JP3642298B2 - Cylindrical air battery - Google Patents

Cylindrical air battery Download PDF

Info

Publication number
JP3642298B2
JP3642298B2 JP2001205872A JP2001205872A JP3642298B2 JP 3642298 B2 JP3642298 B2 JP 3642298B2 JP 2001205872 A JP2001205872 A JP 2001205872A JP 2001205872 A JP2001205872 A JP 2001205872A JP 3642298 B2 JP3642298 B2 JP 3642298B2
Authority
JP
Japan
Prior art keywords
negative electrode
cylindrical air
filled
discharge
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001205872A
Other languages
Japanese (ja)
Other versions
JP2002063948A (en
Inventor
重人 野矢
隆文 藤原
朋也 渡辺
勲 久保
茂雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001205872A priority Critical patent/JP3642298B2/en
Publication of JP2002063948A publication Critical patent/JP2002063948A/en
Application granted granted Critical
Publication of JP3642298B2 publication Critical patent/JP3642298B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Hybrid Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、円筒形空気電池に関し、特に高率放電と放電後の耐漏液性を向上させた円筒形空気電池に関するものである。
【0002】
【従来の技術】
従来の円筒形空気電池では、特開昭60−1770号などに見られるように放電後の負極亜鉛の体積膨脹を考慮して、負極活物質の充填可能な内容積に対して75〜85%の充填率で負極活物質とアルカリ電解液とを充填し、電池放電後に、外部へアルカリ電解液が漏れるのを防止していた。
【0003】
【発明が解決しようとする課題】
上記のような従来の方法において電池を構成する場合、放電後の耐漏液性に関しては十分な特性が得られる。しかしながら、正極の面積と正極に対向する負極の面積とができる限り等しくなるほうが放電時の負極の利用率は高くなる。上述の充填率から判るように正極に対する負極の対向率は75〜85%であり、このため円筒形空気電池の高率放電では負極利用率は35〜55%と低い。また、従来の円筒形空気電池では電池内部に充填された負極の放電後の状態を分析すると内カップの内側に充填されている負極亜鉛は未放電のままであり、このことも負極の利用率低下の原因となっている。
【0004】
本発明の目的は、従来法での上記課題を解決し、放電後の耐漏液性に優れ、かつ、高率放電性能に優れた円筒形空気電池を提供するものである。
【0005】
【課題を解決するための手段】
上記の目的を達成するため本発明の円筒形空気電池では、開口端部の片側が金属製の外カップと内カップとにより封口された円筒状空気極を有し、前記円筒状空気極内に有底筒状に構成されたセパレータを有する円筒形空気電池であって、前記セパレータ内側の前記内カップの内側に対向する部分に負極を含有していないゲル状電解液が充填され、残りの部分にゲル状亜鉛負極が充填されていることを特徴とする。
【0006】
【発明の実施の形態】
本発明によれば、電池内部に充填する負極に関して、セパレータ内側の金属製内カップの内側に対向する部分に負極を含有していないゲル状電解液が充填され、残りの部分にゲル状負極が充填されているので、従来の内カップの内側に充填され放電に利用されていなかった負極が無くなり、電池内の負極すべてが正極と対向するようにして対向率を高めることになり、高率放電と放電後の耐漏液性とに優れた円筒形空気電池を得ることができる。
【0007】
【実施例】
以下に本発明の実施例の円筒形空気電池の実施例を図面に基づいて説明する。
【0008】
(実施例1)
図1(A)に本発明を適用した単3形空気亜鉛電池の構造の半断面図を示した。図1(A)中の4は、3層構造の円筒状空気極であり、図1(B)に示すように、内側から触媒層1、集電体層2、撥水性フッ素樹脂多孔膜層3からなっている。この空気極では、ニッケルめっきを施したステンレス製の金網である集電体層に触媒シートをプレスにより圧着してある。この触媒シートは、活性炭、マンガン酸化物、アセチレンブラック、フッ素樹脂粉末を混合し、この混合合剤にエチルアルコールを加え混練した後、押出成形し偏平形の帯状の合剤とし、さらにこの帯状合剤を加熱した2本のローラーに通して圧延し、0.6mmのシート状にしたものである。つぎに、集電体層側にフッ素樹脂微粉末を含む分散液を塗布し、230℃で乾燥を行う。最後にフッ素樹脂微粉末分散液を塗布した側に、ガス透過能を有する撥水性のフッ素樹脂多孔膜をプレスにより圧着することにより、触媒層、集電体層およびフッ素樹脂多孔膜層からなる3層構造の平板の空気極を作製する。このように作製した平板の空気極を触媒層側が内側になるように湾曲させ、触媒層とフッ素樹脂多孔膜の両端部の一部を重ねて筒形とする。ついで、この重なった部分の触媒層およびフッ素樹脂多孔膜の一部を取り除いて露出した集電体層をスポット溶接し、気密状態にない溶接部に合成ゴム系の接着剤を充填し気密に補修する。以上の工程により、3層構造の円筒状空気極を作る。この3層構造の円筒状空気極の上部は鋼板にニッケルめっきを施した金属製の外カップ16と内カップ17とで挟み込まれ封口されている。正極上部をこのように封口した後、外カップ底部の3ヶ所に備えたプロジェクション部と正極缶底部とをスポット溶接することにより集電、導通させている。円筒状に構成されたセパレータ8、皿底紙15を順次挿入した後に、負極活物質が充填可能である内容積に対して75%の充填率となるように、まず亜鉛負極を含まないゲル状電解液23を内カップ17に対向する部分に充填し、次にゲル状亜鉛負極9を充填する。次いで、円筒状空気極の下部に、凹部に合成ゴム系の封止剤18を塗布した樹脂成形体19を挿入し、次にこの樹脂成形体の内周側に金属製リング22を挿入する。さらに、底板20を溶接した集電子21を挿入した樹脂成形封口体19′を嵌め合わせ、正極缶11を機械的に押圧して樹脂成形体の凹部を空気極側に密着させ封口する。円筒状空気極の下部は環状の凹部を有する樹脂成形体19の合成ゴム系の封止剤18が塗布された凹部に挿入され、この樹脂成形体と正極缶11とで封口されている。図中、10は空気拡散紙、12は絶縁チューブ、13は空気取り入れ孔で電池を使用するまでは密封シール14でシールされている。
【0009】
(従来例1)
負極活物質の充填率が75%となるように、ゲル状亜鉛負極だけを用いて上記実施例1と同様の方法で構成した電池を従来例として作製する。
【0010】
(比較例1)
負極活物質の充填率が95%となるように、ゲル状亜鉛負極だけを用いて上記実施例1と同様の方法で構成した電池を比較例として作製する。
【0011】
以上の実施例1、従来例1、比較例1の電池を用いて、初期放電試験を実施した。電池内部に充填する負極の内訳を表1に示し、放電試験の結果を表2に示した。
【0012】
【表1】

Figure 0003642298
【0013】
【表2】
Figure 0003642298
【0014】
実施例1と従来例1の電池の場合、充填する負極の構成としては、亜鉛粉末4.1g、ゲル状電解液2.8gと同じであるが、これらの電池を比較すると、500〜1000mAの放電電流において実施例1の方が放電容量が大きくなる。また、実施例1は亜鉛負極の利用率に関しては比較例1とほぼ同等の値を示すが、放電後の漏液は認められない。一方、比較例1では放電後の負極の膨脹を考慮せずに充填しているため、評価した全ての電流領域に対して放電後の漏液が認められた。
【0015】
このように本発明による構成の電池の場合、放電後の漏液を防ぐとともに高率放電における負極利用率の優れた電池が得られる。
【0016】
【発明の効果】
以上の説明で明らかなように本発明によれば、空気極内に構成挿入されたセパレータ内側の金属製内カップの内側に対向する部分に負極を含有していないゲル状電解液が充填され残りの部分にゲル状負極が充填されているため、放電後の耐漏液性に優れ、高率放電における負極の利用率を向上させた円筒形空気電池を提供することができる。
【図面の簡単な説明】
【図1】(A)本発明の実施例1の円筒形空気電池の半断面図
(B)図1(A)の空気電池に用いた円筒状空気極の部分拡大断面図
【符号の説明】
1 触媒層
2 集電体
3 フッ素樹脂多孔膜
4 円筒状空気極
5 ニッケルめっき層
6 ポリテトラフルオロエチレン粒子
7 ステンレス製集電体
8 セパレータ
9 ゲル状負極亜鉛
10 空気拡散紙
11 正極缶
12 絶縁チューブ
13 空気取り入れ孔
14 密封シール
15 皿底紙
16 金属製外カップ
17 金属製内カップ
18 封止剤
19 樹脂成形体
19′ 樹脂成形封口体
20 底板
21 集電子
22 金属製リング
23 ゲル状電解液[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cylindrical air battery, and more particularly to a cylindrical air battery having improved high rate discharge and leakage resistance after discharge.
[0002]
[Prior art]
In the conventional cylindrical air battery, as shown in JP-A-60-1770, the volume expansion of the negative electrode zinc after discharge is taken into consideration, and 75 to 85% with respect to the internal volume that can be filled with the negative electrode active material. The negative electrode active material and the alkaline electrolyte were filled at a filling rate of 2 to prevent leakage of the alkaline electrolyte to the outside after battery discharge.
[0003]
[Problems to be solved by the invention]
When the battery is configured in the conventional method as described above, sufficient characteristics can be obtained with respect to leakage resistance after discharge. However, when the area of the positive electrode and the area of the negative electrode facing the positive electrode are made as equal as possible, the utilization factor of the negative electrode during discharge increases. As can be seen from the above-described filling rate, the facing ratio of the negative electrode to the positive electrode is 75 to 85%. Therefore, in the high rate discharge of the cylindrical air battery, the negative electrode utilization rate is as low as 35 to 55%. Further, in the conventional cylindrical air battery, when the state of the negative electrode filled in the battery after the discharge is analyzed, the negative electrode zinc filled inside the inner cup remains undischarged, which is also the utilization rate of the negative electrode. This is the cause of the decline.
[0004]
An object of the present invention is to provide a cylindrical air battery that solves the above-described problems in the conventional method, has excellent liquid leakage resistance after discharge, and is excellent in high rate discharge performance.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the cylindrical air battery of the present invention has a cylindrical air electrode whose one end of the open end is sealed by a metal outer cup and an inner cup, and the cylindrical air electrode is in the cylindrical air electrode. A cylindrical air battery having a separator configured in a bottomed cylindrical shape, wherein a gel electrolyte containing no negative electrode is filled in a portion facing the inside of the inner cup inside the separator, and the remaining portion Are filled with a gelled zinc negative electrode.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
According to the present invention, with respect to the negative electrode filled in the battery, a gel electrolyte containing no negative electrode is filled in a portion facing the inside of the metal inner cup inside the separator, and the gel negative electrode is filled in the remaining portion. Because it is filled, there is no negative electrode that was filled inside the conventional inner cup and was not used for discharge, and the negative electrode in the battery was all opposed to the positive electrode, increasing the facing rate, and high rate discharge And a cylindrical air battery excellent in leakage resistance after discharge can be obtained.
[0007]
【Example】
Embodiments of a cylindrical air battery according to an embodiment of the present invention will be described below with reference to the drawings.
[0008]
(Example 1)
FIG. 1A shows a half sectional view of the structure of an AA zinc-air battery to which the present invention is applied. 1 in FIG. 1A is a cylindrical air electrode having a three-layer structure, and as shown in FIG. 1B, the catalyst layer 1, the current collector layer 2, the water repellent fluororesin porous membrane layer from the inside. It consists of three. In this air electrode, a catalyst sheet is pressure-bonded by pressing to a current collector layer, which is a nickel-plated stainless steel wire mesh. This catalyst sheet is made by mixing activated carbon, manganese oxide, acetylene black, and fluororesin powder, adding ethyl alcohol to the mixed mixture, kneading, and then extruding to form a flat strip mixture. The agent is rolled through two heated rollers to form a 0.6 mm sheet. Next, a dispersion liquid containing fluororesin fine powder is applied to the current collector layer side and dried at 230 ° C. Finally, a water-repellent fluororesin porous film having gas permeability is pressure-bonded to the side coated with the fluororesin fine powder dispersion by pressing to form a catalyst layer, a current collector layer, and a fluororesin porous film layer. A flat air electrode having a layer structure is produced. The flat air electrode thus produced is curved so that the catalyst layer side is on the inside, and a part of both ends of the catalyst layer and the fluororesin porous membrane is overlapped to form a cylinder. Next, the exposed current collector layer is spot-welded after removing the overlapped catalyst layer and part of the fluororesin porous membrane, and the welded part that is not airtight is filled with a synthetic rubber adhesive to make it airtight. To do. A cylindrical air electrode having a three-layer structure is formed by the above process. The upper part of the three-layered cylindrical air electrode is sandwiched and sealed between a metal outer cup 16 and an inner cup 17 in which a steel plate is nickel-plated. After the upper part of the positive electrode is sealed in this way, the projection parts provided at three locations on the bottom part of the outer cup and the bottom part of the positive electrode can are spot-welded to collect and conduct electricity. After sequentially inserting the cylindrically configured separator 8 and the dish bottom paper 15, first, a gel-like material that does not contain a zinc negative electrode so as to have a filling rate of 75% with respect to the internal volume that can be filled with the negative electrode active material. The electrolytic solution 23 is filled in a portion facing the inner cup 17, and then the gelled zinc negative electrode 9 is filled. Next, a resin molded body 19 in which a synthetic rubber sealant 18 is applied to the concave portion is inserted into the lower portion of the cylindrical air electrode, and then a metal ring 22 is inserted into the inner peripheral side of the resin molded body. Further, the resin molded sealing body 19 ′ into which the current collector 21 to which the bottom plate 20 is welded is inserted, and the positive electrode can 11 is mechanically pressed so that the concave portion of the resin molded body is brought into close contact with the air electrode side and sealed. The lower part of the cylindrical air electrode is inserted into a concave portion to which a synthetic rubber sealant 18 of a resin molded body 19 having an annular concave portion is applied, and is sealed between the resin molded body and the positive electrode can 11. In the figure, 10 is an air diffusion paper, 12 is an insulating tube, 13 is an air intake hole, and is sealed with a hermetic seal 14 until the battery is used.
[0009]
(Conventional example 1)
A battery constructed by the same method as in Example 1 above using only a gelled zinc negative electrode so that the filling rate of the negative electrode active material is 75% is produced as a conventional example.
[0010]
(Comparative Example 1)
A battery constructed by the same method as in Example 1 above using only a gelled zinc negative electrode so that the filling rate of the negative electrode active material is 95% is produced as a comparative example.
[0011]
Using the batteries of Example 1, Conventional Example 1, and Comparative Example 1, an initial discharge test was performed. The breakdown of the negative electrode filled in the battery is shown in Table 1, and the results of the discharge test are shown in Table 2.
[0012]
[Table 1]
Figure 0003642298
[0013]
[Table 2]
Figure 0003642298
[0014]
In the case of the batteries of Example 1 and Conventional Example 1, the structure of the negative electrode to be filled is the same as that of zinc powder 4.1 g and gel electrolyte 2.8 g, but when these batteries are compared, 500 to 1000 mA is compared. In the discharge current, the discharge capacity is larger in Example 1. Moreover, although Example 1 shows the value substantially equivalent to the comparative example 1 regarding the utilization factor of a zinc negative electrode, the liquid leakage after discharge is not recognized. On the other hand, in Comparative Example 1, since filling was performed without considering the expansion of the negative electrode after discharge, leakage after discharge was observed in all the evaluated current regions.
[0015]
As described above, in the case of the battery having the configuration according to the present invention, a battery having excellent negative electrode utilization in high rate discharge while preventing leakage after discharge can be obtained.
[0016]
【The invention's effect】
As is apparent from the above description, according to the present invention, the portion facing the inside of the metal inner cup inside the separator that is configured and inserted in the air electrode is filled with the gel electrolyte solution that does not contain the negative electrode and remains. Since this portion is filled with the gelled negative electrode, it is possible to provide a cylindrical air battery having excellent leakage resistance after discharge and improving the utilization factor of the negative electrode in high rate discharge.
[Brief description of the drawings]
1A is a half cross-sectional view of a cylindrical air battery of Example 1 of the present invention. FIG. 1B is a partially enlarged cross-sectional view of a cylindrical air electrode used in the air battery of FIG. 1A.
DESCRIPTION OF SYMBOLS 1 Catalyst layer 2 Current collector 3 Fluororesin porous film 4 Cylindrical air electrode 5 Nickel plating layer 6 Polytetrafluoroethylene particle 7 Stainless steel current collector 8 Separator 9 Gel-like negative electrode zinc 10 Air diffusion paper 11 Positive electrode can 12 Insulating tube 13 Air intake hole 14 Seal seal 15 Dish bottom paper 16 Metal outer cup 17 Metal inner cup 18 Sealant 19 Resin molded body 19 ′ Resin molded sealing body 20 Bottom plate 21 Current collector 22 Metal ring 23 Gel electrolyte

Claims (1)

開口端部の片側が金属製の外カップと内カップとにより封口された円筒状空気極を有し、前記円筒状空気極内に有底筒状に構成されたセパレータを有する円筒形空気電池であって、前記セパレータ内側の前記内カップの内側に対向する部分に負極を含有していないゲル状電解液が充填され、残りの部分にゲル状亜鉛負極が充填されていることを特徴とする円筒形空気電池。A cylindrical air battery having a cylindrical air electrode sealed at one end of an open end by a metal outer cup and an inner cup, and having a separator configured in a bottomed cylindrical shape in the cylindrical air electrode. A cylinder characterized in that a gel electrolyte not containing a negative electrode is filled in a portion facing the inner side of the inner cup inside the separator, and a gel-like zinc negative electrode is filled in the remaining portion. Shape air battery.
JP2001205872A 2001-07-06 2001-07-06 Cylindrical air battery Expired - Fee Related JP3642298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001205872A JP3642298B2 (en) 2001-07-06 2001-07-06 Cylindrical air battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001205872A JP3642298B2 (en) 2001-07-06 2001-07-06 Cylindrical air battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP02412895A Division JP3232936B2 (en) 1995-02-13 1995-02-13 Cylindrical air battery

Publications (2)

Publication Number Publication Date
JP2002063948A JP2002063948A (en) 2002-02-28
JP3642298B2 true JP3642298B2 (en) 2005-04-27

Family

ID=19042103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001205872A Expired - Fee Related JP3642298B2 (en) 2001-07-06 2001-07-06 Cylindrical air battery

Country Status (1)

Country Link
JP (1) JP3642298B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114122571B (en) * 2021-12-06 2024-02-13 华东师范大学重庆研究院 Single aluminum-air battery and module thereof

Also Published As

Publication number Publication date
JP2002063948A (en) 2002-02-28

Similar Documents

Publication Publication Date Title
JP3475527B2 (en) Cylindrical air battery
JPH06267594A (en) Air battery
JP3642298B2 (en) Cylindrical air battery
CN1150651C (en) Cylindrical metal-air battery
JPH08306398A (en) Cylindrical air cell
JPH08264186A (en) Cylindrical air zinc battery
JP3642297B2 (en) Cylindrical air battery
JP3168833B2 (en) Battery
JP3232936B2 (en) Cylindrical air battery
JP3348236B2 (en) Air electrode current collecting material for air battery using alkaline electrolyte and air battery using alkaline electrolyte provided with the same
JPH11191440A (en) Air electrode and air battery using the same
JP2000082503A (en) Air cell
JPH1012288A (en) Cylindrical air battery and manufacture therefor
JP4395899B2 (en) Air battery
JPH0547388A (en) Cylindrical air-zinc battery
JPH07211322A (en) Air electrode, manufacture thereof, and air battery using the electrode
JPH08273672A (en) Air electrode current collecting material for air cell and air cell having it
JPH0982372A (en) Button type air-zinc battery
JP2001043864A (en) Cylindrical air electrode and cylindrical air battery
JPH0822828A (en) Air electrode and battery using same
JPH0935763A (en) Manufacture of cylindrical air battery
JPH08315870A (en) Cylindrical air zinc battery
JPH0325863A (en) Internally stacked battery
JPH09306509A (en) Manufacture of oxygen-reduced electrode, and battery therewith
JP4303938B2 (en) Cylindrical battery

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050118

LAPS Cancellation because of no payment of annual fees