JP3642687B2 - Portable airborne sampler - Google Patents

Portable airborne sampler Download PDF

Info

Publication number
JP3642687B2
JP3642687B2 JP30406898A JP30406898A JP3642687B2 JP 3642687 B2 JP3642687 B2 JP 3642687B2 JP 30406898 A JP30406898 A JP 30406898A JP 30406898 A JP30406898 A JP 30406898A JP 3642687 B2 JP3642687 B2 JP 3642687B2
Authority
JP
Japan
Prior art keywords
nozzle
sampler
portable
petri dish
collection efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30406898A
Other languages
Japanese (ja)
Other versions
JP2000131199A (en
Inventor
直記 杉田
幸博 仲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Midori Anzen Co Ltd
Original Assignee
Midori Anzen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Midori Anzen Co Ltd filed Critical Midori Anzen Co Ltd
Priority to JP30406898A priority Critical patent/JP3642687B2/en
Priority to TW088118073A priority patent/TW409186B/en
Priority to DE69931515T priority patent/DE69931515T2/en
Priority to CA002348978A priority patent/CA2348978A1/en
Priority to AT99949321T priority patent/ATE327316T1/en
Priority to US09/807,868 priority patent/US6565638B1/en
Priority to PCT/JP1999/005784 priority patent/WO2000024865A1/en
Priority to EP99949321A priority patent/EP1126021B1/en
Priority to CNB998122629A priority patent/CN1177031C/en
Publication of JP2000131199A publication Critical patent/JP2000131199A/en
Priority to HK02103671.8A priority patent/HK1042110B/en
Application granted granted Critical
Publication of JP3642687B2 publication Critical patent/JP3642687B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、微生物や細菌などによる汚染状態を調べ管理するために、室内の空中浮遊菌を捕集するポータブル型空中浮遊菌サンプラに関するものである。
【0002】
【従来の技術】
従来、製薬・食品工業などや、病院を始めとした公共施設などにおいて、空気中に浮遊する細菌・真菌などを捕集して微生物汚染状態を調べる空中浮遊菌サンプラとして、定置型とポータブル型のものが知られている。特に、ポータブル型空中浮遊菌サンプラは、バイオクリーンルーム、製薬・食品工業の生産ラインなどの微生物汚染状態の注意・管理を要求される場所で、汚染状態の管理や調査のためにそれらの空間内部において使用されている。
【0003】
【発明が解決しようとする課題】
しかしながら上述の従来例において、定置型のサンプラはJIS法により測定で十分な捕集性能を有しているが、大型の吸引ポンプを使用しているために駆動部が大型かつ重量も大きく、更に動力源として交流100Vなどの電源の供給が必要となり、場所を移動して簡便に測定する等の操作が困難であるという欠点がある。
【0004】
一方、ポータブル型のサンプラは小型軽量化は実現されているが、シロッコファンやラジアルファン等の小型のファンを使用しているために、高い静圧が得られない。従って、ノズル部を通過する空気流量を確保するために、低静圧で稼動可能なノズル形状となり、捕集性能が悪くなる。逆に、捕集性能が良好な吸い込みノズル形状にすると、ラジアルファン等で得られる200Pa程度の静圧では十分な流量が得られず、ノズルを通過する風速が遅く捕集効率が低くなるという問題点がある。
【0005】
本発明の目的は、上述の問題点を解消し、捕集性能が良いポータブル型空中浮遊菌サンプラを提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するための本発明に係るポータブル型空中浮遊菌サンプラは、複数孔を有するノズルと、該ノズルを保持するノズル保持部材と、前記ノズルの下流に位置し培地を収納するシャーレを支持するシャーレ支持部と、空気流を形成するファンとを有するポータブル型空中浮遊菌サンプラにおいて、前記ノズルと前記培地の表面との間隔を0.5〜1.5mm、前記ノズルのノズル孔は上流側に圧力損失を減ずるための上流側に解放したテーパ部を有すると共に下流側に直管部を有し、粒子密度・粒径・風速・カニンガム係数・空気の粘性・ノズル内径で決まるストークス数を0.2以上とすることにより、空中浮遊菌の捕集効率を90%以上としたことを特徴とする。
【0007】
【発明の実施の形態】
本発明を図示の実施例に基づいて詳細に説明する。
【0008】
図1は実施例のポータブル型空中浮遊菌サンプラの断面図を示し、円筒状の筐体1の上部には、図2、図3に示すように微細な多数のノズル孔2aを備えたノズル2がノズル保持部3により保持されている。ノズル保持部3は空気の漏洩がないように、例えば螺子構造などにより筐体1に嵌合されている。そして、ノズル2の直下に培地Kを収納したシャーレSを支持するシャーレ支持部4が設けられている。そして、ノズル2とシャーレSの培地K間の間隔dは0.5〜1.5mmとされている。シャーレ支持部4の下側には所定の空間が形成され、その下方にターボファンやボルテックスブロア等の高静圧ファン5、この高静圧ファン5を駆動するモータ6及び制御回路7が配設されている。
【0009】
なお、ノズル孔2aは図4に示すように、例えば内径0.36mm、長さ0.5mmの直管部と、その上方にノズル部の圧力損失を減ずるために、開き角90度、高さ0.5mmのテーパ部とから成っている。
【0010】
使用に際しては、培地Kを所定の厚さに収納したシャーレSを、筐体1のシャーレ支持部4に支持した後に、ノズル保持部材3を筐体1の上部に嵌合する。モータ6を駆動して高静圧ファン5を回転すると、図5に示すように空気はノズル2の孔2aから流入して、ノズル2と培地Kの間隔を通過して流れる。このとき、培地Kは捕集板となって、空中を浮遊する例えば細菌・真菌などは培地Kの表面に慣性衝突することによって培地Kに付着して捕集される。その後に、空気流は図1の矢印のように周辺部の隙間を通って高静圧ファン5によって吸引される。
【0011】
ここで、例えば粒径0.7μmの枯草菌を有効に捕集するためには、図6に示す限界粒子径と捕集効率のグラフ図において、ストークス数 Stk の値を0.2以上(√ Stk =0.45以上)、好ましくは0.3以上(√Stk=0.55以上)とすることが好適である。なお、ストークス数Stkは粒子密度ρ、粒径d、風速U、カニンガム係数C、空気の粘性η、ノズル内径Dとすると次式で表される。
【0012】
Stk =ρd 2 UC/9ηD
従来のポ−タブル型空中浮遊菌サンプラでは、例えば粒径0.7μmの枯草菌に対して実験を行ったところ、風速11.8m/秒、ノズル径0.6mmで、捕集効率は10%程度である。これは前式からストークス数Stk の値が0.07程度(√Stk =0.27程度)となり、十分な捕集性能は得られない。この粒径0.7μmの枯草菌に対する捕集効率を90%以上とするためには、ストークス数Stk の値を0.2〜0.3(√Stk =0.45〜0.55)とする必要があり、前式によりStk =0.3の場合を計算すると、風速を従来の約4.1倍の48.4m/秒に上げなければならない。
【0013】
しかし、圧力損失は一般的に知られているように、風速の2乗で増加するために、4.1倍の風速にするためには、圧力損失と風量の双方が増加するので、必要な仕事率[W]が従来の69倍になり、実用化はなかなか困難である。
【0014】
ストークス数Stk は前式に示すようにノズル孔径に反比例するので、ノズルの孔径が小さい程、ストークス数Stk は大きくなり捕集効率は高くなる。従って、ノズル孔径を0.6mmから0.36mmに小さくすれば、粒径0.7μmの枯草菌に対する捕集効率を90%以上にするための風速を下げることができ、この結果圧力損失が下がり必要な電力も小さくなる。この高静圧を実現するために、例えば定格風量時で400Pa以上のターボファンを使用する。
【0015】
このとき、捕集効率はストークス数Stk 以外にも、培地−ノズル間距離にも影響されることが発明者の実験により確認された。この距離が最も捕集効率に影響を及ぼしていることも確認され、この間の距離が近過ぎると風量が減少して捕集効率が低下し、距離が遠過ぎると培地Kへの衝突速度が低下して同様に捕集効率が減少する。実験によれば、図7に示すように培地−ノズル間距離が1.5mmより小さい場合は、捕集効率は90%以上となり、1.6mmより大きい場合は、85%以下となる。
【0016】
従って、0.5〜1.5mmの培地−ノズル間距離を採用することによって、従来のポータブル型のものと比較して高い捕集効率を得ることができ、更に高静圧を有する定置式のものとほぼ同等以上の性能を保持することができる。
【0017】
【発明の効果】
以上説明したように本発明に係るポータブル型空中浮遊菌サンプラは、小型軽量のポータブル型にも拘らず、高い捕集性能で長時間持続して使用することが可能となり、低価格で高性能の使い易い装置となる。
【図面の簡単な説明】
【図1】実施例のサンプラの断面図である。
【図2】ノズルの正面図である。
【図3】ノズルの側面図である。
【図4】ノズルの孔部の断面図である。
【図5】空気流の説明図である。
【図6】限界粒子径と捕集効率のグラフ図である。
【図7】培地−ノズル間隔と捕集効率のグラフ図である。
【符号の説明】
1 筐体
2 ノズル
3 ノズル保持部材
4 シャーレ支持部材
5 高静圧ファン
6 モータ
7 制御回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a portable airborne sampler that collects indoor airborne bacteria in order to investigate and manage the contamination state caused by microorganisms or bacteria.
[0002]
[Prior art]
Conventionally, in the pharmaceutical and food industries, and in public facilities such as hospitals, stationary and portable samplers are used as airborne bacteria samplers that collect bacteria and fungi floating in the air and check the microbial contamination status. Things are known. In particular, portable airborne samplers are used in bioclean rooms, pharmaceutical / food industry production lines and other places where attention and control of microbial contamination are required. in use.
[0003]
[Problems to be solved by the invention]
However, in the above-mentioned conventional example, the stationary sampler has a sufficient collection performance by the measurement according to the JIS method, but since the large suction pump is used, the drive unit is large and heavy, As a power source, it is necessary to supply a power source such as an alternating current of 100 V, and there is a drawback that it is difficult to perform an operation such as simple measurement by moving a place.
[0004]
On the other hand, although the portable sampler has been reduced in size and weight, a high static pressure cannot be obtained because a small fan such as a sirocco fan or a radial fan is used. Therefore, in order to ensure the air flow rate which passes a nozzle part, it becomes the nozzle shape which can be operate | moved by a low static pressure, and collection performance worsens. On the other hand, when the suction nozzle shape has good collection performance, a static flow of about 200 Pa obtained with a radial fan or the like cannot provide a sufficient flow rate, and the wind speed passing through the nozzle is slow and the collection efficiency is low. There is a point.
[0005]
An object of the present invention is to solve the above-mentioned problems and to provide a portable airborne sampler with good collection performance.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, a portable airborne sampler according to the present invention supports a nozzle having a plurality of holes, a nozzle holding member that holds the nozzle, and a petri dish that is located downstream of the nozzle and stores a culture medium. In a portable airborne microbe sampler having a petri dish support portion that performs and a fan that forms an air flow, the distance between the nozzle and the surface of the medium is 0.5 to 1.5 mm , and the nozzle hole of the nozzle is upstream In order to reduce pressure loss, it has a taper part released upstream and a straight pipe part downstream, and the Stokes number determined by particle density, particle size, wind speed, Cunningham coefficient, air viscosity, nozzle inner diameter is 0 It is characterized in that the collection efficiency of airborne bacteria is 90% or more by setting it to .2 or more .
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail based on the embodiments shown in the drawings.
[0008]
FIG. 1 is a cross-sectional view of a portable airborne sampler of the embodiment, and a nozzle 2 having a large number of fine nozzle holes 2a at the top of a cylindrical housing 1 as shown in FIGS. Is held by the nozzle holder 3. The nozzle holding unit 3 is fitted to the housing 1 by, for example, a screw structure so that there is no air leakage. A petri dish support portion 4 that supports the petri dish S containing the culture medium K is provided immediately below the nozzle 2. And the space | interval d between the culture medium K of the nozzle 2 and the petri dish S is 0.5-1.5 mm. A predetermined space is formed below the petri dish support 4, and a high static pressure fan 5 such as a turbo fan or a vortex blower, a motor 6 for driving the high static pressure fan 5, and a control circuit 7 are disposed below the predetermined space. Has been.
[0009]
As shown in FIG. 4, the nozzle hole 2a has, for example, a straight pipe portion having an inner diameter of 0.36 mm and a length of 0.5 mm, and an opening angle of 90 degrees and a height in order to reduce pressure loss of the nozzle portion above it. It consists of a 0.5mm taper.
[0010]
In use, the nozzle holding member 3 is fitted to the upper portion of the housing 1 after the petri dish S containing the medium K in a predetermined thickness is supported by the petri dish support portion 4 of the housing 1. When the motor 6 is driven to rotate the high static pressure fan 5, air flows from the hole 2 a of the nozzle 2 and flows through the gap between the nozzle 2 and the medium K as shown in FIG. 5. At this time, the culture medium K becomes a collection plate, and for example, bacteria and fungi floating in the air adhere to the culture medium K and are collected by inertial collision with the surface of the culture medium K. After that, the air flow is sucked by the high static pressure fan 5 through the gap in the peripheral portion as shown by the arrow in FIG.
[0011]
Here, for example, in order to effectively collect Bacillus subtilis having a particle diameter of 0.7 μm, the value of the Stokes number Stk is set to 0.2 or more (√ in the graph of limit particle diameter and collection efficiency shown in FIG. Stk = 0.45 or more), preferably 0.3 or more (√Stk = 0.55 or more). The Stokes number Stk is expressed by the following equation when the particle density ρ, the particle size d, the wind speed U, the Cunningham coefficient C, the air viscosity η, and the nozzle inner diameter D are given.
[0012]
Stk = ρd 2 UC / 9ηD
In a conventional portable airborne fungus sampler, for example, when an experiment was performed on Bacillus subtilis having a particle size of 0.7 μm, the wind speed was 11.8 m / sec, the nozzle diameter was 0.6 mm, and the collection efficiency was 10%. Degree. This indicates that the value of Stokes number Stk is about 0.07 (√Stk = 0.27) from the previous equation, and sufficient collection performance cannot be obtained. In order to set the collection efficiency for Bacillus subtilis having a particle size of 0.7 μm to 90% or more, the Stokes number Stk is set to 0.2 to 0.3 (√Stk = 0.45 to 0.55). If the case where Stk = 0.3 is calculated according to the previous equation, the wind speed must be increased to 4.1 times the conventional speed of 48.4 m / sec.
[0013]
However, as is generally known, since the pressure loss increases with the square of the wind speed, in order to increase the wind speed to 4.1 times, both the pressure loss and the air volume increase. The work rate [W] is 69 times that of the prior art, and practical application is difficult.
[0014]
Since the Stokes number Stk is inversely proportional to the nozzle hole diameter as shown in the previous equation, the smaller the nozzle hole diameter, the larger the Stokes number Stk and the higher the collection efficiency. Therefore, if the nozzle hole diameter is reduced from 0.6 mm to 0.36 mm, the wind speed for increasing the collection efficiency for Bacillus subtilis having a particle diameter of 0.7 μm to 90% or more can be lowered, resulting in a decrease in pressure loss. The required power is also reduced. In order to realize this high static pressure, for example, a turbo fan of 400 Pa or more at the rated air volume is used.
[0015]
At this time, it was confirmed by the inventors' experiment that the collection efficiency is influenced by the distance between the medium and the nozzle in addition to the Stokes number Stk. It has also been confirmed that this distance has the greatest effect on the collection efficiency. If the distance between them is too close, the air volume decreases and the collection efficiency is lowered. Similarly, the collection efficiency decreases. According to the experiment, when the medium-nozzle distance is smaller than 1.5 mm as shown in FIG. 7, the collection efficiency is 90% or more, and when it is larger than 1.6 mm, it is 85% or less.
[0016]
Therefore, by adopting a medium-nozzle distance of 0.5 to 1.5 mm, it is possible to obtain a higher collection efficiency compared to the conventional portable type, and furthermore, a stationary type having a high static pressure. It can maintain almost the same or better performance.
[0017]
【The invention's effect】
As described above, the portable airborne bacteria sampler according to the present invention can be used continuously for a long time with a high collection performance, regardless of the small and lightweight portable type, and it has a low price and high performance. It becomes an easy-to-use device.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a sampler according to an embodiment.
FIG. 2 is a front view of a nozzle.
FIG. 3 is a side view of a nozzle.
FIG. 4 is a cross-sectional view of a nozzle hole.
FIG. 5 is an explanatory diagram of airflow.
FIG. 6 is a graph of limit particle diameter and collection efficiency.
FIG. 7 is a graph of medium-nozzle spacing and collection efficiency.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Housing | casing 2 Nozzle 3 Nozzle holding member 4 Petri dish support member 5 High static pressure fan 6 Motor 7 Control circuit

Claims (2)

複数孔を有するノズルと、該ノズルを保持するノズル保持部材と、前記ノズルの下流に位置し培地を収納するシャーレを支持するシャーレ支持部と、空気流を形成するファンとを有するポータブル型空中浮遊菌サンプラにおいて、前記ノズルと前記培地の表面との間隔を0.5〜1.5mm、前記ノズルのノズル孔は上流側に圧力損失を減ずるための上流側に解放したテーパ部を有すると共に下流側に直管部を有し、粒子密度・粒径・風速・カニンガム係数・空気の粘性・ノズル内径で決まるストークス数を0.2以上とすることにより、空中浮遊菌の捕集効率を90%以上としたことを特徴とするポータブル型空中浮遊菌サンプラ。Portable airborne suspension having a nozzle having a plurality of holes, a nozzle holding member that holds the nozzle, a petri dish support portion that is located downstream of the nozzle and supports a petri dish that contains a culture medium, and a fan that forms an air flow In the fungus sampler, the distance between the nozzle and the surface of the medium is 0.5 to 1.5 mm , and the nozzle hole of the nozzle has a tapered portion opened upstream to reduce pressure loss on the upstream side and the downstream side And has a Stokes number determined by particle density, particle size, wind speed, Cunningham coefficient, air viscosity, nozzle inner diameter of 0.2 or more, so that the collection efficiency of airborne bacteria is 90% or more. A portable airborne sampler characterized by 前記ノズルの直管部の内径を0.36mmとしたことを特徴とする請求項1に記載のポータブル型空中浮遊菌サンプラ。 The portable airborne bacteria sampler according to claim 1, wherein an inner diameter of the straight pipe portion of the nozzle is 0.36 mm .
JP30406898A 1998-10-26 1998-10-26 Portable airborne sampler Expired - Lifetime JP3642687B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP30406898A JP3642687B2 (en) 1998-10-26 1998-10-26 Portable airborne sampler
TW088118073A TW409186B (en) 1998-10-26 1999-10-19 Portable sampling device for air floating bacterium
CA002348978A CA2348978A1 (en) 1998-10-26 1999-10-20 Portable type airborne microorganism sampler
AT99949321T ATE327316T1 (en) 1998-10-26 1999-10-20 PORTABLE AIRBOARD SAMPLING CONTAINER
US09/807,868 US6565638B1 (en) 1998-10-26 1999-10-20 Portable air-borne bacteria sampler
PCT/JP1999/005784 WO2000024865A1 (en) 1998-10-26 1999-10-20 Portable air-borne bacteria sampler
DE69931515T DE69931515T2 (en) 1998-10-26 1999-10-20 PORTABLE, AIRBORNE CONTAINER FOR SAMPLING
EP99949321A EP1126021B1 (en) 1998-10-26 1999-10-20 Portable air-borne bacteria sampler
CNB998122629A CN1177031C (en) 1998-10-26 1999-10-20 Portable air-borne bacteria sampler
HK02103671.8A HK1042110B (en) 1998-10-26 2002-05-15 Portable air-borne bacteria sampler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30406898A JP3642687B2 (en) 1998-10-26 1998-10-26 Portable airborne sampler

Publications (2)

Publication Number Publication Date
JP2000131199A JP2000131199A (en) 2000-05-12
JP3642687B2 true JP3642687B2 (en) 2005-04-27

Family

ID=17928652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30406898A Expired - Lifetime JP3642687B2 (en) 1998-10-26 1998-10-26 Portable airborne sampler

Country Status (1)

Country Link
JP (1) JP3642687B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040038385A1 (en) * 2002-08-26 2004-02-26 Langlois Richard G. System for autonomous monitoring of bioagents
KR100868460B1 (en) 2007-04-11 2008-11-27 (주)이앤에치테크 Collector of apparatus for collecting microorganisms in air

Also Published As

Publication number Publication date
JP2000131199A (en) 2000-05-12

Similar Documents

Publication Publication Date Title
TW409186B (en) Portable sampling device for air floating bacterium
US10507422B2 (en) Localized ventilation systems and methods
JP5456787B2 (en) Fan
US8043412B2 (en) High volume, multiple use, portable precipitator
JPWO2012114458A1 (en) Air microbe collection device and method
JP2009011265A (en) Air-suspended bacteria sampler
JP2000125843A (en) Portable airborne bacteria sampler
JP3163165U (en) Air collector
JP3642687B2 (en) Portable airborne sampler
JP2000304663A (en) Portable sampler for bacteria floating in air
Jung et al. Design and characterization of a fungal bioaerosol generator using multi-orifice air jets and a rotating substrate
WO2023005476A1 (en) Dust accumulation detection method for air conditioner purification module, air conditioner, and storage medium
CN208186771U (en) The wind outlet unit of one kind of multiple prompting modes
CN208950935U (en) Combined ion purifies ceiling fan
JP4441027B2 (en) Portable airborne sampler
Hu et al. Validation of cross-contamination control in biological safety cabinet for biotech/pharmaceutical manufacturing process
CN105444384A (en) Outer cover for air outlet of ventilating duct
CN220081706U (en) Self-heat-dissipation fan
CN212899119U (en) Centrifugal fan impeller and centrifugal fan
CN2453174Y (en) Combination type centrifugal fan
CN212429319U (en) Energy-saving centrifugal fan water conservancy diversion entry
JPH0213063Y2 (en)
KR20030057492A (en) A clean room device
CN201582938U (en) Air curtain machine for removing static electricity
CN211934976U (en) Fluid adsorption type solid aromatherapy machine based on coanda effect

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050125

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term