 is canceled. Then, the light emitting element 1A is turned off, and the EUT 1 returns to normal operation and continues the communication operation state. In the control unit 13, as shown in FIG. 5A, after the elapse of a predetermined time required for the EUT 1 to return to the normal operation from the time when the output level of the interference wave generating unit 6 ′ decreases, the carrier frequency f i The following optional f j Thereafter, the output level is gradually increased in the same manner as before.
[0020]
As a result, the previous set frequency f i As in the case of application by the EUT 1, the light emitting element 1A of the EUT 1 re-emits light, and a function abnormality occurrence signal of the EUT 1 is transmitted to the control unit 13 via the failure degree measuring unit 11 and the GP-IB cable 15, and at this time The output signal level of the interference wave generator 6 ′ (e in FIG. 5A) j ) Is stored as before. These control operations are assigned to the test band (f l ~ F h ), The output level e of the interference wave generator 6 ′ stored for each frequency point is converted into the applied level V from the interference wave coupling unit 5 ′ to the EUT 1 and plotted. Then, the immunity characteristic of EUT1 as shown in FIG. 6 is obtained. In the figure, V ref Is the immunity evaluation standard level determined in advance from the electromagnetic environmental conditions where the EUT1 is installed. ref By comparing the immunity characteristic values at each frequency point, it is possible to easily evaluate whether the EUT 1 satisfies the allowable level within the test band, and to what extent the frequency range and points are unsatisfactory. Note that the time from when the output level is reduced to when the voltage is reapplied can be variably set in advance by the control unit 13 in consideration of the return characteristics of each EUT 1.
[0021]
In addition, the immunity of EUT1 over the entire test band ref If it is only necessary to know the pass / fail judgment result of whether or not the above condition is satisfied, the output level of the interference wave generator 6 ′ is not increased or decreased for each frequency point as shown in FIG. As shown in (b), the test band is swept by stepping the frequency so that each predetermined output level is obtained. If there is a signal input by light emission, the failure can be easily confirmed. In addition, the frequency of the failure is immediately known from the sweep stop frequency point at the time of signal input.
[0022]
As described above, in this embodiment, the output of the interference wave generator 6 ′ is lowered in conjunction with the occurrence of the functional abnormality of the EUT 1, and the frequency step signal is reapplied after the EUT 1 communication operation state is restored. Thus, the frequency sweep control of the interference wave generator 6 'is performed, so that the immunity test can be automated over the entire test band, and the test and evaluation can be performed easily and in a short time.
[0023]
In addition, for the EUT 1 in communication operation in FIG. 1, the signal between the communication lines before the interference wave is coupled to the communication line 4 and after the interference wave coupling triggered by the output signal of the failure signal detection unit 10 By measuring and comparing with the measurement unit 11, it is possible to evaluate the transmission quality of communication given to the AE 2 due to the influence of the interference wave.
[0024]
On the other hand, with the above operation, in order to couple and apply an appropriate predetermined interference wave level V from the interference wave coupling unit 5 ′ to the EUT 1, how to control the output e of the interference wave generating unit 6 ′ at each frequency point. The problem is whether to set and output in the unit 13. The reason is that an amplification unit 7 'and an interference wave coupling unit 5' are interposed in the path from the output point of the interference wave generating unit 6 'to the communication line input point of the EUT 1, and the amplification characteristic and interference of these amplification units 7' This is because there is a frequency characteristic of loss due to the internal stray capacitance of the wave coupling portion 5 ′, and it is necessary to correct these.
[0025]
FIG. 7 shows a method of taking a correspondence between the output e of the interference wave generating unit 6 ′ set by the control unit 13 and the interference wave level V actually applied to the EUT 1 from the interference wave coupling unit 5 ′. It is a figure explaining the calibration method of the output of coupling | bond part 5 '. In order to take a correspondence between the two, the connection terminal 5-1 of the interference wave coupling unit 5 ′ to which the EUT 1 is connected and the applied output measurement unit as shown in FIG. 7A before (or after the test) the immunity test of the EUT 1 The 16 connection terminals 16-1 are connected by a connection line 17.
[0026]
Next, an arbitrary frequency point f within the test band i The output of the disturbing wave generating unit 6 ′ is increased and the output level reading of the disturbing wave coupling unit 5 ′ measured by the applied output measuring unit 16 (= applied level V to the EUT 1) is a predetermined test level V. i The control unit 13 is adjusted so that the output level e of the interference wave generating unit 6 ′ i After setting, remember. Next, the frequency is stepped by Δf. j In the same V i E j Set and memorize. These operations are performed according to the test band (f) of FIG. l ~ F h ), The value of e at each frequency point required to apply the same test level V to the EUT 1 over the entire band can be set. As the step width of Δf is made finer, the value of e at a large number of frequency points is measured, and the accuracy is improved. Furthermore, the test level V is set within the set application level range (V l ~ V h The set value of e for an arbitrary predetermined application level V is determined by performing the same measurement while arbitrarily changing the parentheses.
[0027]
As described above, if each e is measured finely for a large number of set V values, the accuracy of the application level setting is improved. However, in order to shorten the calibration time, within the range of the application level to the EUT. For example, the minimum value V l And the maximum value V h If each e is measured only for a plurality of specific V between these and an arbitrary intermediate value, and a calculation value obtained by proportionally allocating each of the above measured e values is used for V between them, accuracy can be obtained. Will reduce calibration time.
[0028]
If these calibration values are used, the frequency setting and sweeping as shown in FIG. 5 can be performed by setting only a specific limited band portion within the test band in detail, or by sweeping only a plurality of predetermined specific frequency points. Sweeping and application such as setting and applying an interference wave are possible, and the application of the interference wave can be controlled according to the purpose.
[0029]
In the actual calibration of the applied level V to the EUT 1, the common mode impedance in the test band of the EUT 1 differs depending on the model. Therefore, in order to avoid the change of V due to this, the interference wave coupler 5 shown in FIG. The two-wire or four-wire communication lines are regarded as a common mode and are collectively displayed as one at the output terminal 5-1 of the interference wave coupling portion 5 'as shown in FIG. Resistor 18 (= R 1 + R 2 R) corresponding to the input impedance of the applied output measuring unit 16 is connected to the circuit corresponding to the common mode input impedance of the EUT 1 replaced with 2 Voltage V across 1 Is measured and this is expressed as the electromotive force V of the signal source. emf = V 1 (R + R + R 1 + R 2 ) / R 2 (R is the combined resistance of the interference wave coupling unit 5 ′ that simulates the ground resistance of the communication line 4, r is the internal resistance of the signal source), and the applied level V of the EUT 1. V emf Also, as shown in FIG. 7C-2, the open end voltage V when the terminal 5-1 is opened. 0 (= V emf ) Can also be measured directly.
[0030]
[Example 2]
FIG. 8 is a diagram showing a second embodiment of the present invention. In the embodiment of FIG. 1, the communication operation does not continue even if the interference wave applied to the EUT 1 is removed, and the EUT 1 is automatically set in a normal operating state. The configuration when not recovering is shown. In FIG. 8, the same symbols are used for the same parts as in FIG. 1 (1 to 16). Reference numerals 19 and 19 ′ denote GP-IB control start sections for restarting communication operations provided in the EUT 1 and AE 2 in FIG. 1, respectively. Reference numerals 20 and 20 ′ denote start means. FIG. 9 is a specific example of the activation means 20 or 20 ′, 1B is an activation element for communication operation such as a push button, a touch panel, and a power switch incorporated in EUT1 or AE2, and 20-1 is an activation element. A driving means such as a magnet mounted in the starting means 20 facing the 1B, 20-2 is a driving circuit capable of GP-IB control for arbitrarily selecting and operating the plurality of driving means 20-1.
[0031]
The operation of this embodiment will be described below. That is, in the test system shown in FIG. 1 described above, the disturbance wave application to the EUT 1 is performed, for example, as shown in FIG. i Output level e at the interference wave generator 6 ' i For example, when the interference wave is removed after the output until the communication operation of the EUT 1 does not return to normal, the subsequent test cannot be performed. In such a case, since the light emitting element 1A remains lit even when the interference wave is removed, when the detection signal is transmitted to the control unit 13 via the failure degree measurement unit 11 and the GP-IB line 15, the control unit 13 Then, the driving circuit 20-2 in the activation means 20 or 20 ′ of FIG. 8 is selectively driven via the GP-IB line 15 to the activation element 1B such as a push button or a power switch necessary for restarting the communication operation. The corresponding driving means 20-1 is activated and the EUT 1 or AE 2 is restarted to realize the communication operation state. The immunity characteristics as shown in FIG. 6 can be easily obtained by continuing the sweep control similar to FIG. 5 after restarting the EUT 1 in this way. As described above, in this embodiment, even when the communication operation is stopped during the immunity test and the EUT 1 that does not return is detected, the functional abnormality is detected and the EUT 1 is detected. 1 Since the means for restarting AE2 is provided, the communication operation is automatically ensured, and a series of immunity tests can be executed easily, reliably and in a short time.
[0032]
In the above two embodiments, the method of controlling the applied frequency in conjunction with the occurrence of the functional abnormality of the EUT 1 has been described for the AM modulated wave as shown in FIG. 3A as the waveform of the disturbing wave applied to the EUT. When applying a continuous pulse interference wave as shown in FIGS. 3B to 3D, the interference wave generator 6 'having a function of transmitting these waveforms and coupling of each pulse to the line Using the interfering wave coupling unit 5 ′ suitable for application, the control unit 13 sets the waveform of each pulse width, period, burst width, burst period, etc., and sets the pulse peak value to the EUT 1 It is clear that the immunity characteristics and pass / fail judgment test for the EUT1 pulse can be easily performed by measuring the applied level (pulse peak value) when a functional abnormality occurs in the same manner as when applying an AM modulated wave while varying the voltage. .
[0033]
[Example of failure signal detection means]
As described above, the immunity test method for malfunctioning of the EUT 1 has been described with respect to the case of the EUT 1 that has a light emitting element such as an alarm lamp and detects the light emission signal when the function is abnormal to control the interference wave application system. In the case of the EUT 1 as described above, the state of occurrence of the functional abnormality is not limited to erroneous lighting of the alarm lamp, but various, and a means for detecting a failure signal corresponding to these is required. FIG. 10 is an explanatory diagram showing an example of specific detection means including the above-described light emission signal detection for the fault signal detection unit 10 of FIG. 1 and FIG. 8, and corresponds to various functional abnormality occurrence modes of the EUT 1. Detecting means using electricity, magnetism, light, sound, etc. That is, in FIG. 10, 10A is an electrical detection means for occurrence of a functional abnormality in EUT1, 10A-0 is a logic element or switching element such as a transistor or IC which is considered to be a function abnormality occurrence inside EUT1, and 10A-1 is a logic element. Voltage detection means such as a voltage probe brought into contact between the terminals of the elements 10A-0, etc., and 10A-2 are current detection means such as a current probe clamped to the cable of the logic elements 10A-0. . When a malfunction such as a malfunction occurs in the internal logic element 10A-0 due to the disturbance wave applied to the EUT 1, the malfunction is caused by the voltage v or current i by the voltage detection means 10A-1 or the current detection means 10A-2. Is detected as an electrical output signal.
[0034]
Next, in FIG. 10, 10B is a magnetic detection means for occurrence of functional abnormality of the EUT1, 10B-0 is a leakage magnetic field generating element such as a coil considered to be a functional abnormality occurrence inside the EUT1, and 10B-1 is a leakage magnetic field. Magnetic detection means such as a magnetic field coil arranged close to the generation element 10B-0. When the magnetic flux Φ is generated from the leakage magnetic field generation element 10B-0 inside due to the disturbance wave applied to the EUT 1, the magnetic detection means 10B- 1, the occurrence of a functional abnormality in the EUT 1 is detected as a magnetic output signal.
[0035]
Further, in FIG. 10, 10C is a light emission detecting means similar to 10-0 of FIG. 1 in which the function abnormality of EUT1 occurs, and 10C-0 is a light emission of alarm / out-of-synchronization / malfunction etc. arranged in EUT1. Single or plural function abnormality display elements, such as display lamps and light emitting diodes, 10C-1 is an LED mounted close to or in contact with each other so as to cover each or all of the function abnormality display elements 10C-0 The light emission detecting means detects the received light with respect to any light emission of 10C-0. 10C-0 'is an attached EUT having a display screen such as a CRT or a liquid crystal connected to the EUT 1, and 10C-2 is a pixel enlargement made up of an aggregate optical fiber or the like mounted close to or in contact with the display screen of the attached EUT 10C-0' This is a matrix-type pixel detection means having a function. A circuit in the EUT 1 malfunctions due to an interference wave applied to the EUT 1, and functional abnormalities such as lamp lighting and image deterioration are present on the display screens of the functional abnormality display element 10C-0 and the attached EUT 10C-0 'disposed therein. When this occurs, the occurrence of functional abnormality in the EUT 1 or the attached EUT 10C-0 ′ is detected as a light reception output signal by the light emission detection means 10C-1 or the pixel detection means 10C-2.
[0036]
Further, in FIG. 10, 10D is a sound detection means for occurrence of an abnormal function of EUT1, 10D-0 is a sound generator such as a speaker or buzzer incorporated in EUT1, and 10D-1 is a sound generator 10D-. A sound detecting means such as a microphone installed in the vicinity of 0, 10D-1 ′ is a sound detecting means such as a microphone fitted to the handset of the handset 1-1 connected to the EUT 1. When an audible sound such as abnormal sound or noise is generated from the sound generator 10D-0 incorporated in the EUT 1 or the handset 1-1 by the interference wave applied to the EUT 1, the sound detection means 10D-1 or 10D-1 ′ The occurrence of functional abnormality in the EUT 1 is detected as an acoustic output signal.
[0037]
Further, in FIG. 10, 10E is an electrical detection means different from the electrical detection means 10A for occurrence of functional abnormality of EUT1, and 10E-0 is an interface with other devices such as an acoustic output incorporated in EUT1. The connection terminals 10E-1 are interface circuits that output the input signals from the interface connection terminals 10E-0 to other devices. When an abnormal signal is output to the interface connection terminal 10E-0 of the EUT1 due to the disturbance wave applied to the EUT1, the occurrence of an abnormal function of the EUT1 is detected as an interface output signal via the interface circuit 10E-1. .
[0038]
As described above, when one or more of the various fault signal detection means of FIG. 10 are used in the fault signal detection unit 10 of FIG. 1 or FIG. 8 in accordance with the situation of occurrence of functional abnormality of the EUT, each exceeds a predetermined detection level. If the interference wave application level to the EUT 1 is obtained, an immunity test for malfunction can be easily and reliably performed in a short time without operation.
[0039]
[Examples of tests for analog communication quality degradation]
Next, unlike the digital occurrence in which the output of the abnormal state is zero or one using the failure signal detecting means of FIG. An immunity test method in the case of a functional abnormality mode in which analog quality degradation such as image quality degradation and audible noise will be described.
[0040]
That is, when the EUT 1 is a data communication device and targets the code error, the fault signal detection unit 10 is changed to the voltage detection unit 10A-1, the current detection unit 10A-2, or the interface circuit 10E-1 in FIG. , And using the failure degree measurement unit 11 as a measurement unit having a code error measurement function, the failure signal of the EUT 1 is detected. When the code error rate of the failure level measurement unit 11 thereby becomes a predetermined value determined from the system, a failure signal is transmitted to the control unit 13 via the GP-IB cable 15, and the same as before. By performing the control, the immunity characteristic with respect to the code error of EUT1 is obtained.
[0041]
In FIG. 10, EUT1 is a base station (CS) such as a simple mobile phone (PHS) or a portable terminal (PS), and fault signal detector 10 is interface circuit 10E-1 in FIG. When the throughput value measured by the failure degree measurement unit 11 becomes a predetermined value, the control unit 13 is connected to the control unit 13 via the GP-IB cable 15 with the unit 11 as a measurement unit having a throughput measurement function. By transmitting the fault signal and performing the same control as before, the immunity characteristic for the throughput of the EUT 1 is obtained.
[0042]
Next, when the EUT 1 is an image communication device having a CRT or a liquid crystal display screen and the degradation of the image quality is targeted, the failure signal detection unit 10 is replaced with the matrix type pixel detection means 10C-2 and the failure level measurement unit of FIG. 11 is a measurement unit having an image quality degradation measurement function, and when the image degradation value measured by the failure degree measurement unit 11 reaches a predetermined value, the failure signal is sent to the control unit 13 via the GP-IB cable 15. And the same control as before is performed to determine the immunity characteristic of the EUT 1 with respect to image degradation.
[0043]
Further, when the EUT 1 is an acoustic communication device having a handset or a speaker and the target is deterioration of sound quality such as audible noise, the fault signal detection unit 10 is set to acoustic detection means 10D-1 such as a microphone of FIG. 10D-1 ′, the failure level measurement unit 11 is a measurement unit having an audible noise measurement function. When the noise audible value or the voice deterioration value measured by the failure level measurement unit 11 reaches a predetermined value, the GP-IB -By transmitting a fault signal to the control unit 13 via the bull 15 and performing the same control as before, the immunity characteristics of the EUT 1 with respect to noise audibility and voice deterioration can be obtained.
[0044]
In addition, as described above, the immunity test / evaluation method in the case of the functional abnormality mode in which analog quality degradation occurs such as code error, throughput, image quality degradation, noise audibility, etc. I. In addition to the method of measuring and evaluating the interference wave application level to the EUT 1 when a predetermined quality deterioration amount occurs, II. There is also a method of measuring and evaluating the amount of quality degradation that occurs when a predetermined interference wave application level is applied to the EUT 1. In the following description of the examples relating to the audible noise test of the present invention, the above II. The method will be described.
[0045]
[Example 3]
FIG. 11 is a diagram for explaining a third embodiment of the present invention for measuring and evaluating noise audible characteristics when an AM modulation wave is applied when the EUT 1 is an acoustic communication device such as a telephone having a receiver or a speaker. , 21 is a reference signal generator capable of GP-IB control for generating an audible noise evaluation reference signal, and 22 is not connected to AE2 via the pseudo-switching unit 3 ′ when the EUT 1 is an analog communication device. DC signal supply circuit (feeding bridge) with reference signal superimposition that can be put into a call state even if the communication state of the pseudo-switching unit 3 'connected to the opposite communication line side of the EUT 1 or the DC supply circuit 22 is realized. A selector switch for selecting means, 24 is a pseudo-ear incorporating a microphone 10D-1 ′ fitted to the earpiece of the handset 1-1, and 25 is in contact with the handset terminal to which the handset cord is connected. Frequency detecting fine detection voltage generated between allowed handset terminals Komonmo - Doinpi - a blanking - dancing is large, a differential pro negligible variations handset sound pressure due to the contact. FIG. 12 shows a specific embodiment of the DC supply circuit 22, in which the reference signal f from the reference signal generator 21 and the DC voltage E are superimposed and supplied to the communication line 4 (load) connected to the EUT 1. When the EUT 1 is an analog communication device, a call state can be ensured. Further, FIG. 13 is an example of a signal waveform having an audible band period included in the reference signal generation unit 21, and (a) is a continuity composed of an audible band frequency such as the modulation wave component of the AM modulation wave of FIG. The sine wave waveforms, FIGS. 13B to 13D, are continuous pulse waveforms each having the same audible band period as the waveforms of FIGS. 3B to 3D.
[0046]
In FIG. 11, in order to measure and evaluate the noise audible characteristic when the AM modulation wave is applied to the EUT 1, the switch 23 is switched, and the reference sine of the audible frequency f as shown in FIG. A wave signal is applied between the opposite communication lines 4 of the EUT 1 via the DC supply circuit 22 so that the applied line voltage measured by the failure degree measuring unit 11 becomes a predetermined reference audible level (for example, level a). The controller 13 sets the output of the reference signal generator 21. In this setting state, the microphone 10D-1 ′ in the pseudo ear 24 fitted to the earpiece of the handset 1-1, the microphone 10D-1 disposed at an arbitrary position near the speaker of the EUT 1, or the differential A reference signal level (= evaluation reference value) V based on the output signal f of the reference signal generation unit 21 detected by any of the probes 25 and measured by the failure level measurement unit 11. ref Is transmitted to the control unit 13 via the GP-IB line 15 and stored. Next, the application of the reference signal f is removed, and a predetermined interference wave level V = V is applied to the EUT 1. 0 Is set and controlled by the sweep method shown in FIG. 5B so that the AM modulation jamming wave is applied from the jamming wave generating unit 6 ′. As a result, the microphone 10D-1 ′ in the pseudo ear 24 fitted to the earpiece of the handset 1-1, the microphone 10D-1 disposed at an arbitrary position near the speaker of the EUT 1, or the differential probe 25 A curve of an audible noise signal level V detected by any of the AM modulation waves detected by the failure level measurement unit 11 and detected by a circuit in the EUT 1; ref Are plotted on a graph on the display unit 14 screen.
[0047]
FIG. 14A is an explanatory diagram of an example of the audible noise characteristic obtained in this way, and the audible noise characteristic curve due to the interference wave application is the evaluation reference value V indicated by a bold line in the figure. ref For example, the frequency f n I am satisfied with the following bands, but the frequency f n The above evaluation value is over, and it is easy to evaluate noise audible characteristics such as how much the amount depends on the frequency. FIG. 14B shows an evaluation reference value V different from FIG. ref Is given, that is, the evaluation standard value is V ref As ± ΔV, the test band (f l ~ F h ) Frequency f k In the following, this lower limit value, f k The above is the case where the upper limit value is set. From this figure, the frequency f is f for such an evaluation reference value. n1 <F <f k And f n2 It can be seen that the reference value is over in <f. The above V ref When the absolute value of the sound pressure is displayed as the converted noise sound pressure P on the right vertical axis in FIGS. 14A and 14B, the standard frequency (1 kHz, etc.) and the standard output sound pressure are displayed on the microphone 10D-1 ′. P s The reference output signal level V measured by the failure degree measurement unit 11 by fitting a standard sound source having (dBspl) s Is the sound pressure calibration reference value P s Is equal to V ref Is proportional to the sound pressure P 0 = P s ・ V ref / V s It can be converted as follows.
[0048]
When the differential probe 25 is used instead of the microphone, first, the microphone 10D-1 ′ used for the calibration is connected to the failure degree measuring unit 11, and the microphone 10D− based on the applied signal of the reference signal generating unit 21 is connected. The output of the reference signal generator 21 is set so that the detection level of 1 ′ becomes the above VS. The detection level V of the differential probe 25 measured by the failure level measurement unit 11 in this set state. sp Is the sound pressure calibration reference value P s V ref Is proportional to the sound pressure P 0 = P s ・ V ref / V sp Is converted into the absolute value of the sound pressure. In the embodiment of FIG. 11, the audible noise level between the communication lines that are converted and detected by the internal circuit of the EUT 1 and transmitted to the opposite communication line as a result of the disturbance wave application from the interference wave generator 6 ′ to the EUT 1 is obstructed. The audible noise characteristic on the AE2 side, which is the opposite communication device of the EUT1, is obtained by creating a similar graph measured by the degree detection unit 11 and replacing the left vertical axis of FIGS. 14 (a) and 14 (b) with this. Similarly, relative evaluation and absolute evaluation are possible.
[0049]
As described above, in the embodiment of the present invention, the audible signal level generated between each microphone and the receiver terminal on the EUT 1 side when the reference signal of a predetermined level is applied between the opposed communication lines of the EUT 1 is used as a reference value for relative evaluation. As a method for relatively comparing and evaluating the audible noise characteristics when an interference wave is applied, the EUT 1 having a different sound output depending on the setting state of the volume variable adjustment knob or the installation position of the microphone is used. Appropriate evaluation of audible noise is possible. Further, if the relative evaluation value is converted into the absolute value of the sound pressure using a standard sound source, the absolute value of the audible noise characteristic can be evaluated. Further, since the audible noise level generated between the opposing communication lines of the EUT 1 can be measured by the failure degree detection unit 11, the audible noise level between the opposing communication lines can be similarly evaluated relative and absolute, and the audible noise level of the EUT 1 can be evaluated. The effect on the AE2 side can also be clarified.
[0050]
In the embodiment of the present invention, a reference signal for audible noise evaluation and a power feeding circuit for bringing the EUT 1 into a call state are incorporated, so that the call state of the analog EUT 1 can be realized without connecting the AE2. When testing the digital EUT 1, the selector switch 23 is switched to connect the digital pseudo-switching unit 3 ′, and the digital AE 2 is connected to this to make an outgoing connection to make a call state. It is clear that it should do.
[0051]
Next, in order to test and evaluate the noise audible characteristic for the pulsed interference wave as shown in FIGS. 3B to 3D using the embodiment of the present invention shown in FIG. 11, these interference wave and waveform or The reference signals of (b) to (d) in FIG. 13 having at least the same period are respectively transmitted to the predetermined reference audible levels (for example, levels b, c, and d) between the reference signal generating unit 21 and the opposite communication line of the EUT 1. As in the case of AM modulation wave application, the detection signals of the microphones 10D-1 and 10D-1 ′ of the EUT 1 or the differential probe 25 are measured, and a graph similar to FIG. It becomes possible by requesting.
[0052]
In setting the reference levels (respectively levels a to d) when the reference signals in FIGS. 13A to 13D are applied between the opposing communication lines of the EUT 1, the levels of the reference signals are changed in advance. The obtained voice is heard by a large number of subjects, and the auditory characteristics are obtained by a voice deterioration evaluation scale as shown in FIG. 15, and one of the ranks, for example, rank 3 (slightly noisy) corresponding applied level V ( Alternatively, a method of using the value of the sound pressure P) as an evaluation standard with levels a to d, respectively, can be considered.
[0053]
FIGS. 16 to 19 are diagrams for explaining an embodiment of the present invention more concretely shown in FIG. 11. In FIG. 16, the interference wave coupling unit 5 ′ is composed of three CDNs, thereby simplifying the internal structure of the main body. Therefore, the interference wave application control system including the interference wave generation unit 6 ′, the amplification unit 7 ′, the control unit 13, and the display unit 14 of FIG. 11 and the pseudo line 12 are arranged outside the main body. . In FIG. 16, 5′-1 and 5′-2 are the same CDN-2W and CDN-4W as those in FIGS. 4A and 4B, respectively, and 5′-3 is an AC in which CDN-2W is used for AC lines. -CDN, 11-1 is an input connection terminal of the failure level measurement unit 11, and 11-2 and 11-3 are audible noise voltages on the EUT side and the opposite communication line side provided in the failure level measurement unit 11, respectively. GP-IB controllable audible noise meter 26 is an audible band-pass filter 26 having a large high-frequency common mode and differential mode impedance that can ignore the influence of the connection on the transmission signal of the communication line. An analog pseudo exchange unit 3B arranged in the exchange unit 3 'is a digital pseudo exchange unit 3B, and 23' is one of these analog / digital exchange units 3A and 3B and the feeding bridge 22, respectively. A selector switch for selectively connecting to the opposite communication line of UT1, 27 is a selector switch for selectively connecting either the reference signal generating unit 21 or a termination resistor or an external signal input to the input unit of the feeding bridge 22, and 29 is in the housing A shielding plate 30 is provided so that the leakage radiation noise from the three CDN portions arranged in FIG. 3 does not affect other internal block components, and the pseudo line 12 is shorted to eliminate the insertion loss of the opposing communication line. 31 is a line terminating resistor connected to a CDN disturbance wave input terminal to which no disturbance wave is applied, 32 is a pseudo ground plane, 33 is an EUT 1 on the pseudo ground plane 32 at a predetermined height h. A non-metallic insulating support base 34 to be installed surrounds the periphery of the pseudo-ear 24 incorporating the handset 1-1 and the microphone 10D-1 ′ fitted with the earpiece, and external noise is generated. Sound insulation box to remove the influence, 35 is a pseudo-hand circuit simulating a state in which holding the handset people.
[0054]
FIG. 17 is a detailed block configuration diagram of the digital pseudo-switching unit 3B part of FIG. 16. The digital switching unit 3B includes two of the ISDN pseudo-switching units 3B-1 having four S / T point connection terminals. By connecting the S / T point connection terminal and the two S / T point connection terminals of the S / T point-U point conversion unit 3B-2 each having two connection terminals of the U point and the S / T point, as a whole Each of the S / T point and U point connection terminals has two terminals, 3B-1 ′ and 3B-2 ′, respectively.
[0055]
Further, FIG. 18 is a schematic external view of a test system configuration including the arrangement of the EUT 1 in FIG. 16, and the three CDNs in FIG. 16 are actually 5′-1, 5′-2, and 5′-3, respectively. As shown in FIG. 18, the casing is arranged on the pseudo-ground plate 32 so as to have the same potential as the pseudo-earth plate, and is almost the same as the communication line 4 or AC line of the EUT 1 installed on the insulating support base 33. Common mode test disturbing wave voltage connected to EUT1 via CDN5'-1 to 5'-3 is connected at a height, and level fluctuation is small from CDN5'-1 to 5'-3 to EUT1. It is configured to be applied stably.
[0056]
16 to 18, in order to test / evaluate the noise audible immunity characteristic of the EUT 1, prior to the test, a CDN (here, CDN-2W (5′-1)) used for interference wave coupling using the applied output measuring unit 16 is used. ) Is calibrated by the method described in FIG. 7, and the interference wave input terminal of AC-CDN (5′-3) connected to the EUT 1 is terminated by the termination resistor 31 without applying the interference wave. Next, similarly to the method described in the description of the operation in FIG. 11, first, the reference sine wave signal f from the reference signal generator 21 is applied between the opposing communication lines 4 of the EUT 1 via the DC supply circuit 22. Switch 27 and 23 '. Further, when the loss of the pseudo line 12 inserted and connected between the opposing communication lines is set and the loss is set to zero, the pseudo line 12 is set to zero loss, or the pseudo line 12 is removed and the short bar 30 is set. Connect and place the EUT 1 in a talking state. Thereafter, the reference sine wave signal level measured by the audible noise measurement meter 11-3 in the failure level measuring unit 11 through the audible bandpass filter 26 is set to a predetermined reference audible level (for example, the level a described above). The output of the reference signal generator 21 is set by the controller 13.
[0057]
In this set state, the microphone 10D-1 ′ in the pseudo ear 24 fitted to the earpiece of the handset 1-1, the microphone 10D-1 disposed at an arbitrary position near the speaker of the EUT 1, or the differential probe The reference signal level V based on the output signal f of the reference signal generator 21 detected by one of the signals 25 and measured by the audible noise meter 11-2. ref (= Evaluation reference value) is stored. Next, the output of the reference signal generator 21 is stopped, the switch 27 is switched, the input terminal of the DC supply circuit 22 is terminated with a terminating resistor, and then the predetermined interference wave level V is supplied to the EUT 1. 0 Is set and controlled by the sweep method shown in FIG. 5B, and the AM modulation jamming wave is applied from the jamming wave generating unit 6 ′. The resulting microphone 10D-1 ′ in the pseudo ear 24 fitted to the earpiece of the handset 1-1, the microphone 10D-1 disposed at an arbitrary position near the speaker of the EUT 1, or the differential probe 25. And the audible noise signal level curve measured by the audible noise meter 11-2 and the V ref Are plotted on a graph on the display unit 14 screen.
[0058]
FIG. 19 shows the case where the EUT thus obtained is an analog telephone, the test frequency band is 0.5 to 80 MHz, and the evaluation reference value V ref ± ΔV is ΔV = 10 dB, 0.5 to 30 MHz is the lower limit value, 30 to 80 MHz is the upper limit value, V ref Is an audible noise characteristic example when the noise sound pressure is 65 dBspl. From the figure, the frequency band over which the evaluation reference value is over is 8 to 50 MHz, and the maximum amount of over is about 30 dB at a frequency of 30 MHz, and it is necessary to take measures against this over band. Etc. are easily understood.
[0059]
As described above, in FIG. 16, the case where the interference wave is coupled to and applied to the EUT 1 from the communication line has been described. However, when the interference wave is performed from the AC line, the interference wave input terminal of the AC-CDN (5′-3) is disturbed. When the output unit of the wave generating unit 6 ′ is connected via the amplifier unit 7 ′ and the interference wave input terminal of the CDN-2W (5′-1) is terminated by the resistor 31 and the test is performed by the same method, The noise audible immunity characteristic for the AC line conduction disturbance wave of EUT 1 is obtained, and the AC line conduction immunity can be easily evaluated. If the EUT 1 is a telephone main unit or main unit and an interference wave is to be applied from the extension to the EUT 1 side, the extension line of the home bus or the like is generally a balanced four line, so CDN-4W (5'- 2) The output part of the interference wave generating part 6 ′ is connected to the interference wave input terminal via the amplifier part 7 ′ and each of the CDN-2W (5′-1) and the AC-CDN (5′-3) is connected. If the test is performed by the same method after terminating the interference wave input terminals with the resistors 31 respectively, the noise audible immunity characteristic with respect to the internal conduction disturbance wave of the EUT 1 can be obtained, and the internal conduction immunity can be easily evaluated.
[0060]
In the above description of FIG. 16, the audible frequency sine wave signal is applied from the reference signal generator 21 built in the tester housing 9 to set the evaluation reference level. However, the switch 27 is switched to record in advance from the outside. The standard audio signal, the output of the built-in reference signal generation unit 21 and the signal obtained by synthesizing this with other signals are input to the DC supply circuit 22 or the opposite AE2 side to set the evaluation reference level. It can also be set. When the EUT 1 is a digital communication device such as a digital telephone, the switch 23 'is switched to connect the digital pseudo-switching unit 3B to the opposite communication line, to which the digital AE2 is connected, and the disturbance wave application point is the digital communication. Interference wave is coupled and applied using CDN-2W (5'-1) for line interface U point and CDN-4W (5'-2) for S / T point. Can be done. Furthermore, when testing / evaluating functional abnormalities other than the audible noise of the EUT1, the input to the audible noise measuring meter 11-2 in FIG. 16 is changed to an audible signal input such as a microphone, and the functional abnormality occurrence state of the EUT1 is changed. The corresponding detection signals of FIG. 10 such as electricity, magnetism, and light are used, and each function abnormality measuring means is used in place of the audible noise measuring meter 11-2. The reference signal generating unit 21 also performs image quality evaluation and data processing. It is obvious that the same method can be used instead of a signal generator capable of transmitting each test pattern signal or the like which becomes a reference for data transmission quality evaluation.
[0061]
[Examples of interference wave coupling means]
20 to 30 are diagrams for explaining an embodiment of the interference wave coupling portion 5 'according to the present invention. The multi-wire strip having a larger number of wires than the capacitor coupled type shown in FIG. FIG. 20 shows a configuration suitable for coupling interference waves to a communication line. FIG. 20 shows one of the three interference wave coupling portions 5′-1 to 5′-3 in FIG. 3 is an embodiment using an interference wave coupling portion 5′-4 or 5′-5 having a combined coupling function of electrostatic coupling and electromagnetic coupling, and is divided in half along the line length direction. The multi-strip line 4-1 is sandwiched from both sides by two components. FIG. 21 is a perspective view of one side of the interference wave coupling portion 5′-4 or 5′-5 in FIG. 20 as seen from the inner side where the line 4-1 is sandwiched, and 5′A in FIG. 1 Is a metal electrostatic coupling plate 5′B arranged so as to surround the semi-periphery of the multi-wire communication line 4-1. 1 Is the electrostatic coupling plate 5'-A 1 A plurality of magnetic cores, such as ferrite, are arranged in the length direction so as to surround the outer side of the wire, and the windings are each formed in a coil shape. The interference wave coupling portion 5'-5 in (b) is the magnetic core 5'B in (a). 1 A plurality of cores 5′B having a length D 2 It has been replaced with. 22 is a schematic cross-sectional view of a plane perpendicular to the length direction of FIGS. 21 (a) and 21 (b). In order to attach the interference wave coupling portion 5′-4 or 5′-5 of FIG. 21 to the line 4-1, as is apparent from FIG. 20 and FIG. 22, the interference wave coupling portion 5′-4 or 5 ′, respectively. −5 is used to sandwich the line 4-1 from both sides and is mounted as shown in FIG. 20 using a fixing jig (not shown). At this time, each magnetic core 5′B shown in FIG. 1 Or 5'B 2 And each electrostatic coupling plate 5'A 1 D between each other c And d s D c Are in good contact with each other at zero, while d s Is configured so as to maintain a predetermined distance, and the two electrostatic coupling plates 5′A after mounting. 1 Are arranged so as to be symmetric with respect to a pseudo ground plane (not shown).
[0062]
FIG. 23 (a) is a diagram for explaining the principle of interference wave coupling and application to the line 4-1 of such an interference wave coupling portion 5'-4, which is a magnetic core 5'B. 1 Is a single set, and the multi-wire communication line 4-1 is typically represented as one line 4. Z s And Z r Is a common mode impedance of a device or the like connected to both sides of the line 4, and the electrostatic coupling plate 5'A connected in parallel 1 And magnetic core 5'B 1 When a disturbing wave signal is supplied from the disturbing wave generator 6 ′ to a circuit composed of the coil L wound around, the electrostatic coupling plate 5′A is connected to the line 4. 1 Stray capacitance C generated between s Electrostatic induction voltage V due to s And magnetic core 5'B 1 Electromagnetic induction voltage V of coil L c Are generated in the same direction, and the combined disturbance voltage is coupled and applied to each core wire of the line 4. On the other hand, due to the disturbing wave current flowing through the coil L, the distance d s Two electrostatic coupling plates 5'A facing each other 1 V c Electromagnetic induction voltage in the same direction as V c1 However, the two electrostatic coupling plates 5′A 1 Are arranged symmetrically with respect to the pseudo-ace plane and are connected only at one end in the length direction. c1 Are equal in size and opposite in direction, canceling each other and not affecting the circuit. Such interference wave coupling / application is applied to all the core wires of the multi-strip line. When the applied frequency is low, electromagnetic induction by a coil is effective, and when high, electrostatic induction by an electrostatic coupling plate is effective. In this way, wideband interference wave coupling becomes possible. Moreover, if the core wire of the multifilamentary line is comprised by the strand wire, the coupling | bonding to each core wire by said two means will be performed without unbalance.
[0063]
FIGS. 23B and 23C show the n magnetic cores 5′B shown in FIG. 1 Are connected in series, and the electrostatic coupling plate 5'A. 1 Are connected in series and in parallel, respectively, and a large coupling voltage is generated in the line 4 by the action of electromagnetic coupling by a plurality of magnetic cores and electrostatic coupling by an electrostatic coupling plate.
[0064]
In FIG. 24, in order to further increase the coupling amount of the jamming wave, the three jamming wave coupling portions in FIG. 20 are all configured using the jamming wave coupling portion 5′-4 or 5′-5, and the outside of the housing 9 The multi-wire strip 4-1 is connected using the multi-wire strip-connecting connector 4-2, and the multi-wire strip 4-1 is coupled to the multi-wire strip 4-1 by an electrostatic coupling portion and an electromagnetic coupling portion. The part is enlarged as a whole so that a large interference wave coupling output can be obtained even when the output of the interference wave generator 6 'is small.
[0065]
5'A of the interference wave coupling part 5'-6 in FIG. 2 Is the electrostatic coupling plate 5′A in FIG. 1 2 cut and remove the semicircular portion in the length direction in which the magnetic cores on the outer periphery are disposed, and two electrostatic coupling plates 5′A facing each other after mounting 2 The distance d between each other s Is configured to contact with zero. FIG. 26 (a) is a diagram for explaining the principle of interference wave coupling and application to the line 4 of such an interference wave coupling portion 5'-6, and shows a magnetic core 5'B. 1 Indicates the case of only one, electrostatic coupling plate 5'A 2 The magnetic core 5 'B 1 A coil L wound around is disposed. Electrostatic coupling plate 5'A connected in parallel 2 When the interference wave signal from the interference wave generator 6 ′ is supplied to the circuit composed of the coil L, the electrostatic coupling plate 5′A is connected to the line 4. 2 Stray capacitance C generated between s Electrostatic induction voltage V due to s And electromagnetic induction voltage V by coil L c Are generated in the same direction, and the combined disturbance voltage is coupled and applied to each core wire of the line 4. In this case, two electrostatic coupling plates 5′A that face each other at the same length direction position 2 However, since the coil L is arranged in the longitudinal direction portion of the interval l without the electrostatic coupling plate, the disturbing wave current flowing through the coil is electrostatic coupling plate 5′A. 2 Has no effect. FIGS. 26B and 26C show the n magnetic cores 5′B shown in FIG. 1 Are connected in series, and this and the electrostatic coupling plate 5'2A are connected in series and in parallel, respectively, by the action of electromagnetic coupling by a plurality of magnetic cores and electrostatic coupling by the electrostatic coupling plate. A large coupling voltage is generated on the line 4.
[0066]
In FIG. 27, in order to further increase the coupling amount of the interference wave, the outer periphery of the multi-wire line having a length D is formed on the electrostatic coupling plate 5′A made of a cylindrical conductor. Three Are arranged in parallel to form the interference wave coupling portion 5'-7, and both ends except for these input / output portions are outside the housing 9 for the non-shielded connector 4 for connecting the multi-wire line. -2 and a magnetic core 5'B in which the connector portion is coiled with a magnetic loop core. Three The cylindrical conductor 5′A Three And the coil are connected in the same manner as in FIGS. 23B and 23C, the electrostatic coupling portion and the electromagnetic coupling portion of the length D with respect to the multi-wire line 4 are equivalently enlarged, and interference waves are generated. Even when the output of the section 6 ′ is small, a large interference wave coupling output can be obtained.
[0067]
FIG. 28 and FIG. 29 are diagrams for explaining an embodiment of an electrostatic coupling type interference wave coupling portion, and a cylindrical shape is provided on the outer periphery of a shielded multi-wire line or a non-shielded multi-wire line. Interference wave coupling portions 5′-8 and 5′-9 are configured by using conductor-coated lines. In FIG. 28, 5′A Three Is a shield or cylindrical outer conductor provided on the outer periphery of a multi-strip line having a length D, 5'C is a bar connected to each of the outer conductors of the multi-strip line, and 5'D is an interference wave generator. Connector 4-2 for applying an interfering signal between the shield outer conductor and the pseudo ground plane through the bar 5'C from the section, and 4-2 is an outer conductor 5 of a multi-wire strip outside the housing 9. 'A Three It is a connector that connects each other. In FIG. 29, the outer circumference of the flexible shielded multi-wire line or non-shielded multi-wire line is connected to the conductor 5′A. Four It is explanatory drawing of the Example which wound the track | line covered by 2 times and comprised the interference wave coupling | bond part 5'-7. The central conductor of the connector 5'D is the outer conductor 5'A Four The external conductor of the connector 5′D and the pseudo ground plane (bottom surface) are connected to each other, and the external conductor 5′A is connected via the connector 5′D. Four As a configuration to apply an interference wave between the ground plane and the pseudo ground plane, the stray capacitance existing between the core wire of the multi-strip line and the outer conductor is increased by increasing the line length, thereby improving the electrostatic coupling efficiency. It is an improvement.
[0068]
The interfering wave coupling portion 5'-8 in FIG. 30 is provided on the outer periphery of a part of the line wound around the bundle in FIG. Three Same magnetic loop core 5'B Four The outer conductor 5'A applied to the outer periphery of the multi-wire line Four Is a semi-cylindrical one that is uniform in the length direction and is opposed so as to have a gap, or the magnetic core 5′B Four Only the part of the length d which penetrated is removed. Such an outer conductor 5'A Four And magnetic core 5'B Four Are connected in series and parallel as shown in FIGS. 23 (b) and 23 (c) or FIGS. 26 (b) and 26 (c), and an interference wave signal is supplied to the coil. The coupling efficiency can be further increased by adding the coupling effect.
[0069]
Of the above-described interference wave coupling portions shown in FIGS. 20 to 30, those that do not use a connector in the middle of the line are mounted so as to surround the outer periphery of the multi-wire line from both sides, without cutting the line. Further, there is an advantage that the interference wave can be effectively coupled to each core wire of the multi-strip line by electrostatic coupling and / or electromagnetic coupling. In addition, even in the case of a communication device using a multi-wire line that performs high-speed pulse transmission or the like, there is an advantage that an interference wave can be easily coupled without affecting the communication system because no loss circuit or the like is inserted in the middle. . Further, in the configuration of the electrostatic coupling type interference wave coupling unit shown in FIGS. 28 and 29, the interference wave is coupled through the stray capacitance of the electrostatic coupling plate, so that the loss of the coupling system is small and the pulsed interference wave is effectively coupled. There are also advantages such as being able to. When the interference wave coupling unit shown in FIGS. 20 to 30 is used to couple the interference wave only to the EUT1 side of the multifilamentary line, the conductive interference wave such as a decoupling circuit not shown on the AE side of the multifilamentary line is used. Connect and use blocking means.
[0070]
[Example of connection / arrangement of device under test]
FIG. 31 and FIG. 32 show an example of connection / arrangement of an immunity test system in which the EUT 1 targets an erroneous operation for an analog communication device and a digital communication device, respectively, using the embodiment of the present invention of FIG. Only the interference wave coupling / applying portion connected to the EUT 1 and the termination state of the non-application line, and only the connecting portion of the AE 2 including the pseudo-switching portion are shown.
[0071]
FIG. 31 shows an example of a system (composite) EUT such as an analog button telephone apparatus. Corresponding to the line connected to this, (a) is an external communication line, (b) is an internal communication line, ▼ is the connection to the M (main) -EUT side of the main unit, ▲ 2 is the connection to the S (sub) -EUT side of the slave unit, etc. is there. FIG. 32 shows an example of a digital EUT such as a digital telephone or an ISDN terminal adapter (TA). In FIG. 32, (a) shows the interference wave from the interface U point of the communication line to the built-in line termination unit (DSU). Similarly, (b) is a connection example when applying from the U point of the communication line to a DSU built-in wireless device such as PHS-CS, and (c) is a connection example when applying from the S / T point to the DSU separated type EUT. is there. As described above, the embodiment of the present invention has many communication devices such as analog devices connected to balanced 2-wire and 4-wire communication lines and digital devices connected to the interface U point and S / T point of the ISDN line. The communication operation state can be realized. Also, in the case of an EUT such as a composite system device in which a plurality of lines such as communication lines and AC lines are connected, test interference waves can be coupled and applied from various lines, and CDN interference waves can be applied to non-application lines. By terminating the input terminal, it is possible to stabilize the common mode impedance of the EUT arrangement system and improve the reproducibility of the test.
[0072]
Although these test systems have been described using three types of CDN as the interference wave coupling portion 5 ′, the CDN-4W can be removed from the housing 9 and taken out to the outside, so that the tester can be made compact. In the case of a complex system in which the EUT is connected by a plurality of lines, the connection arrangement system can be simplified. Further, if the coupling means as shown in FIGS. 20 to 30 is used instead of the CDN, the continuous pulse wave as shown in FIGS. 3B to 3D and the interference of these single pulse wave and random pulse wave, etc. Waves are also effectively coupled and applied, and conduction immunity tests can be realized.
[0073]
【The invention's effect】
As described above, the conduction immunity tester according to the present invention is provided with means for electromagnetically, optically, or acoustically detecting functional abnormalities such as malfunctioning of the EUT and communication quality degradation when an interference wave is applied. Immediately after the occurrence of an abnormality due to, the application is stopped, and the EUT communication operation is automatically restored, and the frequency-stepped interference wave is reapplied. For EUTs that are not automatically restored, the activation means attached to the EUT is used. Since interference wave application control linked to the occurrence of an abnormality is performed, such as restarting, there is an advantage that a series of immunity tests that require operation are automated, easy to operate, and the test time can be greatly shortened.
[0074]
Same test for communication switching connection system with analog and digital pseudo switching function and interfering wave coupling system that can be applied to analog balanced 2/4 line of communication line, digital interface U point, S / T point, etc. Because it is a structure that is integrated into the housing, it is possible to conduct conduction immunity tests of various EUTs such as analog or digital communication devices, and the arrangement of the test system is simplified, improving the operability. is there.
[0075]
In a tester incorporating multiple capacitor-coupled interference wave coupling parts for multi-wire communication lines and AC lines, interference waves can be coupled and applied from any of the many lines of complex system equipment. By using an interfering wave coupling portion connected to a non-application line to which no voltage is applied for termination, there is an advantage that the common mode impedance of the EUT arrangement system can be stabilized and the test reproducibility can be improved.
[0076]
By using the electrostatic coupling type of the present invention, or the interference wave coupling unit in which this and the electromagnetic coupling type are combined, the communication transmission signal is not affected, and from the outside of the multi-wire line having many core wires. Interference waves can be combined and applied by one or both of electrostatic induction and electromagnetic induction, so that it is possible to test and evaluate the conduction immunity of communication systems and equipment connected to multi-wire lines, and pulse-like interference There is an advantage that a test signal having a high frequency component can be effectively applied.
[0077]
An audible noise evaluation reference signal source is incorporated in the housing, and a method for relatively evaluating the detection output characteristics of an applied disturbance wave with the audible signal level generated on the EUT side by applying the reference signal as an evaluation reference value Also, there is an advantage that an appropriate audible noise can be evaluated for an EUT in which the received sound volume changes depending on the setting of the volume control knob and the position of the microphone relative to the speaker. Moreover, there is an advantage that the acoustic pressure can be evaluated as an absolute value by calibrating the acoustic detection system for evaluating the relative value of the audible noise using a standard sound source.
[0078]
Since the detection means for both the acoustic output signal from the EUT side such as a speaker and a receiver and the signal between the opposing communication lines is provided, there is an advantage that audible noise evaluation can be performed not only on the EUT side but also on the opposing communication device side. is there. In addition to the continuous sine wave signal as the reference signal source for audible noise, it also includes a continuous pulse signal wave with an audible band period, so audible noise when applying a pulsed interfering wave with the same period is also included. There is an advantage that evaluation is possible.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining a first embodiment of the present invention.
FIG. 2 is a configuration diagram of a conventional conduction immunity test system.
FIG. 3 is a diagram illustrating an example of an output waveform of an interference wave generator.
4A and 4B are diagrams showing a configuration example of an interference wave coupler, where FIG. 4A is a parallel 2-wire communication line coupling / decoupling circuit (CDN-2W), and FIG. 4B is a parallel 4-wire communication line coupling / decoupling circuit. It is a figure which shows a coupling circuit (CDN-4W).
FIG. 5 is an explanatory diagram of a method for controlling the output of an AM modulation signal of an interference wave generation unit using a control unit, wherein (a) varies the frequency while increasing / decreasing the output of the interference wave generation unit for each frequency point. FIG. 5B is a diagram illustrating a method of changing the frequency while keeping the application level to the EUT constant.
6 is an explanatory diagram of immunity characteristics obtained by the control method of FIG. 5;
7A and 7B are diagrams illustrating a calibration method for an interference wave coupling unit, where FIG. 7A is an explanatory diagram of a connection method, FIG. 7B is a diagram illustrating output control of an interference wave generation unit in a control unit, 1) and (c-2) are common mode equivalent circuit diagrams for obtaining a relationship between an electromotive force of an interference wave coupling unit and an induced voltage of a load.
FIG. 8 is a diagram for explaining a second embodiment of the present invention.
FIG. 9 is a diagram for explaining an embodiment of the starting means portion in FIG.
10 is a diagram for explaining an example of the fault signal detection unit of FIG. 1 or FIG. 8;
FIG. 11 is a diagram for explaining a third embodiment of the present invention, and is a block configuration diagram for measuring and evaluating an audible noise characteristic when an EUT such as an acoustic communication device is targeted.
12 is a diagram illustrating a specific configuration of the DC supply circuit in FIG. 11. FIG.
13 is a diagram illustrating an output waveform of a reference signal generation unit in FIG. 11. FIG.
FIG. 14 is an explanatory diagram of audible noise characteristics measured using FIG. 11, where (a) is a constant evaluation reference value within a test band, and (b) is a different evaluation reference value within a predetermined band. It is explanatory drawing of the evaluation method at the time of doing.
FIG. 15 is a diagram for explaining audibility characteristics based on a voice deterioration evaluation scale for setting an evaluation reference level.
FIG. 16 is a diagram illustrating an embodiment of the present invention shown in FIG.
17 is a detailed configuration block diagram of a digital pseudo-exchange unit 3B in FIG. 16;
18 is a schematic external view of the test system configuration of FIG. 16. FIG.
FIG. 19 is a diagram of an audible noise characteristic example when the EUT is an analog telephone.
20 is a diagram of an embodiment of the interference wave coupling means according to the present invention in which one of the three interference wave coupling portions of FIG. 18 is replaced with another coupling portion.
FIG. 21 is a perspective view of an embodiment of an interference wave coupling unit in which electrostatic coupling and electromagnetic coupling according to the present invention are combined, as viewed from the inside of a line.
FIG. 22 is a cross-sectional view perpendicular to the line length direction of an embodiment of an interference wave coupling unit that combines electrostatic coupling and electromagnetic coupling according to the present invention.
FIG. 23 is a diagram for explaining the coupling / application principle of the interference wave coupling unit of FIG. 21;
24 is a diagram of an embodiment in which the interference wave coupling portions of FIG. 21 are connected in series.
FIG. 25 is a diagram for explaining another embodiment of an interference wave coupling unit according to the present invention.
26 is a diagram for explaining the coupling / application principle of the interference wave coupling unit of FIG. 25;
27 is a diagram for explaining the configuration of an embodiment in which the magnetic core mounting position of the interference wave coupling portion of FIG. 25 is changed.
FIG. 28 is a diagram illustrating a configuration of still another embodiment of the electrostatic coupling type coupling portion of the present invention.
FIG. 29 is a diagram illustrating a configuration of still another example of the electrostatic coupling type coupling portion of the present invention.
30 is a configuration diagram of an interference wave coupling unit showing an application of FIG. 29. FIG.
FIG. 31 is a diagram showing a connection / arrangement example of an immunity test system targeted for malfunction when the EUT is an analog communication device as an example of use of the tester of the present invention.
FIG. 32 is a diagram showing a connection / arrangement example of an immunity test system targeted for malfunction when the EUT is a digital communication device as an example of use of the tester of the present invention.
[Explanation of symbols]
1: Device under test (EUT)
1A: Light emitting element, 1B: Activation element for communication operation
2: Auxiliary device (AE)
3: Pseudo exchange, 3 ': Pseudo exchange part
3A: Analog pseudo-exchange part, 3B: Digital pseudo-exchange part
4: Communication line of device under test
4-1: Multi-wire track, 4-2: Connector for multi-wire track
5: jammer coupler, 5 ': jammer coupler
5'-1: CDN-2W, 5'-2: CDN-4W, 5'-3: AC-CDN 5'-4, 5'-5, 5'-6, 5'-10: Electrostatic / electromagnetic Combined interference wave coupling part
5'-7, 5'-8, 5'-9: Electrostatic coupling type interference wave coupling part
5'A 1 5'A 2, 5'A Three 5'A Four : Electrostatic coupling plate
5'B 1 5'B 2 5'B 3, 5'B Four : Magnetic core
6: Interference wave generator, 6 ': Interference wave generator
7: Amplifier, 7 ': Amplifier
8: Interference wave measuring instrument, 8 ': Interference wave measurement unit
9: Housing
10: Fault signal detector
10-0: light receiving element, 10A: electrical detection means, 10B: magnetic detection means
10C: Light emission detection means, 10D: Sound detection means, 10E: Electrical detection means
11: Obstacle degree measuring part
11-2, 11-3: Audible noise meter
12: Pseudo track
13: Control unit
14: Display section
15: GP-IB cable
16: Applied output measurement unit
17: Connection line
18: Resistance for calibration
19, 19 ': Activation part
20, 20 ': Activation means
20-1: Driving means, 20-2: Driving circuit
21: Reference signal generator
22: DC supply circuit
23, 23 ': Selection switch for call state realizing means
24: Fake ear
25: Differential probe
26: Audible bandpass filter
27: Reference signal / termination switch
29: Shield plate
30: Pseudo track short bar
31: Termination resistance
32: Pseudo ground plane
33: Insulation support base
34: Sound insulation box
35: Pseudo-hand circuit

Claims (14)

被試験装置の対向通信線に接続され該被試験装置の通信動作状態を可能にする通信交換接続手段と、電磁妨害波を発生する妨害波発生手段と、前記被試験装置の通信線に前記電磁妨害波をコモンモードで結合する妨害波結合手段と、該妨害波結合手段を介して前記電磁妨害波を印加した時に生じる前記被試験装置の機能異常信号を検出し通信品質劣化度を測定する障害度測定手段と、前記妨害波発生手段による前記被試験装置への電磁妨害波の印加条件を設定制御する妨害波制御手段とから構成され、該妨害波制御手段は、前記被試験装置が前記妨害波結合手段に対して非接続の状態において、前記妨害波発生手段に複数の出力電圧レベルを設定すると共に、該設定がなされた前記妨害波発生手段によって順次発生された電磁妨害波の各出力電圧レベルと、前記妨害波結合手段の出力電圧レベルとを対応づけた校正電圧情報を記憶し、前記被試験装置が前記妨害波結合手段に接続された状態において、前記校正電圧情報を用いて、複数の所定の妨害波印加レベルに対応した出力電圧レベルを前記妨害波発生手段に設定すると共に、前記複数の所定の妨害波印加レベルの電磁妨害波を順次前記被試験装置へ印加した時の前記障害度測定手段で測定される通信品質劣化度が前記被試験装置の障害モードによりあらかじめ定められた評価レベルとなった時の前記披試験装置への前記妨害波印加レベルを出力・表示することを特徴とする伝導イミュニティ試験器。A communication switching connection means connected to the opposite communication line of the device under test to enable the communication operation state of the device under test; an interference wave generating means for generating an electromagnetic interference wave; and the electromagnetic wave to the communication line of the device under test Interference wave coupling means for coupling interfering waves in a common mode, and obstacles for detecting a function abnormality signal of the device under test generated when the electromagnetic interference wave is applied through the interference wave coupling means and measuring the degree of communication quality deterioration Degree measuring means, and interference wave control means for setting and controlling the application conditions of the electromagnetic interference wave to the device under test by the interference wave generating means, the interference wave control means comprising: A plurality of output voltage levels are set in the interference wave generating means in a state of being disconnected from the wave coupling means, and each output of the electromagnetic interference waves sequentially generated by the set interference wave generating means Calibration voltage information that associates the pressure level with the output voltage level of the interference wave coupling means, and in the state where the device under test is connected to the interference wave coupling means, using the calibration voltage information, The output voltage level corresponding to a plurality of predetermined interference wave application levels is set in the interference wave generating means, and the electromagnetic interference waves of the plurality of predetermined interference wave application levels are sequentially applied to the device under test. that the communication quality deterioration level to be measured by the fault measurement means outputs and displays the disturbance applied level to the披test apparatus when a predetermined rated level by failure mode of the device under test A characteristic conduction immunity tester. 被試験装置の対向通信線に接続され該披試験装置の通信動作状態を可能にする通信交換接続手段と、電磁妨害波を発生する妨害波発生手段と、前記被試験装置の通信線に前記電磁妨害波をコモンモードで結合する妨害波結合手段と、該妨害波結合手段を介して前記電磁妨害波を印加した時に生じる前記被試験装置の機能異常信号を検出し通信品質劣化度を測定する障害度測定手段と、前記妨害波発生手段による前記被試験装置への電磁妨害波の印加条件を設定制御する妨害波制御手段とから構成され、該妨害波制御手段は、前記被試験装置が前記妨害波結合手段に対して非接続の状態において、前記妨害波発生手段に複数の出力電圧レベルを設定すると共に、該設定がなされた前記妨害波発生手段によって順次発生された電磁妨害波の各出力電圧レベルと、前記妨害波結合手段の出力電圧レベルとを対応づけた校正電圧情報を記憶し、前記被試験装置が前記妨害波結合手段に接続された状態において、前記校正電圧情報を用いて、複数の所定の妨害波印加レベルに対応した出力電圧レベルを前記妨害波発生手段に設定すると共に、前記複数の所定の妨害波印加レベルの電磁妨害波を順次前記被試験装置へ印加した時の前記障害度測定手段で測定される通信品質劣化度を出力・表示することを特徴とする伝導イミュニティ試験器。A communication exchange connection means connected to the opposite communication line of the device under test to enable the communication operation state of the test apparatus; an interference wave generating means for generating an electromagnetic interference wave; and the electromagnetic wave connected to the communication line of the device under test. Interference wave coupling means for coupling interfering waves in a common mode, and obstacles for detecting a function abnormality signal of the device under test generated when the electromagnetic interference wave is applied through the interference wave coupling means and measuring the degree of communication quality deterioration Degree measuring means, and interference wave control means for setting and controlling the application conditions of the electromagnetic interference wave to the device under test by the interference wave generating means, the interference wave control means comprising: A plurality of output voltage levels are set in the interference wave generating means in a state of being disconnected from the wave coupling means, and each output of the electromagnetic interference waves sequentially generated by the set interference wave generating means Calibration voltage information that associates the pressure level with the output voltage level of the interference wave coupling means, and in the state where the device under test is connected to the interference wave coupling means, using the calibration voltage information, The output voltage level corresponding to a plurality of predetermined interference wave application levels is set in the interference wave generating means, and the electromagnetic interference waves of the plurality of predetermined interference wave application levels are sequentially applied to the device under test. A conduction immunity tester characterized by outputting and displaying a communication quality deterioration degree measured by a failure degree measuring means. 前記妨害波制御手段は、前記障害度測定手段で測定される通信品質劣化度が前記被試験装置の障害モードによりあらかじめ定められた評価レベルとなった時の前記被試験装置への前記電磁妨害波の印加レベルを記憶または出力・表示後、速やかに前記妨害波発生手段の前記出力電圧レベルを低下させ、前記被試験装置が正常な通信動作状態に復帰するまでに要する所定時間経過後に、周波数をステップする等の印加条件を変えた電磁妨害波を前記被試験装置に再印加するように前記妨害波発生手段を制御すると共に、前記印加停止後から該再印加までの時間を可変設定することを特徴とする請求項1記載の伝導イミュニティ試験器。  The interference wave control means is configured to cause the electromagnetic interference wave to the device under test when the communication quality deterioration degree measured by the failure degree measurement means reaches an evaluation level predetermined by the failure mode of the device under test. After storing or outputting / displaying the applied level, the output voltage level of the interference wave generating means is quickly reduced, and the frequency is set after a predetermined time required for the device under test to return to a normal communication operation state. The interference wave generating means is controlled so as to re-apply electromagnetic interference waves whose application conditions have been changed, such as stepping, to the device under test, and the time from the stop of application to the re-application is variably set. The conduction immunity tester according to claim 1, wherein: 前記妨害波制御手段は、前記障害度測定手段で測定される通信品質劣化度が前記被試験装置の障害モードによりあらかじめ定められた評価レベルとなった時の前記被試験装置への前記電磁妨害波の印加レベルを記憶または出力・表示後、速やかに前前記妨害波発生手段の前記出力電圧レベルを低下させ、所定時間経過後も前記被試験装置が正常な通信動作状態に復帰しない場合に、前記被試験装置または前記被試験装置の対向通信線側に接続配置された補助装置に装着した起動手段を選択駆動して前記被試験装置を再起動し、周波数をステップする等の印加条件を変えた電磁妨害波を前記被試験装置に再印加するように前記妨害波発生手段を制御すると共に、前記印加停止後から該再印加までの時間を可変設定することを特徴とする請求項1記載の伝導イミュニティ試験器。  The interference wave control means is configured to cause the electromagnetic interference wave to the device under test when the communication quality deterioration degree measured by the failure degree measurement means reaches a predetermined evaluation level according to the failure mode of the device under test. After storing or outputting / displaying the applied level, immediately reduce the output voltage level of the interference wave generating means, and if the device under test does not return to a normal communication operation state even after a predetermined time has elapsed, The application condition such as stepping the frequency was changed by selectively driving the starting means attached to the device under test or the auxiliary device connected to the opposing communication line side of the device under test to restart the device under test. 2. The interference wave generating means is controlled so that an electromagnetic interference wave is re-applied to the device under test, and a time from the application stop to the re-application is variably set. Conducted immunity tester mounting. 前記障害度測定手段は、マイクロホンや差動プローブ等の音響信号検出手段を用いて前記被試験装置の機能異常信号を検出する機能異常検出手段を有し、該機能異常検出手段による出力を可聴雑音信号レベルとして測定し、前記対向通信線側から、あらかじめ多人数の被験者によって得られた聴感特性に基づく所定レベルの可聴帯域周期の連続性正弦波を印加して音声劣化評価基準値を設定することを特徴とする請求項2記載の伝導イミュニティ試験器。  The degree-of-failure measurement means has a function abnormality detection means for detecting a function abnormality signal of the device under test using an acoustic signal detection means such as a microphone or a differential probe, and outputs the audible noise from the function abnormality detection means. Measured as a signal level, and applied a continuous sine wave with a predetermined level of audible band period based on auditory characteristics obtained in advance by a large number of subjects from the opposite communication line side to set a voice degradation evaluation reference value The conduction immunity tester according to claim 2. 前記障害度測定手段は、マイクロホンや差動プローブ等の音響信号検出手段を用いて前記被試験装置の機能異常信号を検出する機能異常検出手段を有し、該機能異常検出手段による出力を可聴雑音信号レベルとして測定し、前記対向通信線側から、あらかじめ多人数の被験者によって得られた聴感特性に基づく所定レベルの可聴帯域周期の連続性パルス波を印加して音声劣化評価基準値を設定することを特徴とする請求項2記載の伝導イミュニティ試験器。  The degree-of-failure measurement means has a function abnormality detection means for detecting a function abnormality signal of the device under test using an acoustic signal detection means such as a microphone or a differential probe, and outputs the audible noise from the function abnormality detection means. Measured as a signal level, and applied a continuous pulse wave of a predetermined level of audible band period based on auditory characteristics obtained in advance by a large number of subjects from the opposite communication line side to set a voice degradation evaluation reference value The conduction immunity tester according to claim 2. 前記妨害波制御手段は、前記被試験装置の1以上の試験レベル値と、各周波数ポイントごとの前記妨害波発生手段の試験信号出力レベルとの対応関係に基づいて、任意の実施試験レベル値と前記試験レベル値とにより前記試験信号出力レベルを比例配分することにより、前記任意の実施試験レベル値に対する前記妨害波発生手段の各周波数ポイントごとの試験信号出力値を求め、求めた該試験信号出力値を前記妨害波発生手段の試験信号出力レベルとして設定することを特徴とする請求項1ないし5記載の伝導イミュニティ試験器。  The jamming wave control means may be any test level value based on a correspondence relationship between one or more test level values of the device under test and a test signal output level of the jamming wave generation means for each frequency point. By proportionally allocating the test signal output level according to the test level value, a test signal output value for each frequency point of the interference wave generating means with respect to the arbitrary test level value is obtained, and the obtained test signal output is obtained. 6. The conduction immunity tester according to claim 1, wherein a value is set as a test signal output level of said interference wave generating means. 前記妨害波制御手段は、前記被試験装置への電磁妨害波の印加レベルを測定する印加出力測定手段と、前記障害度測定手段で測定した結果を表示する表示手段と、前記妨害波発生手段から発生され前記妨害波結合手段を介して前記被試験装置に印加される電磁妨害波の印加条件を設定制御する妨害波制御部とを有することを特徴とする請求項1ないし請求項7記載の伝導イミュニティ試験器。  The interference wave control means includes: an applied output measuring means for measuring an application level of an electromagnetic interference wave to the device under test; a display means for displaying a result measured by the obstacle degree measuring means; and the interference wave generating means. 8. The conduction according to claim 1, further comprising an interference wave control unit configured to control application conditions of electromagnetic interference waves generated and applied to the device under test via the interference wave coupling means. Immunity tester. 前記通信交換接続手段がアナログ加入者線交換機能とデジタルインタフェースの少なくともU点接続が可能なデジタル交換機能とを有することを特徴とする請求項1ないし8記載の伝導イミュニティ試験器。  9. The conduction immunity tester according to claim 1, wherein said communication switching connection means has an analog subscriber line switching function and a digital switching function capable of connecting at least U points of a digital interface. 前記通信交換接続手段が基準信号と直流電圧を重畳させて前記被試験装置の対向通信線に供給する手段を有することを特徴とする請求項1ないし8記載の伝導イミュニティ試験器。  9. The conduction immunity tester according to claim 1, wherein said communication exchange connection means has means for superimposing a reference signal and a DC voltage and supplying them to the opposite communication line of said device under test. 前記妨害波結合手段は、平衡2線通信線用の結合・減結合回路、平衡4線通信線用の結合・減結合回路、AC線用の結合・減結合回路のいずれかを選択使用できるように構成されていることを特徴とする請求項1ないし10記載の伝導イミュニティ試験器。  As the interference wave coupling means, any one of a coupling / decoupling circuit for a balanced two-wire communication line, a coupling / decoupling circuit for a balanced four-wire communication line, and a coupling / decoupling circuit for an AC line can be selected and used. The conduction immunity tester according to claim 1, wherein the conduction immunity tester is configured as follows. 前記妨害波結合手段は、非シールド多線条線路の所定員部分外周を覆い、長さ方向に一様な円筒状導体をアース面に対して対称な2つの対向する半円筒状導体となるよう、かつ長さ方向に沿って2つのスリットを有するように分割して配置した2つの半円筒状導体の一方の長さ方向端を互いに接続した静電結合板と、該静電結合板の外周にコイルを捲回した円形状の磁性コアからなる電磁結合手段を配置して、前記静電結合板と前記電磁結合手段のコイルとを接続し、この接続線に電磁妨害波を印加するように構成したことを特徴とする請求項1ないし11記載の伝導イミュニティ試験器。  The interference wave coupling means covers the outer periphery of the predetermined member portion of the unshielded multi-wire line, so that the cylindrical conductor uniform in the length direction becomes two opposing semi-cylindrical conductors symmetrical with respect to the ground plane. And an electrostatic coupling plate in which one longitudinal end of two semi-cylindrical conductors arranged so as to have two slits along the length direction are connected to each other, and an outer periphery of the electrostatic coupling plate An electromagnetic coupling means comprising a circular magnetic core wound with a coil is arranged, the electrostatic coupling plate and the coil of the electromagnetic coupling means are connected, and an electromagnetic interference wave is applied to the connection line. 12. The conduction immunity tester according to claim 1, which is configured. 前記妨害波結合手段は、非シールド多線条線路の所定長部分外周を長さ方向に一様な円筒状導体で覆い、該円筒状導体の一定長部分を長さ方向に垂直な断面で切断・除去した如くに配置した複数の静電結合板と、該複数の静電結合板を除去した前記多線条線路の外周部分にコイルを捲回した円形状の磁性コアからなる電磁結合手段を配置して、前記静電結合板と前記電磁結合手段のコイルとを接続し、この接続線に電磁妨害波を印加するように構成したことを特徴とする請求項1ないし11記載の伝導イミュニティ試験器。  The interference wave coupling means covers an outer periphery of a predetermined length portion of an unshielded multi-wire line with a uniform cylindrical conductor in the length direction, and cuts a constant length portion of the cylindrical conductor in a cross section perpendicular to the length direction. -Electromagnetic coupling means comprising a plurality of electrostatic coupling plates arranged as removed, and a circular magnetic core in which a coil is wound around the outer periphery of the multi-wire line from which the plurality of electrostatic coupling plates are removed The conduction immunity test according to any one of claims 1 to 11, characterized by being arranged to connect the electrostatic coupling plate and a coil of the electromagnetic coupling means and to apply an electromagnetic interference wave to the connection line. vessel. 前記妨害波結合手段は、非シールド多線条線路の所定長部分外周を長さ方向に一様な円筒状導体またはシールド導体で覆い、複数回の捲回または折り返しした静電結合板の外部導体の各捲回ごとまたは折り返しごとの部分を共通的に接続し、該接続部分とアースとの間に電磁妨害波を印加するように構成したことを特徴とする請求項1ないし11記載の伝導イミュニティ試験器。  The interference wave coupling means covers the outer circumference of the predetermined length portion of the unshielded multifilamentary line with a cylindrical conductor or shield conductor that is uniform in the length direction, and the outer conductor of the electrostatic coupling plate that has been wound or folded several times. The conduction immunity according to any one of claims 1 to 11, wherein a part for each winding or folding is commonly connected and an electromagnetic interference wave is applied between the connection part and ground. Tester.
JP11439099A 1999-04-22 1999-04-22 Conducted immunity tester Expired - Fee Related JP3642979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11439099A JP3642979B2 (en) 1999-04-22 1999-04-22 Conducted immunity tester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11439099A JP3642979B2 (en) 1999-04-22 1999-04-22 Conducted immunity tester

Publications (2)

Publication Number Publication Date
JP2000304794A JP2000304794A (en) 2000-11-02
JP3642979B2 true JP3642979B2 (en) 2005-04-27

Family

ID=14636489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11439099A Expired - Fee Related JP3642979B2 (en) 1999-04-22 1999-04-22 Conducted immunity tester

Country Status (1)

Country Link
JP (1) JP3642979B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005315605A (en) * 2004-04-27 2005-11-10 Yamaha Corp Testing arrangement and testing method for semiconductor device
JP5223659B2 (en) 2008-05-13 2013-06-26 富士電機株式会社 Power converter test equipment
JP2010096571A (en) * 2008-10-15 2010-04-30 National Institute Of Information & Communication Technology Inspection device and inspection method
JP6702218B2 (en) * 2017-02-08 2020-05-27 株式会社デンソー Immunity test equipment
CN114430437B (en) * 2022-01-24 2024-02-20 博鼎实华(北京)技术有限公司 Method, system, equipment and storage medium for testing conductive immunity of wired telephone
CN114167193B (en) * 2022-02-09 2022-05-27 通号(长沙)轨道交通控制技术有限公司 Self-diagnosis method for AC/DC screen
WO2023223414A1 (en) * 2022-05-17 2023-11-23 日本電信電話株式会社 Frequency band estimation device, frequency band estimation method, ems testing method, and frequency band estimation program

Also Published As

Publication number Publication date
JP2000304794A (en) 2000-11-02

Similar Documents

Publication Publication Date Title
US3882287A (en) Method and apparatus for detecting faults and locating conductors in multi-conductor cables
CN1784882B (en) Method and arrangement for loop test of a disturbed line
US6668041B2 (en) Single ended line probing in DSL system
KR100484408B1 (en) Emi analyzer capable of analyzing and reducing each electromagnetic interference component
JPH07504302A (en) A system that measures the characteristics of communication lines using close-range terminals.
USRE35644E (en) Voltage transmission link for testing EMI susceptibility of a device or circuits
JP3642979B2 (en) Conducted immunity tester
JPH04259864A (en) Measuring device of partial discharge of resin mold transformer
US6958699B1 (en) Signal-disruption detection in powered networking systems
US6940289B2 (en) Method and apparatus for tracing a line
US4862491A (en) Remote disconnection and short-circuiting apparatus and method
US7426262B2 (en) Method and arrangement for loop test of a disturbed line
JP3297215B2 (en) Electromagnetic interference prevention device for balanced transmission line
CN100554979C (en) A kind of broadband impedance measurement mechanism
US6442239B1 (en) Telephone line longitudinal balance tester and method
US7253636B2 (en) Wire tracer receiver
US2142304A (en) Trouble finder
JP3112214B2 (en) Noise audible immunity evaluation tester
JP3165561B2 (en) High frequency superimposed small signal detection differential probe
JP3075322B2 (en) High frequency unbalanced characteristic evaluation tester
JPH0420126A (en) Pseudo communication circuit network
JP3303047B2 (en) Interference wave applying device
JP3164264B2 (en) Communication line noise measurement method
GB2259992A (en) Checking connections
JP2594368B2 (en) Pseudo communication network

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041104

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees