JP3638647B2 - Heat treatment method and heat treatment apparatus for thin plate annular part - Google Patents

Heat treatment method and heat treatment apparatus for thin plate annular part Download PDF

Info

Publication number
JP3638647B2
JP3638647B2 JP32288194A JP32288194A JP3638647B2 JP 3638647 B2 JP3638647 B2 JP 3638647B2 JP 32288194 A JP32288194 A JP 32288194A JP 32288194 A JP32288194 A JP 32288194A JP 3638647 B2 JP3638647 B2 JP 3638647B2
Authority
JP
Japan
Prior art keywords
induction heating
cam
heat treatment
cooling
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32288194A
Other languages
Japanese (ja)
Other versions
JPH08180966A (en
Inventor
太一郎 古川
正典 市川
忠義 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Neturen Co Ltd
Original Assignee
NTN Corp
Neturen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, Neturen Co Ltd filed Critical NTN Corp
Priority to JP32288194A priority Critical patent/JP3638647B2/en
Publication of JPH08180966A publication Critical patent/JPH08180966A/en
Application granted granted Critical
Publication of JP3638647B2 publication Critical patent/JP3638647B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • General Induction Heating (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、スラスト針状ころ軸受の駆動輪、同側板等の薄板環状部品の熱処理方法及び熱処理装置に関するものである。
【0002】
【従来の技術と発明が解決しようとする課題】
薄板環状部品の焼入れに必要な加熱手段として、一般に電気ヒータ、ガスバーナを熱源とした炉(ソルトバス炉)による加熱手段や、誘導加熱による加熱手段が用いられる。板厚が2mm以下の薄い環状部品(例えば、φ85×φ60×1t )の加熱手段として、前者の加熱手段は均等加熱は得られるが、エネルギー、スペース、能率等の面で非効率的である。後者の誘導加熱による加熱手段は、十分厚い環状部品の場合、各種の誘導加熱方式を適用することができるが、板厚が薄い場合は、部品各部の温度ムラや歪が生じやすい問題があった。
【0003】
従来の誘導加熱方式は、いずれも部品内の熱移動を伴った加熱方式であるので、前記のごとき板厚の薄い部品の場合は加熱部以外は冷え易い傾向があり、部品全体を2〜3秒程度の短時間で均等に加熱することは困難であった。
【0004】
一方、所要の焼入硬度及び歪み改善効果を得るためには、前記のごとき薄い部品においては加熱後の温度低下を避け、2〜4秒以内の短時間で冷却工程へ移動させる必要がある。
【0005】
そこで、この出願に係る発明は、板厚の薄い環状部品を短時間で均等に加熱し、所要の焼入硬度と歪み改善効果が得られる熱処理方法を提供することを目的とする。
【0006】
また、この出願に係る発明は、板厚の薄い環状部品を短時間で均等に加熱することができ、しかも加熱後短時間で冷却装置に移行させ、所要の焼入硬度と歪み改善効果が得られる熱処理装置を提供することを目的とする。
【0007】
【課題を解決するための手段とその作用】
熱処理方法に係る発明においては、上下一対の平板状誘導加熱コイルにより薄板環状部品を所定温度まで誘導加熱し、次に該部品を冷却金型の間でプレスするようにしたものである。
【0008】
また、熱処理装置に係る発明においては、誘導加熱装置と冷却装置とからなる薄板環状部品の熱処理装置において、上記誘導加熱装置を部品の搬送装置とその搬送路に臨む上下一対の平板状誘導加熱コイルとにより構成し、上記冷却装置を上下一対の冷却金型とその駆動装置とにより構成し、上記冷却金型を上記誘導加熱コイルの下流側において部品の搬送路に臨ませた構成としたものである。
【0009】
上記の部品は平板状の誘導加熱コイルと対面して誘導加熱を受けるので部品は全体が均一に加熱される。加熱された部品は冷却金型で拘束冷却され、焼入れと歪み改善が同時に行われる。
【0010】
【実施例】
図1に示すように、装置のケーシング1の内部に、誘導加熱装置2と冷却装置3とが設けられる。
【0011】
誘導加熱装置2は、部品4の搬送装置5と上下一対の平板状誘導加熱コイル6(図3参照)とにより構成される。
【0012】
搬送装置5は、ケーシング1を貫通した搬送通路7及び半円弧状のガイド壁8を有するガイド板9及びそのガイド壁8の内側に沿って回転自在に設けられた搬送テーブル11を有する。該搬送テーブル11の回転軸12(図2参照)は、ケーシング1で軸支される。
【0013】
搬送テーブル11外周縁に等間隔をおいて4個所の凹所13が形成され、その凹所13に部品4を部分的に受入れるようになっている。
【0014】
前記のガイド板9は、搬送通路7の入口部分に面した位置にある凹所13と、その回転方向(図1矢印a参照)に隣接した他の凹所13の上下面をカバーする。また前記のガイド壁8と冷却装置3側へ延びたガイドアーム14により搬送通路7の半円形部分が形成され、これにより部品4をガイドする。
【0015】
前記の搬送テーブル11は後述のように冷却装置3等と整合された間欠動作を行う。
【0016】
図1のように、搬送通路7の入口部分に面した位置にある凹所13の位置を基準にして、搬送テーブル11の回転位相を回転方向に第1ステップ、第2ステップ……と呼ぶことにすると、部品4は第1ステップにおいて凹所13に受け入れられ、第2ステップでこれに誘導加熱が加えられ、第3ステップで冷却装置3へ移行され、プレスによる拘束冷却による焼入れと歪み改善が同時に行なわれる。
【0017】
誘導加熱コイル6は、1枚の平板状導体によりリングを形成し、その両端を電極15で保持したものであり、前記の第2ステップの位置において上下のガイド板9に設けられた穴16(図3参照)の上下面に対向している。
【0018】
この誘導加熱コイル6の幅は、図7(a)に示すように、部品4の幅より広く、かつその幅を覆うように設けられる。また、図7(b)に示すように部品4の内径がコイル6の内径より若干内側へ入る大きさの関係に設定する場合もある。
【0019】
図7(a)(b)は、各コイル6に同方向の電流を流した際に磁束Φが生じ、部品4に逆方向の誘起電流が流れることを示す。
【0020】
なお、コイル6の発熱を抑制するために、部品4と反対側の面に冷却管17を取付け、これに冷媒を流して冷却することが望ましい。
【0021】
次に、冷却装置3は図2及び図3に示すように、ケーシング1に軸支された回転軸18に下金型用テーブル19及びその上方に所定の間隔をおいて上金型用テーブル21が取付けられる。
【0022】
下金型用テーブル19の上面には、その外周面に沿った4等分位置に欠円形の凹所22が設けられ、その凹所22の内部に下金型23が収納固定される。上記の下金型用テーブル19の上面及び下金型23の上面は、前記誘導加熱装置2の搬送通路7と同一高さにある。
【0023】
また、前記の凹所22及びその内部に収納された下金型23は、前述の誘導加熱装置2の第3ステップの位置で部品4と合致するよう位置決めされ、この場合も間欠作用により、上記の部品4の受け渡し位置を第1ステップとして、前記と逆方向(矢印b参照)に第1〜第4ステップまで回転する(図8(a)(b)のカッコ付きの記号1〜4の第1〜第4ステップを表わす)。
【0024】
上金型用テーブル21には、図2に示すように、前記の下金型23に対向した位置に上金型24が設けられる。各上金型24の上面に設けられたポスト25は、該テーブル21を上下動自在に貫通しており、その先端に半径方向の支軸を有するカムフォロアー26(図5参照)が取付けられる。
【0025】
ケーシング1の天井面には、カム装置27が設けられる(図2参照)。カム装置27は、図5に示すように平面形状がC字形の大円弧固定カム28、その両端に所定の間隔をおいて対向した小円弧固定カム29及びその間隔の部分に配置された一対の第1及び第2上下動カム31、32とにより構成される。これらのカム28、29、31、32は全体として環状に配置される。上記の上下動カム31、32は、ケーシング1の上面に取付けたエアシリンダー等のアクチュエータ33、34により上下動される。
【0026】
上記の大円弧固定カム28及び小円弧固定カム29の各内周面にはそれぞれカム溝35、36が形成され、前記のカムフォロアー26がこれに嵌合する。大円弧固定カム28のカム溝35は小円弧固定カム29のカム溝36より一段低い位置に形成される。
【0027】
また、各上下動カム31、32には前記のカム溝35、36の曲率中心と同じ曲率中心をもち、同じ曲率半径のカム溝37、38が形成され(図4参照)、前記のアクチュエータ33、34の作用により、下位のカム溝35と上位のカム溝36の間を上下する。
【0028】
また、上記の第1上下動カム31は、第1ステップにある上金型24の上方に設けられ、第2上下動カム32は第4ステップにある上金型24の上方に設けられる。
【0029】
前記の下金型23及び上金型24は、図6に示すように、冷却媒体が通過する冷却通路39、40が設けられ、下金型23の冷却通路39は下金型用テーブル19の通路41を経て回転軸18の通路42に連通している。また上金型24の冷却通路40は可撓性ホース43を通じて回転軸18の通路42に連通している。回転軸18の通路42には、その上端のキャップ44の部分から水、液体窒素等の冷媒が供給される。
【0030】
焼入れ完了後の部品4の搬出装置45は、図1に示すように、冷却装置3の第4ステップの下金型23の奥側の周辺に臨むアーム46と、これを下金型23の上面に沿って搬出通路47の方向に移動させるエアシリンダー等のアクチュエータ48とにより構成される。
【0031】
冷却装置3の駆動は、図2に示す駆動装置49により行われ、その駆動力は歯車51、52を通じて誘導加熱装置2に伝達される、上記の駆動装置49は、ゼネバ機構又はローラギヤインデックス機構により、間欠的に駆動される。
【0032】
上記の誘導加熱コイル6の通電、遮断、上下動カム31、32のアクチュエータ33、34及び搬出装置45のアクチュエータ48の各作動は、前記の駆動装置49の間欠動作と同期するよう整合装置53により制御される(図9参照)。なお、図9に示すインバータ54は誘導加熱コイル6へ交流電流を供給する。
【0033】
実施例の装置は以上のごとき構成であり、次にその作用について説明する。
薄板リング状の部品4は、図1に示す搬送通路7から連続的に供給され、第1ステップの位置に一時的に停止している搬送テーブル11の凹所13に送り込まれる。搬送テーブル11が1ステップ分回転すると、部品4が第2ステップの位置に移動され、ここで誘導加熱コイル6に通電される。部品4の大きさがφ85×φ60×1t 程度のものである場合は2〜3秒の通電により焼入れに必要な温度840℃〜900℃に達する。
【0034】
加熱終了後、部品4は、冷却装置3の下金型用テーブル19上に移り、第3ステップにおいて、冷却装置3の第1ステップにある下金型23上に載る。
【0035】
このとき、冷却装置3の第1上下動カム31は上位にあるので、下金型23と上金型24の間は開放されており(図2、図8(a)参照)、部品4はその間隙から下金型23上に移ることができる。この状態が冷却装置3の第1ステップである。
【0036】
冷却装置3がその第2ステップに移る際に、第1上下動カム31が下位に移動し、そのカム溝38が大円弧固定カム28のカム溝35と高さが揃い(図8(b)参照)、部品4を下金型23と上金型24との間でプレスして冷却を開始する。下金型用テーブル19及び上金型用テーブル21が回転すると、カムフォロアー26は大円弧固定カム28のカム溝35に移り、下金型23と上金型24とは部品4をプレスしたまま間欠的に第2ステップ、第3ステップを順次経て第4ステップに至る。
【0037】
第4ステップにおいてカムフォロアー26が第2上下動カム32のカム溝37に移ると、その第2上下動カム32が上位に移動するので、上金型24が部品4を解放する。
【0038】
これと同時に搬出装置45のアクチュエータ48が作動され、そのアーム46により部品4を搬出通路47に送り出す。
【0039】
上記の冷却装置3において、部品4を金型23、24間でプレスして冷却する時間は8〜12秒、プレス圧力は100kgfであり、また各金型23、24は40℃以下に冷却される。
【0040】
上述のように、金型23、24による冷却時間(8〜12秒)に比べ、誘導加熱コイル6による加熱時間(2〜3秒)の方が短いので、作業効率を考慮し、各金型23、24の数を(冷却時間)/(加熱時間)によって得られる商のうちの整数に選定する。
【0041】
また、誘導加熱装置2の搬送テーブル11の凹所13のピッチ径D1 と、冷却装置3の各金型23、24のピッチ径D2 との関係は、図10に示すように、凹所13の数をn1 、各金型23、24の数をn2 とすると、D1 =P1 1 /π、D2 =P2 2 /πとなる。
【0042】
なお、凹所13のピッチP1 と、各金型23、24のピッチP2 は同じであるので、D2 =P1 2 /πとなる。
【0043】
前記の歯車51と52のピッチ径は、それぞれ上述のD1 、D2 と一致するように定められる。
【0044】
上述の熱処理装置において、部品4の内外径と、加熱コイル6の内外径の大きさの関係により、部品4の径方向の温度分布がどのように異るかについて実測した結果を図11に示す。
【0045】
図11において、Aは前記図7(a)、Bは同(b)の場合である。C、Dは比較例であり、図7(c)、同(d)の場合である。この結果によると、図7(a)のように、部品4の内径が加熱コイル6の内径と一致し、両者の内径が揃った位置関係にある場合、また同(b)のように、部品4が幾分内側へ寄った位置関係にある場合が温度分布の均一性に優れ、図7(c)の外側に寄りすぎている場合や、同(d)のように内側に寄りすぎても均一性に劣ることがわかる。
【0046】
具体的に、85φ×60φ×1.0(mm)の浸炭鋼でなる環状部品については、2秒間の通電(周波数10KHz)により850℃に誘導加熱し、加熱完了から冷却金型による拘束冷却開始までの移動時間2秒で熱処理したものについて、硬度及びそりを実測した結果、硬度はHV850〜890、そりは0.02mm以下(従来品の焼入れ後のそりは0.22〜0.37mm)であり、十分な焼入れと歪み改善が果された。
【0047】
【発明の効果】
この出願に係る熱処理方法及び熱処理装置の発明は、以上のごときものであるから、薄板リング状部品を均一加熱することができると共に、加熱後冷却金型で拘束冷却を同時に行うので、均一加熱できることと相俟って、歪みの少ない焼入れを行うことができる。
【図面の簡単な説明】
【図1】実施例の横断平面図
【図2】図1のII−II線の断面図
【図3】図1のIII −III 線の断面図
【図4】実施例の一部分解斜視図
【図5】同上の一部横断平面図
【図6】同上の一部横断正面図
【図7】(a)〜(d) 誘導加熱コイルの説明図
【図8】(a)カム装置の作用説明の展開図
(b)カム装置の作用説明の展開図
【図9】制御関係のブロック図
【図10】ピッチ径の説明図
【図11】温度分布実測図
【符号の説明】
1 ケーシング
2 誘導加熱装置
3 冷却装置
4 部品
5 搬送装置
6 誘導加熱コイル
7 搬送通路
8 ガイド壁
9 ガイド板
11 搬送テーブル
12 回転軸
13 凹所
14 ガイドアーム
15 電極
16 穴
17 冷却管
18 回転軸
19 下金型用テーブル
21 上金型用テーブル
22 凹所
23 下金型
24 上金型
25 ポスト
26 カムフォロアー
27 カム装置
28 大円弧固定カム
29 小円弧固定カム
31 第1上下動カム
32 第2上下動カム
33、34 アクチュエータ
35、36、37、38 カム溝
39、40 冷却通路
41、42 通路
43 可撓性ホース
44 キャップ
45 搬出装置
46 アーム
47 搬出通路
48 アクチュエータ
49 駆動装置
51、52 歯車
53 整合装置
54 インバータ
[0001]
[Industrial application fields]
The present invention relates to a heat treatment method and a heat treatment apparatus for a thin annular member such as a driving wheel and a side plate of a thrust needle roller bearing.
[0002]
[Prior art and problems to be solved by the invention]
As heating means necessary for quenching the thin plate annular part, generally, an electric heater, a heating means by a furnace (salt bath furnace) using a gas burner as a heat source, or a heating means by induction heating is used. As a heating means for thin annular parts having a plate thickness of 2 mm or less (for example, φ85 × φ60 × 1 t ), the former heating means can obtain uniform heating, but is inefficient in terms of energy, space, efficiency, etc. . As for the latter heating means by induction heating, various induction heating methods can be applied in the case of a sufficiently thick annular part. However, when the plate thickness is thin, there is a problem that uneven temperature and distortion of each part of the part are likely to occur. .
[0003]
Since all the conventional induction heating methods are heating methods that involve heat transfer in the part, in the case of the thin part as described above, there is a tendency that the parts other than the heating part are easily cooled, and the whole part is reduced to 2-3. It was difficult to heat evenly in a short time of about 2 seconds.
[0004]
On the other hand, in order to obtain the required quenching hardness and strain improvement effect, it is necessary to avoid the temperature drop after heating in the thin parts as described above and move to the cooling process within a short time within 2 to 4 seconds.
[0005]
Accordingly, an object of the invention according to this application is to provide a heat treatment method in which an annular part having a small plate thickness is heated evenly in a short time to obtain a required quenching hardness and a distortion improving effect.
[0006]
In addition, the invention according to this application can heat thin annular parts evenly in a short time and transfer to a cooling device in a short time after heating to obtain the required quenching hardness and strain improvement effect. An object of the present invention is to provide a heat treatment apparatus.
[0007]
[Means for solving the problems and their functions]
In the invention relating to the heat treatment method, the thin plate annular component is induction heated to a predetermined temperature by a pair of upper and lower flat plate induction heating coils, and then the component is pressed between the cooling molds.
[0008]
Further, in the invention relating to the heat treatment apparatus, in the heat treatment apparatus for the thin plate annular component comprising the induction heating device and the cooling device, the induction heating device is a pair of upper and lower flat plate induction heating coils facing the component conveying device and its conveying path. The cooling device is composed of a pair of upper and lower cooling molds and a driving device for the cooling device, and the cooling mold faces the part conveyance path on the downstream side of the induction heating coil. is there.
[0009]
Since the above parts face the flat induction heating coil and receive induction heating, the whole part is heated uniformly. The heated parts are constrained and cooled by a cooling mold, and quenching and distortion improvement are performed simultaneously.
[0010]
【Example】
As shown in FIG. 1, an induction heating device 2 and a cooling device 3 are provided inside a casing 1 of the device.
[0011]
The induction heating device 2 includes a conveying device 5 for parts 4 and a pair of upper and lower flat plate induction heating coils 6 (see FIG. 3).
[0012]
The conveyance device 5 includes a conveyance plate 7 penetrating the casing 1, a guide plate 9 having a semicircular arc guide wall 8, and a conveyance table 11 that is rotatably provided along the inside of the guide wall 8. A rotation shaft 12 (see FIG. 2) of the transfer table 11 is pivotally supported by the casing 1.
[0013]
Four recesses 13 are formed at equal intervals on the outer peripheral edge of the transfer table 11, and the parts 4 are partially received in the recesses 13.
[0014]
The guide plate 9 covers the upper and lower surfaces of the recess 13 at the position facing the inlet portion of the transport passage 7 and the other recess 13 adjacent to the rotation direction (see arrow a in FIG. 1). A semicircular portion of the transfer passage 7 is formed by the guide wall 8 and the guide arm 14 extending toward the cooling device 3, thereby guiding the component 4.
[0015]
The transfer table 11 performs an intermittent operation aligned with the cooling device 3 and the like as will be described later.
[0016]
As shown in FIG. 1, the rotation phase of the transfer table 11 is referred to as the first step, the second step,... In the rotation direction with reference to the position of the recess 13 at the position facing the entrance portion of the transfer path 7. Then, the component 4 is received in the recess 13 in the first step, and induction heating is applied to the component 4 in the second step. Then, the component 4 is transferred to the cooling device 3 in the third step. Done at the same time.
[0017]
The induction heating coil 6 is formed by forming a ring with a single flat conductor and holding both ends thereof with electrodes 15. Holes 16 (provided in the upper and lower guide plates 9 at the position of the second step ( It faces the upper and lower surfaces (see FIG. 3).
[0018]
As shown in FIG. 7A, the width of the induction heating coil 6 is provided so as to be wider than and cover the width of the component 4. Further, as shown in FIG. 7B, there is a case where the relationship is such that the inner diameter of the component 4 is slightly inward from the inner diameter of the coil 6.
[0019]
FIGS. 7A and 7B show that when a current in the same direction flows through each coil 6, a magnetic flux Φ is generated, and an induced current in the reverse direction flows through the component 4.
[0020]
In order to suppress the heat generation of the coil 6, it is desirable to attach a cooling pipe 17 on the surface opposite to the component 4 and to cool it by flowing a refrigerant therethrough.
[0021]
Next, as shown in FIGS. 2 and 3, the cooling device 3 includes a lower mold table 19 on a rotating shaft 18 that is pivotally supported on the casing 1, and an upper mold table 21 that is spaced above the lower mold table 19. Is installed.
[0022]
On the upper surface of the lower mold table 19, a notch-shaped recess 22 is provided at a position equally divided into four along the outer peripheral surface, and the lower mold 23 is housed and fixed inside the recess 22. The upper surface of the lower mold table 19 and the upper surface of the lower mold 23 are at the same height as the transfer passage 7 of the induction heating device 2.
[0023]
Further, the recess 22 and the lower mold 23 accommodated in the recess 22 are positioned so as to coincide with the component 4 at the position of the third step of the induction heating device 2 described above. The part 4 is transferred to the first step in the opposite direction (see arrow b) to the first step (see FIGS. 8A and 8B). 1 to 4 steps).
[0024]
As shown in FIG. 2, the upper mold table 21 is provided with an upper mold 24 at a position facing the lower mold 23. A post 25 provided on the upper surface of each upper mold 24 passes through the table 21 so as to be movable up and down, and a cam follower 26 (see FIG. 5) having a radial support shaft is attached to the tip thereof.
[0025]
A cam device 27 is provided on the ceiling surface of the casing 1 (see FIG. 2). As shown in FIG. 5, the cam device 27 includes a large arc fixed cam 28 having a C-shaped planar shape, a small arc fixed cam 29 opposed to the both ends thereof at a predetermined interval, and a pair of portions disposed at the interval. The first and second vertically moving cams 31 and 32 are configured. These cams 28, 29, 31, and 32 are arranged in an annular shape as a whole. The vertical movement cams 31 and 32 are moved up and down by actuators 33 and 34 such as air cylinders attached to the upper surface of the casing 1.
[0026]
Cam grooves 35 and 36 are formed on the inner peripheral surfaces of the large arc fixed cam 28 and the small arc fixed cam 29, respectively, and the cam follower 26 is fitted to the cam grooves 35 and 36, respectively. The cam groove 35 of the large arc fixed cam 28 is formed at a position one step lower than the cam groove 36 of the small arc fixed cam 29.
[0027]
Each of the vertically moving cams 31 and 32 is formed with cam grooves 37 and 38 having the same curvature center as that of the cam grooves 35 and 36 and having the same curvature radius (see FIG. 4). , 34 is moved up and down between the lower cam groove 35 and the upper cam groove 36.
[0028]
The first vertical cam 31 is provided above the upper mold 24 in the first step, and the second vertical cam 32 is provided above the upper mold 24 in the fourth step.
[0029]
As shown in FIG. 6, the lower mold 23 and the upper mold 24 are provided with cooling passages 39 and 40 through which a cooling medium passes, and the cooling passage 39 of the lower mold 23 is formed on the lower mold table 19. It communicates with the passage 42 of the rotary shaft 18 through the passage 41. The cooling passage 40 of the upper mold 24 communicates with the passage 42 of the rotating shaft 18 through the flexible hose 43. A coolant such as water or liquid nitrogen is supplied to the passage 42 of the rotary shaft 18 from the cap 44 at the upper end.
[0030]
As shown in FIG. 1, the unloading device 45 for the component 4 after the completion of quenching includes an arm 46 facing the periphery of the lower mold 23 in the fourth step of the cooling device 3, and the upper surface of the lower mold 23. And an actuator 48 such as an air cylinder that moves in the direction of the carry-out passage 47 along the axis.
[0031]
The cooling device 3 is driven by a driving device 49 shown in FIG. 2, and the driving force is transmitted to the induction heating device 2 through gears 51 and 52. The driving device 49 is a Geneva mechanism or a roller gear index mechanism. Thus, it is driven intermittently.
[0032]
Energization and shut-off of the induction heating coil 6 and the operations of the actuators 33 and 34 of the vertically moving cams 31 and 32 and the actuator 48 of the carry-out device 45 are performed by the alignment device 53 so as to be synchronized with the intermittent operation of the drive device 49. It is controlled (see FIG. 9). The inverter 54 shown in FIG. 9 supplies an alternating current to the induction heating coil 6.
[0033]
The apparatus according to the embodiment has the above-described configuration, and the operation thereof will be described next.
The thin plate-shaped component 4 is continuously supplied from the conveyance path 7 shown in FIG. 1 and is fed into the recess 13 of the conveyance table 11 temporarily stopped at the position of the first step. When the conveyance table 11 is rotated by one step, the component 4 is moved to the position of the second step, and the induction heating coil 6 is energized here. When the size of the component 4 is about φ85 × φ60 × 1 t, the temperature required for quenching reaches 840 ° C. to 900 ° C. by energization for 2 to 3 seconds.
[0034]
After the heating is finished, the component 4 moves onto the lower mold table 19 of the cooling device 3 and is placed on the lower mold 23 in the first step of the cooling device 3 in the third step.
[0035]
At this time, since the first vertical movement cam 31 of the cooling device 3 is in the upper position, the space between the lower mold 23 and the upper mold 24 is opened (see FIGS. 2 and 8A), and the component 4 is It is possible to move to the lower mold 23 from the gap. This state is the first step of the cooling device 3.
[0036]
When the cooling device 3 moves to the second step, the first vertically moving cam 31 moves downward, and the cam groove 38 is aligned with the cam groove 35 of the large arc fixed cam 28 (FIG. 8B). (See), the component 4 is pressed between the lower mold 23 and the upper mold 24 to start cooling. When the lower mold table 19 and the upper mold table 21 rotate, the cam follower 26 moves to the cam groove 35 of the large arc fixed cam 28, and the lower mold 23 and the upper mold 24 keep pressing the part 4. Intermittently through the second step and the third step, the fourth step is reached.
[0037]
When the cam follower 26 moves to the cam groove 37 of the second vertical movement cam 32 in the fourth step, the second vertical movement cam 32 moves upward, so that the upper mold 24 releases the component 4.
[0038]
At the same time, the actuator 48 of the carry-out device 45 is operated, and the arm 4 sends the component 4 to the carry-out passage 47.
[0039]
In the cooling device 3 described above, the time for pressing the part 4 between the molds 23 and 24 for cooling is 8 to 12 seconds, the pressing pressure is 100 kgf, and the molds 23 and 24 are cooled to 40 ° C. or lower. The
[0040]
As described above, the heating time (2 to 3 seconds) by the induction heating coil 6 is shorter than the cooling time (8 to 12 seconds) by the molds 23 and 24. The numbers 23 and 24 are selected as integers of the quotient obtained by (cooling time) / (heating time).
[0041]
Further, the relationship between the pitch diameter D 1 of the recess 13 of the transfer table 11 of the induction heating device 2 and the pitch diameter D 2 of the molds 23 and 24 of the cooling device 3 is shown in FIG. When the number of 13 is n 1 and the number of the molds 23 and 24 is n 2 , D 1 = P 1 n 1 / π and D 2 = P 2 n 2 / π.
[0042]
Since the pitch P 1 of the recess 13 and the pitch P 2 of the molds 23 and 24 are the same, D 2 = P 1 n 2 / π.
[0043]
The pitch diameters of the gears 51 and 52 are determined so as to coincide with the aforementioned D 1 and D 2 , respectively.
[0044]
In the above heat treatment apparatus, FIG. 11 shows the results of actual measurement of how the temperature distribution in the radial direction of the component 4 differs depending on the relationship between the inner and outer diameters of the component 4 and the inner and outer diameters of the heating coil 6. .
[0045]
In FIG. 11, A is the case of FIG. 7 (a) and B is the case of (b). C and D are comparative examples, and are the cases of FIGS. 7C and 7D. According to this result, as shown in FIG. 7A, when the inner diameter of the component 4 coincides with the inner diameter of the heating coil 6 and the inner diameters of both are in the same positional relationship, as shown in FIG. When the position 4 is slightly inward, the temperature distribution is very uniform. If it is too close to the outside of FIG. 7C, or too close to the inside as shown in FIG. It turns out that it is inferior to uniformity.
[0046]
Specifically, an annular part made of carburized steel of 85φ × 60φ × 1.0 (mm) is induction heated to 850 ° C. by energization for 2 seconds (frequency 10 KHz), and starts constrained cooling with a cooling mold after heating is completed. As a result of actually measuring the hardness and warpage of the heat-treated material with a travel time of 2 seconds, the hardness was HV850 to 890, the warpage was 0.02 mm or less (the warpage after quenching of the conventional product was 0.22 to 0.37 mm). There was sufficient quenching and distortion improvement.
[0047]
【The invention's effect】
Since the invention of the heat treatment method and the heat treatment apparatus according to this application is as described above, it is possible to uniformly heat the thin ring-shaped parts and simultaneously perform the constrained cooling in the cooling mold after heating, so that the uniform heating can be performed. In combination with this, quenching with less distortion can be performed.
[Brief description of the drawings]
1 is a cross-sectional plan view of the embodiment. FIG. 2 is a cross-sectional view taken along line II-II in FIG. 1. FIG. 3 is a cross-sectional view taken along line III-III in FIG. 5 is a partially cross-sectional plan view of the same. FIG. 6 is a partially cross-sectional front view of the same. FIG. 7 is an explanatory view of the induction heating coil. FIG. FIG. 9 is a development diagram for explaining the operation of the cam device. FIG. 9 is a block diagram for control. FIG. 10 is a diagram for explaining a pitch diameter. FIG. 11 is an actual temperature distribution diagram.
DESCRIPTION OF SYMBOLS 1 Casing 2 Induction heating apparatus 3 Cooling apparatus 4 Parts 5 Conveyance apparatus 6 Induction heating coil 7 Conveyance path 8 Guide wall 9 Guide plate 11 Conveyance table 12 Rotating shaft 13 Recess 14 Guide arm 15 Electrode 16 Hole 17 Cooling pipe 18 Rotating shaft 19 Lower mold table 21 Upper mold table 22 Recess 23 Lower mold 24 Upper mold 25 Post 26 Cam follower 27 Cam device 28 Large arc fixed cam 29 Small arc fixed cam 31 First vertical movement cam 32 Second vertical Moving cam 33, 34 Actuator 35, 36, 37, 38 Cam groove 39, 40 Cooling passage 41, 42 Passage 43 Flexible hose 44 Cap 45 Unloading device 46 Arm 47 Unloading passage 48 Actuator 49 Driving device 51, 52 Gear 53 Alignment Device 54 Inverter

Claims (7)

平板状導体によりリング状に形成された上下一対の平板状誘導加熱コイルの幅がその間に介在される薄板環状部品の幅より広く、上記誘導加熱コイルの内径と該部品の内径とが一致し、両者の内径が揃った位置関係に設定して該部品を所定温度まで誘導加熱し、次に該部品を冷却金型の間でプレスすることを特徴とする薄板環状部品の熱処理方法。 The width of the pair of upper and lower flat plate-shaped induction heating coils formed in a ring shape by the flat plate-shaped conductor is wider than the width of the thin plate annular component interposed therebetween, and the inner diameter of the induction heating coil coincides with the inner diameter of the component, heat treatment method of the sheet ring member, characterized in that by setting the positional relation both inner diameter uniform induced heating the parts to a predetermined temperature, then pressed the component between the cooling mold. 平板状導体によりリング状に形成された上下一対の平板状誘導加熱コイルの幅がその間に介在される薄板環状部品の幅より広く、かつ該部品の内径が該誘導加熱コイルの内径より若干内側に入る大きさ関係に設定して該部品を所定温度まで誘導加熱し、次に該部品を冷却金型の間でプレスすることを特徴とする薄板環状部品の熱処理方法。The width of the pair of upper and lower flat plate-shaped induction heating coils formed in a ring shape by the flat plate-shaped conductor is wider than the width of the thin plate annular component interposed therebetween, and the inner diameter of the component is slightly inside the inner diameter of the induction heating coil. A method for heat-treating a thin plate annular part, wherein the part is induction-heated to a predetermined temperature by setting the size relationship so as to enter, and then the part is pressed between cooling molds. 誘導加熱装置と冷却装置とからなる薄板環状部品の熱処理装置において、上記誘導加熱装置を部品の搬送装置とその搬送路に臨む上下一対の平板状誘導加熱コイルとにより構成し、該誘導加熱コイルの幅がその間に介在される薄板環状部品の幅より広く、上記誘導加熱コイルの内径と該部品の内径とが一致し、両者の内径が揃った位置関係に設定して該部品を所定温度まで誘導加熱するように構成し、上記冷却装置を上下一対の冷却金型とその駆動装置とにより構成し、上記冷却金型を上記誘導加熱コイルの下流側において部品の搬送路に臨ませたことを特徴とする薄板環状部品の熱処理装置。In a heat treatment apparatus for a thin annular part composed of an induction heating device and a cooling device, the induction heating device is composed of a component conveying device and a pair of upper and lower flat plate induction heating coils facing the conveying path . The width is wider than the width of the thin annular part interposed between them, the inner diameter of the induction heating coil coincides with the inner diameter of the part, and the parts are set in a positional relationship in which both inner diameters are aligned to induce the part to a predetermined temperature. The cooling device is configured by a pair of upper and lower cooling molds and a driving device thereof, and the cooling mold faces a part conveyance path on the downstream side of the induction heating coil. Heat treatment equipment for thin plate annular parts. 誘導加熱装置と冷却装置とからなる薄板環状部品の熱処理装置において、上記誘導加熱装置を部品の搬送装置とその搬送路に臨む上下一対の平板状誘導加熱コイルとにより構成し、該誘導加熱コイルの幅がその間に介在される薄板環状部品の幅より広く、かつ該部品の内径が該誘導加熱コイルの内径より若干内側に入る大きさ関係に設定して該部品を所定温度まで誘導加熱するように構成し、上記冷却装置を上下一対の冷却金型とその駆動装置とにより構成し、上記冷却金型を上記誘導加熱コイルの下流側において部品の搬送路に臨ませたことを特徴とする薄板環状部品の熱処理装置。In a heat treatment apparatus for a thin annular part composed of an induction heating device and a cooling device, the induction heating device is composed of a component transfer device and a pair of upper and lower flat plate induction heating coils facing the transfer path. The part is induction heated to a predetermined temperature by setting the width relationship so that it is wider than the width of the thin annular part interposed therebetween and the inner diameter of the part is slightly inside the inner diameter of the induction heating coil. The cooling device is constituted by a pair of upper and lower cooling molds and a driving device thereof, and the cooling mold is made to face the part conveyance path on the downstream side of the induction heating coil. Heat treatment equipment for parts. 上記搬送装置は、搬送路の内側に沿って回転する部品搬送テーブルを有し、該テーブル周縁に部品保持用凹所を一定間隔に設け、上記冷却装置に下金型及び上金型の搬送テーブル並びに上金型の上下動装置を設け、上記部品搬送テーブルと下金型及び上金型の搬送テーブル並びに上金型の上下動装置の間欠作動の整合装置を設けたことを特徴とする請求項3又は4に記載の薄板環状部品の熱処理装置。The conveying device has a component conveying table that rotates along the inner side of the conveying path, and is provided with recesses for holding components at regular intervals on the periphery of the table, and the cooling device has a conveying table for a lower die and an upper die. A vertical movement device for the upper mold is provided, and an alignment device for intermittent operation of the component movement table, the lower mold, the upper mold conveyance table, and the upper mold vertical movement device is provided. A heat treatment apparatus for a thin annular part according to 3 or 4 . 上記の上金型駆動装置は、各上金型の上面に一体に設けた上下動用ポストと、各ポストを上金型搬送テーブルに上下動自在に貫通せしめ、各ポストの上端に取付けたカムフォロアーをカム装置のカム溝に嵌合させ、上記カム溝に部分的に上位となるカム溝と下位となるカム溝を形成し、上位のカム溝にカムフォロアーが嵌合した場合に上金型を上昇させて部品を受取り、下位のカム溝にカムフォロアーが嵌合した場合に両金型間で部品をプレスするようにしたことを特徴とする請求項に記載の薄板環状部品の熱処理装置。The upper mold drive device includes a vertical movement post integrally provided on the upper surface of each upper mold, and a cam follower that is attached to the upper end of each post by vertically passing each post through the upper mold conveyance table. Is fitted into the cam groove of the cam device, and a cam groove that is partially upper and lower is formed in the cam groove, and when the cam follower is fitted to the upper cam groove, the upper mold is The thin plate annular part heat treatment apparatus according to claim 5 , wherein the part is received by being raised and the part is pressed between both molds when the cam follower is fitted in the lower cam groove. 上記のカム装置は、大円弧固定カムと、その両端に配置された一対の上下動カム及び各上下動カム装置間に配置された小円弧固定カムとにより構成され、上記大円弧固定カム内周面に小円弧固定カム内周面のカム溝より位置の低いカム溝を形成し、上記上下動カム装置をそのカム溝が大円弧固定カムと小円弧固定カムの高さに択一的に合致するよう上下動自在に設けたことを特徴とする請求項に記載の薄板環状部品の熱処理装置。The cam device includes a large arc fixed cam, a pair of vertical cams disposed at both ends thereof, and a small arc fixed cam disposed between the vertical cam devices. A cam groove with a lower position than the cam groove on the inner peripheral surface of the small arc fixed cam is formed on the surface, and the cam groove of the vertical movement cam device selectively matches the height of the large arc fixed cam and the small arc fixed cam. The thin plate annular part heat treatment apparatus according to claim 6 , wherein the apparatus is provided so as to be movable up and down.
JP32288194A 1994-12-26 1994-12-26 Heat treatment method and heat treatment apparatus for thin plate annular part Expired - Lifetime JP3638647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32288194A JP3638647B2 (en) 1994-12-26 1994-12-26 Heat treatment method and heat treatment apparatus for thin plate annular part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32288194A JP3638647B2 (en) 1994-12-26 1994-12-26 Heat treatment method and heat treatment apparatus for thin plate annular part

Publications (2)

Publication Number Publication Date
JPH08180966A JPH08180966A (en) 1996-07-12
JP3638647B2 true JP3638647B2 (en) 2005-04-13

Family

ID=18148662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32288194A Expired - Lifetime JP3638647B2 (en) 1994-12-26 1994-12-26 Heat treatment method and heat treatment apparatus for thin plate annular part

Country Status (1)

Country Link
JP (1) JP3638647B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4849508B2 (en) * 2005-06-02 2012-01-11 高周波熱錬株式会社 An induction heating and quenching method and a coil for induction heating and quenching of a disk member having an uneven portion on a plane.

Also Published As

Publication number Publication date
JPH08180966A (en) 1996-07-12

Similar Documents

Publication Publication Date Title
JP3839228B2 (en) Raw tire preheating method and apparatus
JP5420947B2 (en) Induction hardening equipment for large parts
KR20060066727A (en) Heat treating device and heat treating method
US4082936A (en) Device and method for heating die
KR20190060796A (en) Rotary magnet heat induction
JP3638647B2 (en) Heat treatment method and heat treatment apparatus for thin plate annular part
JP3810621B2 (en) Induction heating coil and heat treatment method for shaft member having multi-shaped heat treatment part
JP3925149B2 (en) Continuous heat treatment equipment for thick steel plates.
JP2000087134A (en) Induction heating coil for shaft body with steps and hardening device
JP3326406B2 (en) Electromagnetic induction heating method for cylindrical mold and electromagnetic induction heating apparatus
JP2005330545A (en) High frequency induction hardening method and its apparatus
JP2009167484A (en) Heat-treatment apparatus for cylindrical metallic member
US5157233A (en) Electromagnetic induction heater for heating a continuous thin sheet without undulation
JP4658027B2 (en) High frequency induction heating coil for heating shaft member
JP2002167620A (en) Induction hardening method of cam shaft, and apparatus therefor
JP5667786B2 (en) Induction heating apparatus and induction heating method
JPH0525554A (en) Continuous heat-treating device for metallic body
JP3647648B2 (en) Induction heating device
JP4198405B2 (en) Induction heating and tempering equipment for cylindrical members and cylinder blocks with varying wall thickness
JP2005330543A (en) High frequency induction heat-treatment apparatus
JP3548284B2 (en) Manufacturing method of induction heating coil
JP4933482B2 (en) High frequency induction heating device for heating shaft-shaped members
CN114032362A (en) Workpiece hole heat treatment device
JP2005330544A (en) High frequency induction hardening apparatus
JP2000087211A (en) High frequency remelting treatment method and device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term