JP3641919B2 - Detector structure of electromagnetic flow meter - Google Patents

Detector structure of electromagnetic flow meter Download PDF

Info

Publication number
JP3641919B2
JP3641919B2 JP31315097A JP31315097A JP3641919B2 JP 3641919 B2 JP3641919 B2 JP 3641919B2 JP 31315097 A JP31315097 A JP 31315097A JP 31315097 A JP31315097 A JP 31315097A JP 3641919 B2 JP3641919 B2 JP 3641919B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic pole
magnetic field
electromagnetic flowmeter
measuring tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31315097A
Other languages
Japanese (ja)
Other versions
JPH11148847A (en
Inventor
裕之 立川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP31315097A priority Critical patent/JP3641919B2/en
Publication of JPH11148847A publication Critical patent/JPH11148847A/en
Application granted granted Critical
Publication of JP3641919B2 publication Critical patent/JP3641919B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、測定管内を流れる導電性流体の流量を測定する電磁流量計に関する。
【0002】
【従来の技術】
電磁流量計は、その測定管内を流れる導電性流体に磁場を作用させ、流体の流れの方向と磁場の方向のそれぞれに直交する方向に発生する起電力によって流体の流量を測定する流量計である。
図10は、従来技術による電磁流量計の検出部構造の一例を示し、(a)は測定管の軸に直角方向の断面図、(b)は軸方向の断面図である。
【0003】
流体を流す測定管1は非磁性体、例えばステンレス鋼、からなり、その内面にはライニング11が形成されている。このライニング11は測定管1の内面を絶縁性及び耐食性内面にするためのものであり、弗素樹脂やウレタンやセラミックスによって形成される。測定管1には、上下などの対向する位置に、測定管1内に磁界を形成するための1対の磁極21及び22が配置され、それぞれに励磁コイル(以下ではコイルと略称)23及び24が巻かれている。磁極21及び22の内側の測定管1に接してそれぞれに、測定管1内に一様な磁場分布を形成するための磁極板25及び26が配置され、磁極21及び22の外側には漏れ磁束を低減するための戻り磁路(以下では磁路と略称)27が配置されている。
【0004】
このような磁極21及び22とコイル23及び24と磁極板25及び26と磁路27とによって磁気回路が構成され、測定管1内に一様な磁場分布が形成される。
この磁場の方向と測定管1の軸方向とのそれぞれに直交する測定管1の直径方向の管壁に、信号電圧を取り出すための1対の電極31及び32が設けられており、以上の全体がケース4に収納されている。
【0005】
上記の構成において、磁気回路の構成部品である磁極21及び22はブロック状の磁性体材料から削り出されたり、金属鋳物の成形品として作製されたりする。磁極板25及び26と戻り磁路27は板状磁性材料からプレス成形されて作製される。また、これらの部品は溶接やネジ止めによって接続されたり固定されたりする。
このように、従来技術による電磁流量計の検出部構造は、部品点数が多く、組み立てに多くの工数を必要としていた。
【0006】
【発明が解決しようとする課題】
この発明の課題は、部品点数が少なく加工及び組み立て工数が少ない安価な電磁流量計の検出部構造を提供することである。
【0007】
【課題を解決するための手段】
この発明においては、測定対象となる流体が流される測定管と、測定管内に磁場を発生させるために測定管の外壁に対向して配置されそれぞれにコイルが巻かれている1対の磁極と、測定管内に一様な磁場分布を形成させるためにそれぞれの磁極の測定管側に取り付けられている磁極板と、漏れ磁束を低減するために磁極の外側に接して配置されている磁路と、磁場方向及び測定管の軸方向のそれぞれに直交する測定管の管壁に設けられている1対の電極とを備えている電磁流量計の検出部構造において、弾性を有する磁性材料によって一体に形成され、対向する2つのコイルの片側ずつを磁気的に結合する、2つの磁極板部と、2つの磁極部と、両磁極部間をつなぐ磁路部とを有する磁気回路部材が1対備えられ、4個所の磁極板部がそれぞれのコイルと測定管の間に挿入され、4個所の磁極部がそれぞれのコイルの内面に位置合わせされている(請求項1の発明)。
【0008】
この一体に形成された磁気回路部材によって部品点数が少なくなり、その磁極板部をコイルと測定管との間に挿入して磁極部をコイル内に位置合わせすることによって、簡単に磁気回路を構成することができる。
請求項1の発明において、測定管に磁気回路部材の磁極板部の案内部が設けられ、この案内部に磁極板部が嵌め込まれている(請求項2の発明)。磁極板部を挿入する案内部を設けることによって、磁極板部の挿入が容易になり、磁気回路部材の位置精度が向上する。
【0009】
また、請求項1の発明において、磁気回路部材として、弾性を有する板状磁性金属のプレス成形品が用いられたり(請求項3の発明)、弾性を有する磁性樹脂の成形品が用いられたり(請求項4の発明)することができる。板状磁性金属は磁気回路用材料としては最も一般的な材料であり、弾性を有する磁性樹脂は組立の作業性に優れている。
【0010】
更に、請求項1の発明において、磁気回路部材の磁極部に、補助磁極が嵌め込まれている(請求項5の発明)。補助磁極によって測定管内部の磁場をより強くすることができる。
【0011】
【発明の実施の形態】
図1はこの発明の実施の形態を示す概念図であって、(a)は測定管の軸に直角方向の断面図、(b)は軸方向の断面図である。
この発明による電磁流量計の検出部構造は、弾性を有する磁性材料によって2個所の磁極板と2個所の磁極と磁路とを一体に形成した1対の磁気回路部材(以下では磁場発生部材という)51及び52を備え、4個所の磁極板部を対向する2つのコイル23及び24の片側ずつと測定管1aとの間に挿入し、4個所の磁極部をそれぞれのコイル23あるいは24の内面に位置合わせしている。このように一体化した磁場発生部材51及び52を用いることによって、磁気回路を構成する部品点数を大幅に低減することができ、組み立て工数を低減することもできる。
【0012】
以下に実施例について説明する。
なお、従来技術と同じ機能の部分については同じ符号を用いている。
〔第1の実施例〕
図2から図8までが、この発明の第1の実施例の部品の製作方法及び組み方法を説明するための図である。図2は磁場発生部材5の斜視図、図3はその展開図、図4は測定管1aを示し、(a)は軸に直角方向の断面図、(b)は軸方向の断面図、(c)は平面図である。図5は測定管1aにコイル23及び24を取り付けた状態を示し、(a)は軸に直角方向の断面図、(b)は軸方向の断面図、(c)は平面図である。図6及び図7はコイル23及び24を取り付けた測定管1aに磁場発生部材5をセットする方法を示し、図6の(a)は磁場発生部材5の初期状態の断面図、(b)は磁場発生部材5を上下に引き延ばした状態の断面図、(c)は磁場発生部材5をコイル23及び24の内部空間232 にセットした状態を示す断面図であり、図7の(a)は磁場発生部材5の磁極板部53及び54を測定管1aの磁極板部挿入口131 にセットした状態を示す断面図、(b)は挿入途中の断面図、(c)は挿入完了状態の断面図である。図8は1対の磁場発生部材51及び52を挿入した状態を示し、(a)は軸に直角方向の断面図、(b)は軸方向の断面図、(c)は平面図である。
【0013】
磁場発生部材5は、厚さ0.25から0.35mmの鉄板あるいは珪素鋼板のような磁性材料からなり、図3の形状の磁場発生部材用磁性材料板50としてプレスで打ち抜かれ、図2に示す形状に成形されている。必要に応じて複数枚重ねて成形することもある。この磁場発生部材5には、2個所の磁極板部53及び54と、4個所の磁極部A55, 56, 57及び58と、2個所の磁極部B59及び60と、磁路部61とが形成されており、図2に示す形状に成形されている。
【0014】
この磁場発生部材5は、ネオジウム系やフェライト系の磁性材料の粉末をゴムなどに分散させた、弾性のある磁性樹脂で形成されてもよい。
この実施例の測定管1aは、図4に示す形状に形成されており、ステンレス鋼の鋳造品として作製される。外側の管壁の対向する位置には、コイル23あるいは24を位置決めするための2個所のガイド12と、磁場発生部材5の磁極板部53あるいは54を挿入・位置決め・固定するための4個所の溝13とが形成され、内面にはライニング11が形成されている。
【0015】
この測定管1aにコイル23及び24を取り付けた状態を示すのが図5である。コイル23及び24はガイド12に位置決めされ、図4に示したコイル固定面14に接触した状態で、両サイドのエポキシ系の接着剤231 によって固定される。この状態において、コイル23及び24の内部には、溝13の磁極板部挿入口131 が開口した状態になっている。
【0016】
続いて、磁場発生部材5の取り付け方法について、図6及び図7を用いて説明する。
図6(a)の状態の磁場発生部材5を矢印の方向に引き延ばして弾性変形させ、図6(b)の状態にする。この磁場発生部材5を図5(a)の測定管1aの左側から被せて、磁場発生部材5の磁極板部53及び54をそれぞれコイル23及び24の上下からコイル内部空間232 及び242 へ挿入し、図6(c)の状態にする。次に、磁極板部53及び54の先端を磁極板部挿入口131 に位置合わせし〔図7(a)〕、図7(b)の状態を経て、図7(c)のように完全に溝13に挿入し、磁場発生部材5の位置決めが完了する。この状態において、磁極板部53及び54はそれぞれコイル23及び24と測定管1aとの間に挿入されており、磁極A56及び58などの磁極部はそれぞれコイル23及び24の内面に密着するように位置合わせされている。
【0017】
なお、この状態においても磁場発生部材5の磁極板部53及び54が測定管1aの方向に弾性力を働かせているように、磁場発生部材5の初期成形は実施されている。したがって、磁場発生部材5の素材にはそのような弾性変形の可能な材料が選定されることが必要である。
同様に、測定管1aの右側からも磁場発生部材5を取り付けた状態を示すのが図8である。すなわち、図8は、測定管1aに1対の磁場発生部材51及び52が取り付けられて、電磁流量計の検出部構造としてほぼ完成した状態を示すものであり、この状態にケースが取り付けられることによって電磁流量計の検出部構造は完成する。
【0018】
〔第2の実施例〕
図9はこの発明の第2の実施例を示す軸方向の断面図である。
この実施例は、第1の実施例の磁場発生部材51及び52の磁極部A56など及び磁極部Bが囲う空間内に、炭素鋼などからなる補助磁極28を挿入したものである。この補助磁極28の挿入によって磁場が強められ、電磁流量計の感度を向上させることができる。
【0019】
【発明の効果】
この発明によれば、電磁流量計の検出部構造において、弾性を有する磁性材料によって一体に形成され、対向する2つのコイルの片側ずつを磁気的に結合する、2つの磁極板部と、2つの磁極部と、両磁極部間をつなぐ磁路部とを有する磁場発生部材が1対備えられ、4個所の磁極板部がそれぞれのコイルと測定管の間に挿入され、4個所の磁極部がそれぞれのコイルの内面に位置合わせされているので、部品点数が少なくなり、簡単に磁気回路が構成できる(請求項1の発明)。したがって、部品点数が少なく加工及び組み立て工数が少ない安価な電磁流量計の検出部構造を提供するという課題を達成することができる。
【0020】
請求項1の発明において、測定管に磁場発生部材の磁極板部の案内部が設けられ、この案内部に磁極板部が嵌め込まれているので、磁極板部の挿入が容易になり、位置精度が向上する(請求項2の発明)。したがって、工数がより少なく、特性のよく揃った電磁流量計の検出部構造を提供することができる。
また、請求項1の発明において、磁場発生部材として、弾性を有する板状磁性金属のプレス成形品を用いたり(請求項3の発明)、弾性を有する磁性樹脂の成形品を用いたり(請求項4の発明)することができる。板状磁性金属は磁気回路用材料としては最も一般的な材料であり、弾性を有する磁性樹脂は組立の作業性に優れている。
【0021】
更に、請求項1の発明において、磁場発生部材の磁極部に、補助磁極が嵌め込まれているので、測定管内部の磁場をより強くすることができる(請求項5の発明)。したがって、感度のより高い電磁流量計の検出部構造を提供することができる。
【図面の簡単な説明】
【図1】この発明による電磁流量計の検出部構造の第1の実施例を示し、(a)は測定管の軸に直角方向の断面図、(b)は軸方向の断面図
【図2】第1の実施例における磁場発生部材の斜視図
【図3】磁場発生部材の展開図
【図4】第1の実施例における測定管を示し、(a)は軸に直角方向の断面図、(b)は軸方向の断面図、(c)は平面図
【図5】測定管にコイルを取り付けた状態を示し、(a)は軸に直角方向の断面図、(b)は軸方向の断面図、(c)は平面図
【図6】コイルを取り付けた測定管に磁場発生部材をセットする状態を示し、(a)は磁場発生部材の初期状態の断面図、(b)は磁場発生部材を上下に引き延ばした状態の断面図、(c)は磁場発生部材をコイル内部空間にセットした状態を示す断面図
【図7】コイルを取り付けた測定管に磁場発生部材をセットする状態の続きを示し、(a)は磁場発生部材の磁極板部を測定管の磁極板部挿入口にセットした状態を示す断面図、(b)は挿入途中の断面図、(c)は挿入完了状態の断面図
【図8】1対の磁場発生部材を挿入した状態を示し、(a)は軸に直角方向の断面図、(b)は軸方向の断面図、(c)は平面図
【図9】第2の実施例を示す軸方向の断面図
【図10】従来技術による電磁流量計の検出部構造の一例を示し、(a)は測定管の軸に直角方向の断面図、(b)は軸方向の断面図
【符号の説明】
1, 1a 測定管 11 ライニング
12 ガイド 13 溝
14 コイル固定面 131 磁極板部挿入口
21, 22 磁極 23, 24 コイル
25, 26 磁極板 231, 241 接着材
27 (戻り)磁路 232, 242コイル内部空間
28 補助磁極
31, 32 電極
4 ケース
5, 51, 52 磁場発生部材 53, 54 磁極板部
55, 56, 57, 58 磁極部A 59, 60 磁極部B
61 磁路部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electromagnetic flowmeter that measures the flow rate of a conductive fluid flowing in a measurement tube.
[0002]
[Prior art]
An electromagnetic flow meter is a flow meter that measures the flow rate of a fluid by an electromotive force generated in a direction perpendicular to each of the direction of fluid flow and the direction of the magnetic field by causing a magnetic field to act on a conductive fluid flowing in the measurement tube. .
10A and 10B show an example of a detection unit structure of an electromagnetic flow meter according to the prior art, where FIG. 10A is a cross-sectional view perpendicular to the axis of the measurement tube, and FIG. 10B is a cross-sectional view in the axial direction.
[0003]
The measuring tube 1 through which a fluid flows is made of a non-magnetic material such as stainless steel, and a lining 11 is formed on the inner surface thereof. This lining 11 is for making the inner surface of the measuring tube 1 an insulating and corrosion-resistant inner surface, and is formed of fluorine resin, urethane or ceramics. The measurement tube 1 is provided with a pair of magnetic poles 21 and 22 for forming a magnetic field in the measurement tube 1 at opposing positions such as up and down, and exciting coils (hereinafter abbreviated as coils) 23 and 24, respectively. Is wound. Magnetic pole plates 25 and 26 for forming a uniform magnetic field distribution in the measuring tube 1 are arranged in contact with the measuring tube 1 inside the magnetic poles 21 and 22, respectively. A return magnetic path (hereinafter abbreviated as a magnetic path) 27 for reducing the above is disposed.
[0004]
Such magnetic poles 21 and 22, coils 23 and 24, magnetic pole plates 25 and 26, and magnetic path 27 constitute a magnetic circuit, and a uniform magnetic field distribution is formed in the measuring tube 1.
A pair of electrodes 31 and 32 for taking out a signal voltage are provided on the diameter-direction tube wall of the measuring tube 1 orthogonal to the direction of the magnetic field and the axial direction of the measuring tube 1, respectively. Is housed in the case 4.
[0005]
In the above configuration, the magnetic poles 21 and 22 which are components of the magnetic circuit are cut out from a block-shaped magnetic material or manufactured as a molded product of a metal casting. The magnetic pole plates 25 and 26 and the return magnetic path 27 are manufactured by press molding from a plate-like magnetic material. These parts are connected or fixed by welding or screwing.
Thus, the detection part structure of the electromagnetic flowmeter according to the prior art has a large number of parts and requires a lot of man-hours for assembly.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide an inexpensive electromagnetic flowmeter detector structure with a small number of parts and a small number of processing and assembly steps.
[0007]
[Means for Solving the Problems]
In the present invention, a measurement tube through which a fluid to be measured flows, a pair of magnetic poles arranged opposite to the outer wall of the measurement tube and wound with coils in order to generate a magnetic field in the measurement tube, In order to form a uniform magnetic field distribution in the measurement tube, a magnetic pole plate attached to the measurement tube side of each magnetic pole, and a magnetic path arranged in contact with the outside of the magnetic pole to reduce leakage magnetic flux, In a detection part structure of an electromagnetic flowmeter comprising a pair of electrodes provided on the tube wall of the measurement tube orthogonal to the magnetic field direction and the axial direction of the measurement tube, they are integrally formed of an elastic magnetic material. And a pair of magnetic circuit members having two magnetic pole plate portions, two magnetic pole portions, and a magnetic path portion connecting the two magnetic pole portions, which magnetically couple one side of two opposing coils. 4 pole plate parts Is inserted between the LES coil and the measurement tube, the magnetic pole portions of the four positions are aligned on the inner surface of each of the coils (the invention of claim 1).
[0008]
This integrated magnetic circuit member reduces the number of parts, and the magnetic plate can be easily configured by inserting the magnetic pole plate between the coil and the measuring tube and aligning the magnetic pole in the coil. can do.
In the first aspect of the present invention, a guide portion for the magnetic pole plate portion of the magnetic circuit member is provided in the measuring tube, and the magnetic pole plate portion is fitted into the guide portion (the second aspect of the invention). Providing the guide portion for inserting the magnetic pole plate portion facilitates insertion of the magnetic pole plate portion and improves the positional accuracy of the magnetic circuit member.
[0009]
Further, in the invention of claim 1, an elastic plate-shaped magnetic metal press-molded product is used as the magnetic circuit member (invention of claim 3), or an elastic magnetic resin molded product is used ( (Invention of claim 4). Plate-like magnetic metal is the most common material for magnetic circuit materials, and an elastic magnetic resin is excellent in assembling workability.
[0010]
Furthermore, in the invention of claim 1, an auxiliary magnetic pole is fitted in the magnetic pole part of the magnetic circuit member (invention of claim 5). The magnetic field inside the measuring tube can be made stronger by the auxiliary magnetic pole.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
1A and 1B are conceptual views showing an embodiment of the present invention, in which FIG. 1A is a cross-sectional view perpendicular to the axis of a measurement tube, and FIG. 1B is a cross-sectional view in the axial direction.
The detection part structure of the electromagnetic flowmeter according to the present invention has a pair of magnetic circuit members (hereinafter referred to as a magnetic field generating member) in which two magnetic pole plates, two magnetic poles, and a magnetic path are integrally formed of an elastic magnetic material. ) 51 and 52 are provided, and the four magnetic pole plate portions are inserted between one side of the two coils 23 and 24 facing each other and the measuring tube 1a, and the four magnetic pole portions are arranged on the inner surfaces of the respective coils 23 or 24. It is aligned with. By using the magnetic field generating members 51 and 52 integrated in this way, the number of parts constituting the magnetic circuit can be greatly reduced, and the number of assembly steps can also be reduced.
[0012]
Examples will be described below.
In addition, the same code | symbol is used about the part of the same function as a prior art.
[First embodiment]
FIGS. 2 to 8 are views for explaining a method of manufacturing and assembling a component according to the first embodiment of the present invention. 2 is a perspective view of the magnetic field generating member 5, FIG. 3 is a developed view thereof, FIG. 4 shows a measuring tube 1a, (a) is a cross-sectional view perpendicular to the axis, (b) is a cross-sectional view in the axial direction, c) is a plan view. FIG. 5 shows a state in which the coils 23 and 24 are attached to the measuring tube 1a. (A) is a cross-sectional view perpendicular to the axis, (b) is a cross-sectional view in the axial direction, and (c) is a plan view. 6 and 7 show a method of setting the magnetic field generating member 5 on the measuring tube 1a to which the coils 23 and 24 are attached. FIG. 6 (a) is a sectional view of the initial state of the magnetic field generating member 5, and FIG. FIG. 7C is a cross-sectional view showing a state in which the magnetic field generating member 5 is extended vertically, and FIG. 7C is a cross-sectional view showing a state in which the magnetic field generating member 5 is set in the internal space 232 of the coils 23 and 24. Sectional view showing a state in which the magnetic pole plate portions 53 and 54 of the generating member 5 are set in the magnetic pole plate portion insertion port 131 of the measuring tube 1a, (b) is a sectional view in the middle of insertion, and (c) is a sectional view in the insertion completed state. It is. FIG. 8 shows a state in which a pair of magnetic field generating members 51 and 52 are inserted, (a) is a cross-sectional view perpendicular to the axis, (b) is a cross-sectional view in the axial direction, and (c) is a plan view.
[0013]
The magnetic field generating member 5 is made of a magnetic material such as an iron plate or silicon steel plate having a thickness of 0.25 to 0.35 mm, and is punched out by a press as a magnetic material plate 50 for the magnetic field generating member having the shape shown in FIG. Molded. If necessary, a plurality of sheets may be stacked and formed. In this magnetic field generating member 5, two magnetic pole plate portions 53 and 54, four magnetic pole portions A55, 56, 57 and 58, two magnetic pole portions B59 and 60, and a magnetic path portion 61 are formed. It is formed into the shape shown in FIG.
[0014]
The magnetic field generating member 5 may be formed of an elastic magnetic resin in which a powder of a neodymium or ferrite magnetic material is dispersed in rubber or the like.
The measuring tube 1a of this embodiment is formed in the shape shown in FIG. 4 and is manufactured as a cast product of stainless steel. Two guides 12 for positioning the coil 23 or 24 and four magnetic pole plate portions 53 or 54 of the magnetic field generating member 5 are inserted and positioned and fixed at opposing positions on the outer tube wall. A groove 13 is formed, and a lining 11 is formed on the inner surface.
[0015]
FIG. 5 shows a state in which the coils 23 and 24 are attached to the measuring tube 1a. The coils 23 and 24 are positioned on the guide 12 and are fixed by an epoxy adhesive 231 on both sides in contact with the coil fixing surface 14 shown in FIG. In this state, the magnetic pole plate portion insertion opening 131 of the groove 13 is opened inside the coils 23 and 24.
[0016]
Then, the attachment method of the magnetic field generation member 5 is demonstrated using FIG.6 and FIG.7.
The magnetic field generating member 5 in the state shown in FIG. 6A is stretched in the direction of the arrow to be elastically deformed to be in the state shown in FIG. The magnetic field generating member 5 is covered from the left side of the measuring tube 1a in FIG. 5A, and the magnetic pole plate portions 53 and 54 of the magnetic field generating member 5 are inserted into the coil internal spaces 232 and 242 from above and below the coils 23 and 24, respectively. The state shown in FIG. Next, the tips of the magnetic pole plate portions 53 and 54 are aligned with the magnetic pole plate portion insertion slot 131 [FIG. 7 (a)], and after the state of FIG. 7 (b), completely as shown in FIG. 7 (c). Inserting into the groove 13 completes the positioning of the magnetic field generating member 5. In this state, the magnetic pole plate portions 53 and 54 are inserted between the coils 23 and 24 and the measuring tube 1a, respectively, and the magnetic pole portions such as the magnetic poles A 56 and 58 are in close contact with the inner surfaces of the coils 23 and 24, respectively. Aligned.
[0017]
Even in this state, the magnetic field generating member 5 is initially formed so that the magnetic pole plate portions 53 and 54 of the magnetic field generating member 5 exert an elastic force in the direction of the measuring tube 1a. Therefore, it is necessary to select a material capable of such elastic deformation as the material of the magnetic field generating member 5.
Similarly, FIG. 8 shows a state where the magnetic field generating member 5 is attached also from the right side of the measuring tube 1a. That is, FIG. 8 shows a state in which a pair of magnetic field generating members 51 and 52 are attached to the measurement tube 1a and the detection unit structure of the electromagnetic flowmeter is almost completed, and the case is attached to this state. Thus, the detection unit structure of the electromagnetic flowmeter is completed.
[0018]
[Second Embodiment]
FIG. 9 is a sectional view in the axial direction showing a second embodiment of the present invention.
In this embodiment, an auxiliary magnetic pole 28 made of carbon steel or the like is inserted into the space surrounded by the magnetic pole portion A56 and the magnetic pole portion B of the magnetic field generating members 51 and 52 of the first embodiment. By inserting this auxiliary magnetic pole 28, the magnetic field is strengthened, and the sensitivity of the electromagnetic flow meter can be improved.
[0019]
【The invention's effect】
According to the present invention, in the detection unit structure of the electromagnetic flowmeter, the two magnetic pole plate portions that are integrally formed of an elastic magnetic material and magnetically couple one side of two opposing coils, and two A pair of magnetic field generating members having a magnetic pole part and a magnetic path part connecting the two magnetic pole parts are provided, and four magnetic pole plate parts are inserted between the respective coils and the measuring tube, and the four magnetic pole parts are provided. Since it is aligned with the inner surface of each coil, the number of parts is reduced and a magnetic circuit can be easily constructed (invention of claim 1). Therefore, it is possible to achieve the problem of providing an inexpensive electromagnetic flowmeter detection unit structure with a small number of parts and a small number of processing and assembly steps.
[0020]
In the first aspect of the invention, since the guide portion of the magnetic pole plate portion of the magnetic field generating member is provided in the measurement tube, and the magnetic pole plate portion is fitted in this guide portion, the insertion of the magnetic pole plate portion is facilitated, and the position accuracy is increased. (Invention of claim 2). Therefore, it is possible to provide a detection unit structure of an electromagnetic flowmeter with fewer man-hours and good characteristics.
Further, in the invention of claim 1, as the magnetic field generating member, an elastic plate-shaped magnetic metal press-molded product is used (invention of claim 3), or an elastic magnetic resin molded product is used (claim). 4 invention). Plate-like magnetic metal is the most common material for magnetic circuit materials, and an elastic magnetic resin is excellent in assembling workability.
[0021]
Furthermore, in the invention of claim 1, since the auxiliary magnetic pole is fitted in the magnetic pole part of the magnetic field generating member, the magnetic field inside the measuring tube can be made stronger (invention of claim 5). Therefore, it is possible to provide a detection unit structure of an electromagnetic flow meter with higher sensitivity.
[Brief description of the drawings]
1A and 1B show a first embodiment of the structure of a detection unit of an electromagnetic flowmeter according to the present invention, in which FIG. 1A is a cross-sectional view perpendicular to the axis of a measurement tube, and FIG. FIG. 3 is a development view of the magnetic field generating member in the first embodiment. FIG. 4 shows a measuring tube in the first embodiment, in which (a) is a cross-sectional view perpendicular to the axis. (B) is a sectional view in the axial direction, (c) is a plan view. FIG. 5 shows a state in which a coil is attached to the measuring tube, (a) is a sectional view perpendicular to the axis, and (b) is a sectional view in the axial direction. Sectional view, (c) is a plan view. FIG. 6 shows a state in which a magnetic field generating member is set in a measuring tube with a coil attached, (a) is a sectional view of the initial state of the magnetic field generating member, and (b) is a magnetic field generated. FIG. 7C is a cross-sectional view showing a state in which the member is extended vertically, and FIG. 7C is a cross-sectional view showing a state in which the magnetic field generating member is set in the coil internal space. The continuation of the state which sets a magnetic field generation member to the measuring tube which attached A is shown, (a) is a sectional view showing the state where the magnetic pole plate part of a magnetic field generation member was set in the magnetic pole plate part insertion slot of a measurement pipe, (b) Is a cross-sectional view in the middle of insertion, (c) is a cross-sectional view in a state where the insertion is completed. FIG. 8 shows a state in which a pair of magnetic field generating members are inserted, (a) is a cross-sectional view perpendicular to the axis, and (b) A sectional view in the axial direction, (c) is a plan view. FIG. 9 is a sectional view in the axial direction showing a second embodiment. FIG. 10 shows an example of a detection unit structure of an electromagnetic flowmeter according to the prior art. Is a cross-sectional view perpendicular to the axis of the measuring tube. (B) is a cross-sectional view in the axial direction.
1, 1a Measuring tube 11 Lining
12 Guide 13 Groove
14 Coil fixing surface 131 Magnetic pole plate slot
21, 22 Magnetic pole 23, 24 Coil
25, 26 Pole plate 231, 241 Adhesive
27 (Return) Magnetic path 232, 242 Coil internal space
28 Auxiliary magnetic pole
31, 32 Electrode 4 Case 5, 51, 52 Magnetic field generating member 53, 54 Pole plate
55, 56, 57, 58 Magnetic pole part A 59, 60 Magnetic pole part B
61 Magnetic path

Claims (5)

測定対象となる流体が流される測定管と、測定管内に磁場を発生させるために測定管の両側に対向して配置されそれぞれに励磁コイルが巻かれている1対の磁極と、測定管内に一様な磁場分布を形成させるためにそれぞれの磁極の測定管側に取り付けられている磁極板と、漏れ磁束を低減するために磁極の外側に接して配置されている戻り磁路と、磁場方向及び測定管の軸方向のそれぞれに直交する測定管の管壁に設けられている1対の電極とを備えている電磁流量計の検出部構造において、
弾性を有する磁性材料によって一体に形成され、対向する2つの励磁コイルの片側ずつを磁気的に結合する、2つの磁極板部と、2つの磁極部と、両磁極部間をつなぐ戻り磁路部とを有する磁気回路部材が1対備えられ、
4個所の磁極板部がそれぞれの励磁コイルと測定管の間に挿入され、
4個所の磁極部がそれぞれの励磁コイルの内面に位置合わせされている
ことを特徴とする電磁流量計の検出部構造。
A measuring tube through which a fluid to be measured flows, a pair of magnetic poles arranged opposite to both sides of the measuring tube to generate a magnetic field in which the exciting coil is wound, and one in the measuring tube A magnetic pole plate attached to the measurement tube side of each magnetic pole to form a magnetic field distribution, a return magnetic path arranged in contact with the outside of the magnetic pole to reduce leakage magnetic flux, a magnetic field direction and In the detection part structure of the electromagnetic flowmeter comprising a pair of electrodes provided on the tube wall of the measurement tube perpendicular to each of the axial directions of the measurement tube,
Two magnetic pole plates, two magnetic poles, and a return magnetic path connected between the two magnetic poles, which are integrally formed of an elastic magnetic material and magnetically couple one side of two opposing exciting coils. A pair of magnetic circuit members having
Four magnetic pole plate parts are inserted between each exciting coil and measuring tube,
4. A detecting structure of an electromagnetic flowmeter, wherein four magnetic pole portions are aligned with the inner surface of each exciting coil.
前記測定管に前記磁気回路部材の磁極板部の案内部が設けられ、この案内部に磁極板部が嵌め込まれていることを特徴とする請求項1に記載の電磁流量計の検出部構造。2. The detection structure of an electromagnetic flowmeter according to claim 1, wherein a guide portion of a magnetic pole plate portion of the magnetic circuit member is provided in the measurement tube, and the magnetic pole plate portion is fitted into the guide portion. 前記磁気回路部材として、弾性を有する板状磁性金属のプレス成形品が用いられていることを特徴とする請求項1に記載の電磁流量計の検出部構造。2. The detecting structure of the electromagnetic flowmeter according to claim 1, wherein the magnetic circuit member is a press-molded product of a plate-like magnetic metal having elasticity. 前記磁気回路部材として、弾性を有する磁性樹脂の成形品が用いられていることを特徴とする請求項1に記載の電磁流量計の検出部構造。The detection part structure of the electromagnetic flowmeter according to claim 1, wherein a molded product of elastic magnetic resin is used as the magnetic circuit member. 前記磁気回路部材の磁極部に、補助磁極が嵌め込まれていることを特徴とする請求項1に記載の電磁流量計の検出部構造。The detection structure of the electromagnetic flowmeter according to claim 1, wherein an auxiliary magnetic pole is fitted in the magnetic pole portion of the magnetic circuit member.
JP31315097A 1997-11-14 1997-11-14 Detector structure of electromagnetic flow meter Expired - Fee Related JP3641919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31315097A JP3641919B2 (en) 1997-11-14 1997-11-14 Detector structure of electromagnetic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31315097A JP3641919B2 (en) 1997-11-14 1997-11-14 Detector structure of electromagnetic flow meter

Publications (2)

Publication Number Publication Date
JPH11148847A JPH11148847A (en) 1999-06-02
JP3641919B2 true JP3641919B2 (en) 2005-04-27

Family

ID=18037720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31315097A Expired - Fee Related JP3641919B2 (en) 1997-11-14 1997-11-14 Detector structure of electromagnetic flow meter

Country Status (1)

Country Link
JP (1) JP3641919B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005172645A (en) * 2003-12-12 2005-06-30 Yokogawa Electric Corp Wafer type electromagnetic flowmeter
CN102980617A (en) * 2012-12-21 2013-03-20 上海一诺仪表有限公司 Anti-high-frequency electromagnetic interference device for electromagnetic flow meter
JP2016095279A (en) * 2014-11-17 2016-05-26 株式会社東芝 Electromagnetic flowmeter
US10502599B2 (en) * 2016-03-31 2019-12-10 Rosemount Inc. Polymeric magnetic flowmeter flow body assembly

Also Published As

Publication number Publication date
JPH11148847A (en) 1999-06-02

Similar Documents

Publication Publication Date Title
JP4471657B2 (en) Current sensor
JP4770308B2 (en) Torque sensor
WO2012169043A1 (en) Rotor for rotating electrical machine, rotating electric machine, and method for producing rotor for rotating electrical machine
KR102613654B1 (en) compact control valve
US20030020468A1 (en) Angular sensor
KR930011089B1 (en) Strain detector
JP3476022B2 (en) Electric / pneumatic converter
JP3641919B2 (en) Detector structure of electromagnetic flow meter
JP2001174300A (en) Magnetism-inducing flow measuring device
JP3666441B2 (en) Position detection device
JP2006177947A (en) Magnetic induction flow meter
US7296483B2 (en) Magnetoinductive flowmeter with detachable components
JP3400641B2 (en) Linear displacement detector
CN113597539B (en) Coriolis measuring transducer and coriolis measuring device
JP2009247068A (en) Linear motor with magnetic shield plate, multi-axis linear motor with magnetic shield plate, and method of manufacturing linear motor with magnetic shield plate
JP5666192B2 (en) Current sensor
JPH0750658B2 (en) Current transformer
JP2001241981A (en) Electromagnetic flowmeter
EP3796007B1 (en) Current transducer
WO2024024821A1 (en) Magnet module, sensor module, and method for manufacturing magnet module
JP3668940B2 (en) Linear motor
JP4154922B2 (en) Position detection device
JPH0127054Y2 (en)
JP2002027724A (en) Cooling structure for voice coil linear motor
JPS63210624A (en) Electromagnetic flowmeter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees