JP3641298B2 - Method for producing plate-like hydroxyapatite large crystals - Google Patents

Method for producing plate-like hydroxyapatite large crystals Download PDF

Info

Publication number
JP3641298B2
JP3641298B2 JP19220995A JP19220995A JP3641298B2 JP 3641298 B2 JP3641298 B2 JP 3641298B2 JP 19220995 A JP19220995 A JP 19220995A JP 19220995 A JP19220995 A JP 19220995A JP 3641298 B2 JP3641298 B2 JP 3641298B2
Authority
JP
Japan
Prior art keywords
powder
hap
cahpo
plate
hydroxyapatite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19220995A
Other languages
Japanese (ja)
Other versions
JPH0940408A (en
Inventor
穣 若菜
信之 松田
文宏 鍛治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taihei Chemical Industrial Co Ltd
Original Assignee
Taihei Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taihei Chemical Industrial Co Ltd filed Critical Taihei Chemical Industrial Co Ltd
Priority to JP19220995A priority Critical patent/JP3641298B2/en
Publication of JPH0940408A publication Critical patent/JPH0940408A/en
Application granted granted Critical
Publication of JP3641298B2 publication Critical patent/JP3641298B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Materials For Medical Uses (AREA)
  • Cosmetics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、人工骨や人工歯等の素材として用いることのできる板状ヒドロキシアパタイトの大型結晶を製造する為の有用な方法に関するものである。また本発明によって得られる板状ヒドロキシアパタイト大型結晶は、クロマトグラフィー用カラム充填材、歯磨用基材、化粧品用原料等として有用である。
【0002】
【従来の技術】
CaO−P25 系アパタイトは主として生体材料として開発されており、中でもヒドロキシアパタイト[Ca10(PO46 (OH22 、以下「HAP」と略記することがある]は、人間の骨や歯の主要構成物質であり、生体内に埋入された場合に生体との親和性が良く、自然骨との化学結合性も極めて良好であるので、人工骨や人工歯等の素材として用いられている。また蛋白質との親和性が良好であることを利用してクロマトグラフィー用のカラム充填材としても用いられている。その他、HAPは、肥料、湿度センサー、歯磨用基材、化粧品用原料等、様々な分野で利用されている。
【0003】
CaO−P25 系アパタイトを製造する方法としては、例えば特開昭53−81499号、同53−110999号、同53−111000号等の技術が提案されている。しかしながら、これらの方法では、反応温度:100〜500℃、圧力:1〜500気圧という過酷な反応条件を必要とし、しかも特別の装置を必要とするという欠点がある。こうした欠点を解消した方法として、例えば特開昭61−151011号や同63−159207号等には、比較的穏やかな条件で且つ特別の装置を必要としないHAPの製造方法が提案されている。
【0004】
【発明が解決しようとする課題】
ところで、HAPでは、例えば化粧品用としては被覆力を向上させること、歯磨用としては適度な研磨力を得ること、更にはクロマトグラフィー用としては、充填性に優れたものとする等の観点から、板状で比較的大型の粒子を得ることが望まれているが、これまで提案された上記各種の技術では、その様な希望形状のHAPは得られていない。例えば上記特開昭61−151011号には、「CaHPO4 と水のスラリーにCaCO3 :2〜25mol%含有するCa(OH)2 とCaCO3 との混合物をpH10以下に保ちながら徐々に加え60〜100℃にて反応を行う方法」について開示されているが、板状のHAPの製造を意図したものではなく、また基本的にCaHPO4 を原料としているので、後述する様にこの原料からは板状のHAPを製造することはできない。
【0005】
一方、特開昭63−159207号には、「CaCO3 粉末とCaHPO4 またはその二水和物の粉末を、Ca原子のリン原子に対する原子比が1.5〜1.67の範囲になる様な割合で水性スラリーを調製し、次いでこのスラリーを湿式粉砕機により摩砕混合しながら反応する方法」について開示されている。しかしながら、この方法においても、その製造工程で湿式粉砕機を用いるものであるので、製造上から板状HAPの大型結晶を得ることはできず、一次粒子が1μm以下の微細粒子のHAPしか得られていない。
【0006】
本発明はこうした状況の下になされたものであって、その目的は、比較的穏やかな反応条件でしかも特別の装置を必要とせず、板状HAPの大型結晶を製造する為の方法を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成し得た本発明とは、板状の結晶形態を有するCaHPO4 ・2H2 O粉末と、平均粒径:5μm以下のCaCO3 微粒子粉末を、水懸濁状態で40〜70℃に加温・保持する点に要旨を有する板状HAP大型結晶の製造方法である。
【0008】
【発明の実施の形態】
本発明者らは、上記目的を達成するべく様々な角度から検討した。そしてまず、原料として用いられるCaHPO4 ・2H2 O粉末が板状の大型粒子(平均粒径5〜30μm程度)として製造されることに着目し、この結晶形態を維持する様に反応させれば、希望する形状のHAPが得られるのではないかと考えた。そして更に検討を重ねたところ、上記の様なCaHPO4 ・2H2 O粉末と、平均粒径を厳密に規定したCaCO3 粉末を水に懸濁させて水懸濁液とし、この水懸濁液を所定の温度に保持して穏やかに反応させれば、上記目的が見事に達成されることを見出し、本発明を完成した。尚本発明において「板状」とは、外観の全体形状の如何にかかわらず、平たいものであれば良く、例えば後記図2に示される形状も含むものである。また「大型結晶」とは、平均粒径が5〜30μm程度であることを意味する。
【0009】
本発明では板状の結晶形態を有するCaHPO4 ・2H2 O粉末を原料の一つとして用いる必要があるが、これは上記趣旨から明らかな様に、該粉末が有している上記板状形態をHAPの形態として残すためである。こうした観点からして、無水物のCaHPO4 粉末は本発明の原料として使用できない。即ち、CaHPO4 粉末は、微細粉末として製造されるので、この様な粉末を原料として用いて本発明の工程で反応させても、原料粉末の結晶形態をHAPの結晶形態に反映させることができず、希望する形状のHAPは得られない。
【0010】
本発明で用いるもう一方の原料のCaCO3 は、その平均粒径が5μm以下の微粒子のものを用いる必要がある。これはCaCO3 の平均粒径が5μmを超えると、本発明で規定する反応条件(40〜70℃)において反応が進まず、生成物中に未反応のCaHPO4 ・2H2 O粉末やCaCO3 粉末が残留する。
【0011】
上記の様なCaHPO4 ・2H2 O粉末とCaCO3 粉末は、水懸濁状態とされるが、このときの両粉末の混合比率は従来技術にも示された様に(例えば、特開昭63−159207号)、Ca原子のリン原子に対する原子比が1.5〜1.67の範囲になる様な割合とするのが適当である。
【0012】
水懸濁状態で加温・保持するときの温度は、40〜70℃とする必要がある。この温度が40℃未満では反応速度が遅くなって、10時間以上反応させても生成物中に未反応のCaHPO4 ・2H2 O粉末やCaCO3 粉末が残留する。
【0013】
一方、70℃を超える様な温度では、CaHPO4 ・2H2 Oに含まれる結晶水の脱離による結晶崩壊が発生し、生成するHAPは微細結晶になってしまう。尚、加温・保持温度の好ましい範囲は50〜60℃程度である。また加温・保持時間については特に限定されるものではないが、上記の条件下では4〜6時間程度で反応がほぼ終了する。
【0014】
本発明で規定する上記要件をいずれも満足させることによって、下記(1)式に従って希望する形態のHAPが製造される。
6CaHPO4 ・2H2 O+4CaCO3
→Ca10(PO46 (OH)2 +14H2 O+4CO2 ↑ …(1)
【0015】
以下本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に徴して設計変更することはいずれも本発明の技術的範囲に含まれるものである。
【0016】
【実施例】
実施例1
5リットルビーカーにイオン交換水3000gを入れ、デジタルミキサーで撹拌しつつ、CaHPO4 ・2H2 O粉末(太平化学産業株式会社製)258gと、平均粒径:4μmのCaCO3 粉末(カルシード株式会社製、超高純度品)100gを加えて水懸濁状態とした後、加温して液温を60℃に保ち、撹拌下に5時間反応させた。
ヌッチェで反応沈殿物を濾別した後、150℃で3時間乾燥し、反応生成物を248g得た。
【0017】
比較例1
5リットルビーカーにイオン交換水3000gを入れ、デジタルミキサーで撹拌しつつ、CaHPO4 ・2H2 O粉末(太平化学産業株式会社製)258gと、平均粒径:14μmのCaCO3 粉末(和光純薬工業株式会社製、試薬特級)100gを加えて水懸濁状態とした後、加温して液温を60℃に保ち、撹拌下に5時間反応させた。
ヌッチェで反応沈殿物を濾別した後、150℃で3時間乾燥し、反応生成物を245g得た。
【0018】
比較例2
実施例1と同様にして、CaHPO4 ・2H2 O粉末とCaCO3 粉末を水懸濁状態とした後、加温して液温を80℃に保ち、撹拌下に5時間反応させた。
ヌッチェで反応沈殿物を濾別した後、150℃で3時間乾燥し、反応生成物を247g得た。
【0019】
比較例3
実施例1と同様にして、CaHPO4 ・2H2 O粉末とCaCO3 粉末を水懸濁状態とした後、加温して液温を30℃に保ち、撹拌下に10時間反応させた。ヌッチェで反応沈殿物を濾別した後、150℃で3時間乾燥し、反応生成物を247g得た。
【0020】
上記実施例1および比較例1〜3で得られた反応生成物について、X線回折装置(商品名「RAD−1A」、理学電機株式会社製)を用いて同定すると共に、レーザ回折式粒度分布測定器(商品名「SALD−1100」、株式会社島津製作所製)を用いて平均粒径を測定した。
【0021】
その結果を、反応条件と共に、下記表1に示す。尚表1において、「am−HAP」は低結晶性ヒドロキシアパタイトであることを示している。またX線回折結果を図1に示す。
【0022】
【表1】

Figure 0003641298
【0023】
これらの結果から明らかな様に、本発明で規定する要件を満足する実施例1のものは、CaCO3 が残留することなく大型結晶のHAPが生成していることが分かる。
また、実施例1および比較例2で得られた反応生成物について、走査型電子顕微鏡(商品名「S−2300」、株式会社日立製作所製)によって、その結晶の粒子構造を観察した。その結果を、夫々図2および図3に示すが、実施例1で得られた反応生成物(図2)は、板状で大型の粒子構造を有しているが、比較例2で得られた反応生成物(図3)は微細な針状結晶のものであった。
【0024】
【発明の効果】
本発明は以上の様に構成されており、板状の大型結晶を有するヒドロキシアパタイトが、特別の装置を必要とせず、しかも比較的穏やかな条件で製造することができた。また本発明方法は、ヒドロキシアパタイトの大量生産も可能であり、板状の大型ヒドロキシアパタイト結晶の工業的製法が確立できた。更に、本発明によって得られるヒドロキシアパタイトは、人工骨、人工歯根等の生体材料をはじめとして、液体クロマトグラフィー用カラム充填剤、肥料、湿度センサー、歯磨用基材、化粧品原料として有用に利用できる。
【図面の簡単な説明】
【図1】実施例1および比較例1〜3によって得られた反応生成物におけるX線回折結果を示すチャートある。
【図2】実施例1で得られた反応生成物の粒子構造を示す図面代用顕微鏡写真である。
【図3】比較例1で得られた反応生成物の粒子構造を示す図面代用顕微鏡写真である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a useful method for producing large crystals of plate-like hydroxyapatite that can be used as a material for artificial bones, artificial teeth, and the like. The plate-like hydroxyapatite large crystal obtained by the present invention is useful as a column filler for chromatography, a dentifrice base material, a cosmetic raw material and the like.
[0002]
[Prior art]
CaO—P 2 O 5 -based apatite is mainly developed as a biomaterial. Among them, hydroxyapatite [Ca 10 (PO 4 ) 6 (OH 2 ) 2 , hereinafter sometimes abbreviated as “HAP”] is a human being. It is a major constituent of bones and teeth, and when it is implanted in the living body, it has good affinity with the living body and extremely good chemical bondability with natural bone. It is used. It is also used as a column packing material for chromatography by taking advantage of its good affinity with proteins. In addition, HAP is used in various fields such as fertilizer, humidity sensor, dentifrice base material, cosmetic raw material.
[0003]
As a method for producing a CaO—P 2 O 5 apatite, for example, techniques such as JP-A Nos. 53-81499, 53-110999, and 53-111000 have been proposed. However, these methods have the disadvantage that they require severe reaction conditions such as reaction temperature: 100 to 500 ° C. and pressure: 1 to 500 atmospheres, and require special equipment. As a method for eliminating such drawbacks, for example, Japanese Patent Application Laid-Open Nos. 61-151011 and 63-159207 propose a method for producing HAP under relatively mild conditions and which does not require a special apparatus.
[0004]
[Problems to be solved by the invention]
By the way, in the case of HAP, for example, to improve the covering power for cosmetics, to obtain an appropriate polishing power for dentifrice, and from the viewpoint of having excellent filling properties for chromatography, etc. Although it is desired to obtain plate-shaped and relatively large particles, the above-described various techniques have not provided HAP having such a desired shape. For example, in JP-A-61-151101, “a mixture of Ca (OH) 2 and CaCO 3 containing 2 to 25 mol% of CaCO 3 in a slurry of CaHPO 4 and water is gradually added while maintaining the pH at 10 or less. Although it is disclosed about “method of performing reaction at ˜100 ° C.”, it is not intended for the production of plate-like HAP and basically uses CaHPO 4 as a raw material. Plate-shaped HAP cannot be manufactured.
[0005]
On the other hand, Japanese Patent Application Laid-Open No. 63-159207 states that “a CaCO 3 powder and CaHPO 4 or a dihydrate powder thereof have an atomic ratio of Ca atoms to phosphorus atoms in the range of 1.5 to 1.67. A method of preparing an aqueous slurry at a proper ratio and then reacting the slurry while grinding and mixing with a wet pulverizer "is disclosed. However, even in this method, since a wet pulverizer is used in the production process, large crystals of plate-like HAP cannot be obtained from the production, and only HAP of fine particles whose primary particles are 1 μm or less can be obtained. Not.
[0006]
The present invention has been made under such circumstances, and an object thereof is to provide a method for producing large crystals of plate-like HAP under relatively mild reaction conditions and without requiring special equipment. There is.
[0007]
[Means for Solving the Problems]
The present invention that has achieved the above-mentioned object is that a CaHPO 4 .2H 2 O powder having a plate-like crystal form and a CaCO 3 fine particle powder having an average particle diameter of 5 μm or less in a water suspension state at 40 to 70 ° C. It is the manufacturing method of the plate-shaped HAP large crystal which has a summary in the point heated and hold | maintained.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The present inventors have studied from various angles to achieve the above object. First, paying attention to the fact that CaHPO 4 .2H 2 O powder used as a raw material is produced as plate-like large particles (average particle size of about 5 to 30 μm), if the reaction is carried out so as to maintain this crystal form I thought that HAP of the desired shape could be obtained. As a result of further studies, the above-described CaHPO 4 .2H 2 O powder and CaCO 3 powder having a strictly defined average particle diameter are suspended in water to form an aqueous suspension. The present invention was completed by finding that the above-mentioned object can be achieved brilliantly by maintaining the temperature at a predetermined temperature and causing a gentle reaction. In the present invention, the “plate shape” may be flat regardless of the overall shape of the appearance, and includes, for example, the shape shown in FIG. The “large crystal” means that the average particle size is about 5 to 30 μm.
[0009]
In the present invention, it is necessary to use CaHPO 4 .2H 2 O powder having a plate-like crystal form as one of the raw materials. As apparent from the above, this is the plate-like form that the powder has. This is to leave H as a form of HAP. From this point of view, anhydrous CaHPO 4 powder cannot be used as a raw material of the present invention. That is, since CaHPO 4 powder is manufactured as a fine powder, even if such a powder is used as a raw material and reacted in the process of the present invention, the crystal form of the raw material powder can be reflected in the crystal form of HAP. Therefore, the desired shape of the HAP cannot be obtained.
[0010]
The other raw material CaCO 3 used in the present invention must be fine particles having an average particle diameter of 5 μm or less. When the average particle diameter of CaCO 3 exceeds 5 μm, the reaction does not proceed under the reaction conditions (40 to 70 ° C.) defined in the present invention, and the product does not react with unreacted CaHPO 4 .2H 2 O powder or CaCO 3. A powder remains.
[0011]
The CaHPO 4 .2H 2 O powder and CaCO 3 powder as described above are suspended in water, and the mixing ratio of the two powders at this time is as shown in the prior art (for example, JP-A 63-159207), and it is appropriate that the atomic ratio of Ca atoms to phosphorus atoms is in the range of 1.5 to 1.67.
[0012]
The temperature at the time of heating and holding in a water suspension state needs to be 40 to 70 ° C. When the temperature is less than 40 ° C., the reaction rate is slow, and unreacted CaHPO 4 .2H 2 O powder or CaCO 3 powder remains in the product even when the reaction is continued for 10 hours or longer.
[0013]
On the other hand, at a temperature exceeding 70 ° C., crystal collapse occurs due to desorption of crystal water contained in CaHPO 4 .2H 2 O, and the generated HAP becomes fine crystals. In addition, the preferable range of heating and holding temperature is about 50-60 degreeC. The heating and holding time is not particularly limited, but the reaction is almost completed in about 4 to 6 hours under the above conditions.
[0014]
By satisfying all of the above requirements defined in the present invention, a desired form of HAP is produced according to the following equation (1).
6CaHPO 4 · 2H 2 O + 4CaCO 3
→ Ca 10 (PO 4 ) 6 (OH) 2 + 14H 2 O + 4CO 2 ↑ (1)
[0015]
Hereinafter, the present invention will be described in more detail by way of examples. However, the following examples are not of a nature that limits the present invention, and any design changes in accordance with the gist of the preceding and following descriptions are all within the technical scope of the present invention. Is included.
[0016]
【Example】
Example 1
Add 3,000 g of ion-exchanged water to a 5 liter beaker and stir with a digital mixer, and then 258 g of CaHPO 4 · 2H 2 O powder (manufactured by Taihei Chemical Sangyo Co., Ltd.) and CaCO 3 powder with an average particle size of 4 μm (manufactured by Calseed Co. , Ultra high purity product) 100 g was added to make a suspension in water, and the mixture was heated to maintain the liquid temperature at 60 ° C. and reacted for 5 hours with stirring.
The reaction precipitate was filtered off with Nutsche and then dried at 150 ° C. for 3 hours to obtain 248 g of a reaction product.
[0017]
Comparative Example 1
5 l beaker was charged with ion-exchanged water 3000 g, while stirring with a digital mixer, and CaHPO 4 · 2H 2 O powder (Taihei Chemical Industrial Co., Ltd.) 258 g, average particle size: 14 [mu] m CaCO 3 powder (Wako Pure Chemical Industries, After adding 100 g of a reagent special grade), the mixture was heated to maintain the liquid temperature at 60 ° C., and reacted for 5 hours with stirring.
The reaction precipitate was filtered off with Nutsche and then dried at 150 ° C. for 3 hours to obtain 245 g of a reaction product.
[0018]
Comparative Example 2
In the same manner as in Example 1, CaHPO 4 .2H 2 O powder and CaCO 3 powder were suspended in water, and then heated to maintain the liquid temperature at 80 ° C., and reacted for 5 hours with stirring.
The reaction precipitate was filtered off with Nutsche and dried at 150 ° C. for 3 hours to obtain 247 g of a reaction product.
[0019]
Comparative Example 3
In the same manner as in Example 1, the CaHPO 4 .2H 2 O powder and the CaCO 3 powder were suspended in water, then heated to maintain the liquid temperature at 30 ° C., and reacted for 10 hours with stirring. The reaction precipitate was filtered off with Nutsche and dried at 150 ° C. for 3 hours to obtain 247 g of a reaction product.
[0020]
The reaction products obtained in Example 1 and Comparative Examples 1 to 3 are identified using an X-ray diffractometer (trade name “RAD-1A”, manufactured by Rigaku Corporation), and laser diffraction particle size distribution. The average particle diameter was measured using a measuring instrument (trade name “SALD-1100”, manufactured by Shimadzu Corporation).
[0021]
The results are shown in Table 1 below together with the reaction conditions. In Table 1, “am-HAP” indicates a low crystalline hydroxyapatite. The X-ray diffraction results are shown in FIG.
[0022]
[Table 1]
Figure 0003641298
[0023]
As is apparent from these results, it can be seen that in Example 1, which satisfies the requirements defined in the present invention, large crystals of HAP are generated without CaCO 3 remaining.
Moreover, about the reaction product obtained in Example 1 and Comparative Example 2, the particle structure of the crystal | crystallization was observed with the scanning electron microscope (brand name "S-2300", Hitachi Ltd. make). The results are shown in FIGS. 2 and 3, respectively. The reaction product obtained in Example 1 (FIG. 2) has a plate-like and large particle structure, but is obtained in Comparative Example 2. The reaction product (FIG. 3) was of fine needle crystals.
[0024]
【The invention's effect】
The present invention is configured as described above, and hydroxyapatite having a large plate-like crystal can be produced under a relatively mild condition without requiring a special apparatus. In addition, the method of the present invention enables mass production of hydroxyapatite, and an industrial production method for plate-like large hydroxyapatite crystals has been established. Furthermore, the hydroxyapatite obtained by the present invention can be usefully used as a liquid chromatography column filler, fertilizer, humidity sensor, dentifrice base material, cosmetic raw material, as well as biomaterials such as artificial bones and artificial tooth roots.
[Brief description of the drawings]
1 is a chart showing X-ray diffraction results for reaction products obtained in Example 1 and Comparative Examples 1 to 3. FIG.
2 is a drawing-substituting micrograph showing the particle structure of the reaction product obtained in Example 1. FIG.
3 is a drawing-substituting micrograph showing the particle structure of the reaction product obtained in Comparative Example 1. FIG.

Claims (1)

板状の結晶形態を有するCaHPO4 ・2H2 O粉末と、平均粒径:5μm以下のCaCO3 微粒子粉末を、水懸濁状態で40〜70℃に加温・保持することを特徴とする板状ヒドロキシアパタイト大型結晶の製造方法。A plate characterized in that CaHPO 4 .2H 2 O powder having a plate-like crystal form and CaCO 3 fine particle powder having an average particle size of 5 μm or less are heated and held at 40 to 70 ° C. in a water suspension state. For producing large-sized hydroxyapatite crystals.
JP19220995A 1995-07-27 1995-07-27 Method for producing plate-like hydroxyapatite large crystals Expired - Fee Related JP3641298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19220995A JP3641298B2 (en) 1995-07-27 1995-07-27 Method for producing plate-like hydroxyapatite large crystals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19220995A JP3641298B2 (en) 1995-07-27 1995-07-27 Method for producing plate-like hydroxyapatite large crystals

Publications (2)

Publication Number Publication Date
JPH0940408A JPH0940408A (en) 1997-02-10
JP3641298B2 true JP3641298B2 (en) 2005-04-20

Family

ID=16287485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19220995A Expired - Fee Related JP3641298B2 (en) 1995-07-27 1995-07-27 Method for producing plate-like hydroxyapatite large crystals

Country Status (1)

Country Link
JP (1) JP3641298B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0950686B1 (en) * 1996-12-27 2004-09-22 Maruo Calcium Company Limited Synthetic resin composition
GB9727049D0 (en) * 1997-12-22 1998-02-18 Abonetics Ltd Method for the preparation of carbonated hydroxyapatite compositions
JP4254057B2 (en) * 1998-05-08 2009-04-15 日油株式会社 Method for producing hydroxyapatite and method for producing composite
EP1339380A1 (en) * 2000-12-08 2003-09-03 Kerrhawe SA Abrasive component for cleaning delicate surfaces, especially teeth
JP4594075B2 (en) * 2004-02-23 2010-12-08 株式会社コーセー Solid powder cosmetic
FR2869893B1 (en) * 2004-05-06 2006-07-28 Rhodia Chimie Sa NOVEL CALCIUM PHOSPHATE GRANULES OF THE HYDROXYAPATITE TYPE, PROCESS FOR THEIR PREPARATION AND THEIR APPLICATIONS
CN102167300A (en) * 2011-03-10 2011-08-31 南京工业大学 Preparation method of hexagonal columnar micro-powder hydroxyapatite material
CN114684967A (en) * 2022-04-06 2022-07-01 深圳大学 Synergistic treatment method for calcareous solid waste and phosphorus-containing waste liquid and application of product thereof

Also Published As

Publication number Publication date
JPH0940408A (en) 1997-02-10

Similar Documents

Publication Publication Date Title
Suchanek et al. Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemical–hydrothermal method
US7704529B2 (en) Magnesium-substituted hydroxyapatites
Lee et al. Effects of pH and reaction temperature on hydroxyapatite powders synthesized by precipitation
He et al. Formation of bone-like nanocrystalline apatite using self-assembled liquid crystals
CN101428779A (en) Hollow nanostructured hydroxyapatite and method for producing the same
JP3641298B2 (en) Method for producing plate-like hydroxyapatite large crystals
Salarian et al. Template-directed hydrothermal synthesis of dandelion-like hydroxyapatite in the presence of cetyltrimethylammonium bromide and polyethylene glycol
Chen et al. Mechanochemical–hydrothermal synthesis of hydroxyapatite from nonionic surfactant emulsion precursors
Tas Calcium metal to synthesize amorphous or cryptocrystalline calcium phosphates
Gandou et al. Nanosized calcium-deficient carbonated hydroxyapatite synthesized by microwave activation
Spanos et al. Functionalization of synthetic polymers for potential use as biomaterials: selective growth of hydroxyapatite on sulphonated polysulphone
Hapuhinna et al. Development of a biomaterial from naturally occurring chloroapatite mineral for biomedical applications
JP3668530B2 (en) Method for producing tetracalcium phosphate
Aizawa et al. Preparation of spherical apatite particles by the homogeneous precipitation method in the presence of magnesium ions and their ion-exchange properties
Larson et al. Non-stirred synthesis of Na-and Mg-doped, carbonated apatitic calcium phosphate
JPS63159207A (en) Production of hydroxyapatite
KR102343314B1 (en) Method for preparing inorganic material including whitlockite or hydroxyapatite and inorganic material produced by the same
JP2896498B2 (en) Method for producing plate-shaped hydroxyapatite with a-plane grown
JPS61242968A (en) Forming material
JP3262233B2 (en) Method for producing calcium phosphate
JP4257412B2 (en) Preparation method of particle size controlled carbonate apatite fine particles
Madrigal et al. Comparison of the physicochemical properties and osteoblast viability of nanocrystalline hydroxyapatite synthesized in batch and continuous systems
WO2010095001A1 (en) Submicron monetite powders production
CN110615417B (en) Porous structure calcium phosphate organic-inorganic composite material and preparation method thereof
JPH09175806A (en) Preparation method for whitrockite having non-stoichiometric composition by liquid phase reaction

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150128

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees