JP3642354B2 - Turbine abnormality diagnosis device - Google Patents

Turbine abnormality diagnosis device Download PDF

Info

Publication number
JP3642354B2
JP3642354B2 JP15510795A JP15510795A JP3642354B2 JP 3642354 B2 JP3642354 B2 JP 3642354B2 JP 15510795 A JP15510795 A JP 15510795A JP 15510795 A JP15510795 A JP 15510795A JP 3642354 B2 JP3642354 B2 JP 3642354B2
Authority
JP
Japan
Prior art keywords
runner
turbine
ultrasonic
ultrasonic sensors
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15510795A
Other languages
Japanese (ja)
Other versions
JPH08326644A (en
Inventor
彰吾 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP15510795A priority Critical patent/JP3642354B2/en
Publication of JPH08326644A publication Critical patent/JPH08326644A/en
Application granted granted Critical
Publication of JP3642354B2 publication Critical patent/JP3642354B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)
  • Control Of Water Turbines (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、水車の異常診断装置に関する。
【0002】
【従来の技術】
水車が正常な運転をしているかどうかの判断は、通常、振動,温度を監視することによって行っている。例えば、フランシス水車のランナに異物がはさまったり、可動羽根水車のランナベーンの駆動機構が一部破損または変形し、ランナベーンの設定角度がばらついた場合には、状態の診断は、軸受や騒音の測定結果から間接的に行われる。大抵の場合明らかな異常振動や異常騒音が確認された時点では、該当する水車の要素そのものが、修復不能な程度に変形したり破損して、交換が必要な状態になっている。また、水車のランナベーンの出口形状の仕上がり形状によっては、カルマン渦による共振現象が発生するが、どの羽根に発生しているかを特定して、対策を施すことは困難である。
【0003】
【発明が解決しようとする課題】
従来の診断技術では、ランナに作用する流体力学的な力に関する異常を、水車軸や軸受などの機械振動や騒音測定によって間接的に診断していた。直接流れを監視できれば、異常な状況が軽微なうちに危険性を予知,防止することが可能となる。流れを直接測定する1手法として、動特性の高いピトー管によってランナ出口の流れの角度,流速,圧力の測定を行い、流体力学的な力に関わる異常の状況を直接診断しようという技術が確立されている。
流れを直接測定することで水車要素の変形,破損を軽微な段階で捕捉することが可能である。しかし、ピトー管は非常にわずかではあるが、管壁から流路に突出した構造であるため、流木などがピトー管にぶっかって破損したり、泥がピトー管の測定孔に詰まるなどの不具合を生ずる恐れがあるため、ピトー管は長時間の監視に不適切であった。
【0004】
図6は超音波流速計の計測原理を説明する図である。
超音波センサP1 ,P2 を管路の中心を通る測線上に対向させて配置し、超音波センサP1 からP2 へ、超音波センサP2 からP1 へ超音波を発信すると、P1 からP2 へは流れに従って超音波が進み、P2 からP1 へは流れに逆らって超音波が進むので、音速をC,流体のライン流速をV,超音波の上流方向の伝播時間をT1 ,超音波の下流方向の伝播時間をT2 ,センサ間の距離をL,超音波の伝播方向と流体の流れる方向との角度をθとすると、
【数1】
1 =L/(C−Vcosθ)
【数2】
2 =L/(C+Vcosθ)
ここで数1及び数2を音速Cについて解くと、
【数3】
C=L/T1 +Vcosθ=L/T2 −Vcosθ
ここからライン流速Vは
【数4】
V=(T1 −T2 )×L/(T1 ×T2 )×2cosθとして求められる。
【数5】
1 −T2 =ΔTとすれば、
ΔT=2LVcosθ/(C2 −V2 cos2 θ) C2 はV2 よりはるかに大きいので、
ΔT=2LVcosθ/C2
【数6】
V=C2 ΔT/2Lcosθ
【数7】
数1及び数2から
1 +T2 =2LC/(C2 −V2 cos2 θ) C2 はV2 よりはるかに大きいので、
1 +T2 =2L/C
C=2L/T1 +T2 このCを数6に代入すると
【数8】
V=C2 ΔT/2Lcosθ=2LΔT/(T1 +T2 )cosθ
1 +T2 /2=Tm とすれば、
【数9】
V=2LΔT/(2Tm 2 cosθ=LΔT/2Tm 2 cosθ
このようにして流速Vを求めることができる。
【0005】
この発明はランナ出口の吸出し管またはディスチャージリングの管壁から器具を突出することなく、ランナ出口の流れの流速の絶対値及び流れの角度を測定し、その値から水車の異常を診断する異常診断装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
水車のランナ出口の吸出し管またはディスチャージリングの管壁に測線が交差するように配置された2対の超音波センサを設け、この超音波センサによってランナ出口の流れの流速の絶対値と角度とを求め、水車の異常を診断することによって、上記目的を達成する。
【0007】
また、2対の超音波センサは、ランナ中心より下流にランナ外径の2倍以内の距離に設置すれば、水車の異常を診断する上に好適である。
【0008】
【作用】
この発明においては、交差する2対の超音波センサを用いて1対のセンサから形成される測線上の流速を2種類検出する。このようにして得られた2種類の流速から水車軸中心方向の流速成分と水車軸に直角な流速成分とに分解し、両方の流速成分を合成することによって、ランナ出口の流れの流速の絶対値と角度とを求め、これらの値から水車の異常を診断することができる。
【0009】
【実施例】
実施例1
図1はこの発明の異常診断装置をフランシス水車に取り付けた状態を示す縦断面図である。ケーシング2から導かれた水はランナ1を通って吸出し管3へ流れる。ランナ出口の吸出し管3の管壁に測線が交差するように配置された2対の超音波センサPA1,PA2、PB1,PB2を設けた。
2対の超音波センサPA1,PA2、PB1,PB2は、ランナ中心より下流のランナ外径Dの2倍(2D)以内の距離に設置する。
【0010】
図5(A)はこの発明の超音波センサによる計測原理を説明する図、(B)は(A)における流れのベクトル合成を示す図である。PA1,PA2、PB1,PB2はそれぞれ対をなすセンサである。PA1,PA2の距離をLA 、PB1,PB2の距離をLB 、PA1からPA2方向の音波の進む時間をTA1、PA2からPA1方向の音波の進む時間をTA2、PB1からPB2方向の音波の進む時間をTB1、PB2からPB1方向の音波の進む時間をTB2とする。PA1,PA2方向の流速をVA 、PB1,PB2方向の流速をVB とすればVA ,VB は下記の式から求められる。
【数10】
A =(TA1−TA2)LA /(TA1×TA2)×2
B =(TB1−TB2)LB /(TB1×TB2)×2
水車の軸中心と測線PA1,PA2とのなす角度をθA 、水車の軸中心と測線PB1,PB2とのなす角度をθB とすれば、水車軸中心方向の流速成分Vax及びこれと直角方向の流速成分VO は下記の式から求められる。
【数11】
ax=VA cosθA +VB cosθB
O =VA sinθA +VB sinθB
両者をベクトル合成することにより流速の絶対値Vが求められ、流速の絶対値Vと流速成分Vaxとの成す角度αが求められる。
【数12】
V=√(Vax 2 +VO 2
α=tan-1(VO /Vax
この異常診断装置によれば、流水力学的異常を早期に検出できて、フランシス水車ではランナ羽根の破損または流木等の詰まりを検出できる。超音波センサPA1,PA2と超音波センサPB1,PB2との測線がなす角度は10°ないし170°とすれば、流れの状態を検出する上に好適である。
【0011】
実施例2
図2はこの発明の異常診断装置をカプラン水車に取り付けた状態を示す縦断面図である。図2において図1と同じ部位は同じ符号を付してある。
図2においてケーシング2から導かれた水は、ランナ羽根1aを通って吸出し管3へ流れる。ランナ羽根出口の吸出し管3の管壁に測線が交差するように配置された2対の超音波センサPA1,PA2、PB1,PB2を設けた。2対の超音波センサPA1,PA2、PB1,PB2は、ランナ中心より下流のランナ外径Dの2倍(2D)以内の距離に設置する。
この場合も測定原理は図5(A),(B)に示す図により同様に説明できる。超音波センサPA1,PA2と超音波センサPB1,PB2との測線がなす角度は10°ないし170°とすれば、流れの状態を検出する上に好適である。
この異常診断装置によれば、流水力学的異常を早期に検出できて、カプラン水車ではランナベーン駆動機構の経年変化による緩みまたは流木などの詰まりを早期に検出できる。
また、この発明による超音波センサは、可動羽根水車の制御センサとしても使用できる。
【0012】
実施例3
図3はこの発明の異常診断装置をバルブ水車に取り付けた状態を示す縦断面図である。図3において水路4によって導かれバルブの外側を流れる水は、バルブ水車のランナ羽根1aを通って吸出し管3へ流れる。
ディスチャージリング5の管壁に測線が交差するように配置された2対の超音波センサPA1,PA2、PB1,PB2を設けた。2対の超音波センサPA1,PA2、PB1,PB2は、ランナ中心より下流のランナ外径Dの2倍(2D)以内の距離に設置する。
この場合も測定原理は図5(A),(B)に示す図により同様に説明できる。
【0013】
図4(A)は図3のランナ下流側の拡大図、(B)は(A)のB方向矢視図である。
図4の例は超音波センサPA1,PA2、PB1,PB2をバルブ水車の出口のデイスチャージリング5へ測線が交差するように配置した。超音波センサPA1,PA2と超音波センサPB1,PB2との測線がなす角度は10°ないし170°とすれば、流れの状態を検出する上に好適である。
【0014】
【発明の効果】
この発明によれば、水車のランナ出口の吸出し管またはディスチャージリングの管壁に測線が交差するように配置された2対の超音波センサを設け、この超音波センサによってランナ出口の流れの流速の絶対値と流れの角度とを求め、これらの値からフランシス水車ではランナ羽根の破損または流木などの詰まりを検出でき、可動羽根水車ではランナベーン駆動機構の経年変化による緩みまたは流木などの詰まりを早期に発見し、重大事故を未然に防ぐことができる。
また、この発明による超音波センサは、可動羽根水車の制御センサとしても使用できる。
【図面の簡単な説明】
【図1】この発明の実施例1の異常診断装置の取り付け状態を示す縦断面図である。
【図2】この発明の実施例2の異常診断装置の取り付け状態を示す縦断面図である。
【図3】この発明の実施例3の異常診断装置の取り付け状態を示す縦断面図である。
【図4】(A)は図3のランナ出口の拡大図、(B)は(A)のB方向矢視図である。
【図5】(A)はこの発明の実施例による超音波センサによる計測原理を示す図、(B)は(A)のベクトル合成を示す図である。
【図6】超音波センサによる計測原理を示す図である。
【符号の説明】
1 ランナ
1a ランナ羽根
2 ケーシング
3 吸出し管
4 水路
5 ディスチャージリング
1 超音波センサ
2 超音波センサ
A1 超音波センサ
A2 超音波センサ
B1 超音波センサ
B2 超音波センサ
[0001]
[Industrial application fields]
The present invention relates to a water turbine abnormality diagnosis device.
[0002]
[Prior art]
The determination of whether the water turbine is operating normally is usually made by monitoring vibration and temperature. For example, if a foreign object is caught in the runner of the Francis turbine, or the drive mechanism of the runner vane of the movable vane turbine is partially damaged or deformed, and the runner vane setting angle varies, the diagnosis of the condition is performed by measuring the bearing and noise. Indirectly from the result. In most cases, when an obvious abnormal vibration or abnormal noise is confirmed, the element of the relevant turbine itself is deformed or damaged to an extent that it cannot be repaired, and needs to be replaced. Further, depending on the finished shape of the outlet shape of the runner vane of the water turbine, a resonance phenomenon due to Karman vortex occurs, but it is difficult to take a countermeasure by specifying which blade is generating.
[0003]
[Problems to be solved by the invention]
In conventional diagnostic techniques, abnormalities related to hydrodynamic forces acting on the runner are indirectly diagnosed by measuring mechanical vibrations and noise of the water wheel shaft and bearings. If the direct flow can be monitored, the danger can be predicted and prevented while the abnormal situation is minor. As a method to directly measure the flow, a technology has been established to measure the angle, flow velocity and pressure of the runner outlet using a highly dynamic Pitot tube to directly diagnose the abnormal situation related to hydrodynamic force. ing.
By measuring the flow directly, it is possible to catch the deformation and breakage of the turbine element in a minor step. However, although the Pitot tube is very small, it has a structure that protrudes from the tube wall to the flow path, so there is a problem such as driftwood hitting the Pitot tube and being damaged, or mud clogging the measurement hole of the Pitot tube. The Pitot tube was unsuitable for long-term monitoring because of the potential risk.
[0004]
FIG. 6 is a diagram for explaining the measurement principle of the ultrasonic velocimeter.
When the ultrasonic sensors P 1 and P 2 are arranged opposite to each other on the line passing through the center of the pipe line, and ultrasonic waves are transmitted from the ultrasonic sensors P 1 to P 2 and from the ultrasonic sensors P 2 to P 1 , P The ultrasonic wave advances from 1 to P 2 according to the flow, and the ultrasonic wave advances from P 2 to P 1 against the flow. Therefore, the sound velocity is C, the fluid line flow velocity is V, and the propagation time of the ultrasonic wave in the upstream direction is set. T 1 , T 2 is the propagation time in the downstream direction of the ultrasonic wave, L is the distance between the sensors, and θ is the angle between the propagation direction of the ultrasonic wave and the flow direction of the fluid.
[Expression 1]
T 1 = L / (C−V cos θ)
[Expression 2]
T 2 = L / (C + V cos θ)
Here, solving Equation 1 and Equation 2 for the speed of sound C,
[Equation 3]
C = L / T 1 + V cos θ = L / T 2 −V cos θ
From here the line flow velocity V is
V = (T 1 −T 2 ) × L / (T 1 × T 2 ) × 2 cos θ.
[Equation 5]
If T 1 −T 2 = ΔT,
ΔT = 2LV cos θ / (C 2 −V 2 cos 2 θ) Since C 2 is much larger than V 2 ,
ΔT = 2LV cos θ / C 2
[Formula 6]
V = C 2 ΔT / 2L cos θ
[Expression 7]
From Equations 1 and 2, T 1 + T 2 = 2LC / (C 2 −V 2 cos 2 θ) Since C 2 is much larger than V 2 ,
T 1 + T 2 = 2L / C
C = 2L / T 1 + T 2 Substituting this C into Equation 6,
V = C 2 ΔT / 2Lcos θ = 2LΔT / (T 1 + T 2 ) cos θ
If T 1 + T 2/2 = T m,
[Equation 9]
V = 2LΔT / (2T m ) 2 cos θ = LΔT / 2T m 2 cos θ
In this way, the flow velocity V can be obtained.
[0005]
This invention measures the absolute value of the flow velocity of the runner outlet and the angle of the flow without projecting the instrument from the suction pipe of the runner outlet or the tube wall of the discharge ring, and diagnoses the abnormality of the water turbine from the measured value. An object is to provide an apparatus.
[0006]
[Means for Solving the Problems]
Two pairs of ultrasonic sensors are provided so that the line of measurement intersects the suction pipe or discharge ring wall of the runner outlet of the turbine, and the absolute value and angle of the flow velocity of the runner outlet flow are determined by this ultrasonic sensor. The above object is achieved by diagnosing the abnormality of the water turbine.
[0007]
Further, if the two pairs of ultrasonic sensors are installed at a distance within twice the outer diameter of the runner downstream from the center of the runner, it is suitable for diagnosing an abnormality in the water turbine.
[0008]
[Action]
In the present invention, two types of flow velocity on the survey line formed from a pair of sensors are detected using two pairs of intersecting ultrasonic sensors. The two flow velocities obtained in this way are decomposed into a flow velocity component in the center direction of the water wheel axis and a flow velocity component perpendicular to the water wheel shaft, and by synthesizing both flow velocity components, the absolute flow velocity of the runner outlet flow is obtained. The value and the angle are obtained, and the abnormality of the water turbine can be diagnosed from these values.
[0009]
【Example】
Example 1
FIG. 1 is a longitudinal sectional view showing a state where the abnormality diagnosis device of the present invention is attached to a Francis turbine. The water guided from the casing 2 flows through the runner 1 to the suction pipe 3. Two pairs of ultrasonic sensors P A1 , P A2 , P B1 , P B2 are provided so that the measurement lines intersect with the pipe wall of the suction pipe 3 at the runner outlet.
The two pairs of ultrasonic sensors P A1 , P A2 , P B1 , P B2 are installed at a distance within twice (2D) the runner outer diameter D downstream from the runner center.
[0010]
FIG. 5A is a diagram for explaining the measurement principle by the ultrasonic sensor of the present invention, and FIG. 5B is a diagram showing flow vector synthesis in FIG. P A1 , P A2 , P B1 , and P B2 are pairs of sensors. The distance between P A1 and P A2 is L A , the distance between P B1 and P B2 is L B , the time that the sound wave travels in the direction from P A1 to P A2 is T A1 , and the time that the sound wave travels in the direction from P A2 to P A1 is T A2 and T B1 are the time for the sound wave in the direction from P B1 to P B2, and T B2 is the time for the sound wave in the direction from P B2 to P B1 . If the flow velocity in the direction of P A1 and P A2 is V A and the flow velocity in the direction of P B1 and P B2 is V B , then V A and V B can be obtained from the following equations.
[Expression 10]
V A = (T A1 −T A2 ) L A / (T A1 × T A2 ) × 2
V B = (T B1 −T B2 ) L B / (T B1 × T B2 ) × 2
Assuming that the angle between the axis of the turbine and the lines P A1 and P A2 is θ A and the angle between the axis of the turbine and the lines P B1 and P B2 is θ B , the flow velocity component V ax in the direction of the axis of the turbine And the flow velocity component V O in the direction perpendicular thereto is determined from the following equation.
[Expression 11]
V ax = V A cos θ A + V B cos θ B
V O = V A sin θ A + V B sin θ B
An absolute value V of the flow velocity is obtained by vector synthesis of both, and an angle α formed by the absolute value V of the flow velocity and the flow velocity component V ax is obtained.
[Expression 12]
V = √ (V ax 2 + V O 2 )
α = tan −1 (V O / V ax )
According to this abnormality diagnosis apparatus, a hydrodynamic abnormality can be detected at an early stage, and in the Francis turbine, breakage of runner blades or clogging of driftwood, etc. can be detected. If the angle formed by the measurement line between the ultrasonic sensors P A1 and P A2 and the ultrasonic sensors P B1 and P B2 is 10 ° to 170 °, it is suitable for detecting the flow state.
[0011]
Example 2
FIG. 2 is a longitudinal sectional view showing a state where the abnormality diagnosis device of the present invention is attached to a Kaplan turbine. 2, the same parts as those in FIG. 1 are denoted by the same reference numerals.
In FIG. 2, the water guided from the casing 2 flows to the suction pipe 3 through the runner blade 1a. Two pairs of ultrasonic sensors P A1 , P A2 , P B1 , and P B2 are provided on the pipe wall of the suction pipe 3 at the outlet of the runner blade so that the measurement lines intersect. The two pairs of ultrasonic sensors P A1 , P A2 , P B1 , P B2 are installed at a distance within twice (2D) the runner outer diameter D downstream from the runner center.
In this case as well, the measurement principle can be explained in the same manner with reference to the diagrams shown in FIGS. If the angle formed by the measurement line between the ultrasonic sensors P A1 and P A2 and the ultrasonic sensors P B1 and P B2 is 10 ° to 170 °, it is suitable for detecting the flow state.
According to this abnormality diagnosing device, a hydrodynamic abnormality can be detected at an early stage, and in the Kaplan turbine, loosening due to secular change of the runner vane drive mechanism or clogging of driftwood can be detected at an early stage.
The ultrasonic sensor according to the present invention can also be used as a control sensor for a movable impeller turbine.
[0012]
Example 3
FIG. 3 is a longitudinal sectional view showing a state where the abnormality diagnosis device of the present invention is attached to a valve turbine. In FIG. 3, the water guided by the water channel 4 and flowing outside the valve flows to the suction pipe 3 through the runner blade 1 a of the valve turbine.
Two pairs of ultrasonic sensors P A1 , P A2 , P B1 , and P B2 are provided so that the line of measurement intersects the tube wall of the discharge ring 5. The two pairs of ultrasonic sensors P A1 , P A2 , P B1 , P B2 are installed at a distance within twice (2D) the runner outer diameter D downstream from the runner center.
In this case as well, the measurement principle can be explained in the same manner with reference to the diagrams shown in FIGS.
[0013]
4A is an enlarged view of the runner downstream side of FIG. 3, and FIG. 4B is a view in the direction of arrow B in FIG.
In the example of FIG. 4, the ultrasonic sensors P A1 , P A2 , P B1 , and P B2 are arranged so that the survey lines cross the discharge ring 5 at the outlet of the valve turbine. If the angle formed by the measurement line between the ultrasonic sensors P A1 and P A2 and the ultrasonic sensors P B1 and P B2 is 10 ° to 170 °, it is suitable for detecting the flow state.
[0014]
【The invention's effect】
According to the present invention, two pairs of ultrasonic sensors are provided so that the line of measurement intersects the suction pipe of the runner outlet of the water turbine or the pipe wall of the discharge ring, and the flow velocity of the runner outlet is controlled by the ultrasonic sensors. The absolute value and the flow angle are obtained, and from these values, the Francis turbine can detect runner vane breakage or clogging of driftwood, etc., and the movable vane turbine can quickly detect loosening or clogging of driftwood due to aging of the runner vane drive mechanism. Discover and prevent serious accidents in advance.
The ultrasonic sensor according to the present invention can also be used as a control sensor for a movable impeller turbine.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an attachment state of an abnormality diagnosis apparatus according to Embodiment 1 of the present invention.
FIG. 2 is a longitudinal sectional view showing an attachment state of an abnormality diagnosis apparatus according to Embodiment 2 of the present invention.
FIG. 3 is a longitudinal sectional view showing an attachment state of an abnormality diagnosis apparatus according to Embodiment 3 of the present invention.
4A is an enlarged view of a runner outlet in FIG. 3, and FIG. 4B is a view in the direction of arrow B in FIG.
5A is a diagram showing a measurement principle by an ultrasonic sensor according to an embodiment of the present invention, and FIG. 5B is a diagram showing vector synthesis of FIG. 5A.
FIG. 6 is a diagram illustrating a measurement principle by an ultrasonic sensor.
[Explanation of symbols]
1 runner 1a runner blade 2 casing 3 suction pipe 4 water channel 5 discharge ring P 1 ultrasonic sensor P 2 ultrasonic sensor P A1 ultrasonic sensor P A2 ultrasonic sensor P B1 ultrasonic sensor P B2 ultrasonic sensor

Claims (2)

水車のランナ出口の吸出し管またはディスチャージリングの管壁に測線が交差するように配置された2対の超音波センサを設け、この超音波センサによってランナ出口の流れの流速の絶対値と角度とを求め、水車の異常を診断することを特徴とする水車の異常診断装置。Two pairs of ultrasonic sensors are provided so that the line of measurement intersects the suction pipe or discharge ring wall of the runner outlet of the turbine, and the absolute value and angle of the flow velocity of the runner outlet flow are determined by this ultrasonic sensor. An abnormality diagnosis device for a water turbine characterized by obtaining an abnormality of the water turbine. 請求項1記載の水車の異常診断装置において、2対の超音波センサは、ランナ中心より下流にランナ外径の2倍以内の距離に設置することを特徴とする水車の異常診断装置。2. The water turbine abnormality diagnosis apparatus according to claim 1, wherein the two pairs of ultrasonic sensors are installed at a distance within twice the runner outer diameter downstream from the runner center.
JP15510795A 1995-05-30 1995-05-30 Turbine abnormality diagnosis device Expired - Fee Related JP3642354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15510795A JP3642354B2 (en) 1995-05-30 1995-05-30 Turbine abnormality diagnosis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15510795A JP3642354B2 (en) 1995-05-30 1995-05-30 Turbine abnormality diagnosis device

Publications (2)

Publication Number Publication Date
JPH08326644A JPH08326644A (en) 1996-12-10
JP3642354B2 true JP3642354B2 (en) 2005-04-27

Family

ID=15598767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15510795A Expired - Fee Related JP3642354B2 (en) 1995-05-30 1995-05-30 Turbine abnormality diagnosis device

Country Status (1)

Country Link
JP (1) JP3642354B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006027422B4 (en) 2006-06-13 2014-02-06 Continental Automotive Gmbh Method and device for monitoring an exhaust gas turbocharger
GB2494138A (en) * 2011-08-31 2013-03-06 Rolls Royce Plc Exit swirl sensor arrangement for a tidal generator
CN115370522B (en) * 2022-09-09 2024-03-29 中国长江电力股份有限公司 Test method for simulating true machine fault on model water turbine

Also Published As

Publication number Publication date
JPH08326644A (en) 1996-12-10

Similar Documents

Publication Publication Date Title
JP3110042B2 (en) Non-penetrating fluid detection system
RU2705705C1 (en) Vortex flow meter with reduced process interference
Parrondo et al. Development of a predictive maintenance system for a centrifugal pump
JPS5882121A (en) Measuring device for speed of fluid
JP3642354B2 (en) Turbine abnormality diagnosis device
RU2469276C1 (en) Vortex flow meter housing with groove on back surface
JPS59109820A (en) Device for measuring flow of fluid
Ma et al. Experimental study of pseudoplastic fluid flows in a square duct of strong curvature
JP2007071120A (en) Cavitation diagnostic device and method of hydraulic machine
JP4877602B2 (en) Vortex flow meter
JP3122984B2 (en) Throttle flow meter
JP2008180092A (en) Vertical shaft valve type hydraulic turbine power generation facility, and its operation control method
US20230084695A1 (en) Stress estimation method for machine structure and monitoring method for machine structure
KR100412335B1 (en) A turbine flow meter
JP2002181525A (en) Device for measuring interval of impeller for pump and anomaly determining method
JPH0988797A (en) Abnormality diagnosing device for water turbine
SU238184A1 (en) TURBINE FLOW METER SENSOR
JP2001124685A (en) Measuring method of viscosity and measuring device of viscosity
JP3182718B2 (en) Temperature detector for differential pressure flow meter and its protection tube
CN117191160A (en) Self-detection method of turbine flowmeter
JPS5942679Y2 (en) concentration meter
RU2678210C1 (en) Turbine consumption converter
RU1827546C (en) Tachometric flow transducer
RU2082102C1 (en) Turbine flow rate converter
JP2782026B2 (en) Vortex flow meter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees