JP3638645B2 - Production and use of hollow porous carrier using starch - Google Patents

Production and use of hollow porous carrier using starch Download PDF

Info

Publication number
JP3638645B2
JP3638645B2 JP29097994A JP29097994A JP3638645B2 JP 3638645 B2 JP3638645 B2 JP 3638645B2 JP 29097994 A JP29097994 A JP 29097994A JP 29097994 A JP29097994 A JP 29097994A JP 3638645 B2 JP3638645 B2 JP 3638645B2
Authority
JP
Japan
Prior art keywords
starch
hollow
particles
porous carrier
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29097994A
Other languages
Japanese (ja)
Other versions
JPH08143602A (en
Inventor
清之助 島田
悦子 高木
謙一 工藤
嘉樹 蔵橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanwa Starch Co Ltd
Original Assignee
Sanwa Starch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanwa Starch Co Ltd filed Critical Sanwa Starch Co Ltd
Priority to JP29097994A priority Critical patent/JP3638645B2/en
Publication of JPH08143602A publication Critical patent/JPH08143602A/en
Application granted granted Critical
Publication of JP3638645B2 publication Critical patent/JP3638645B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
本発明は、内部に中空部を有する湿熱処理澱粉粒子に、澱粉分解能を有する酵素を作用させ中空多孔性となし、当該粒子の中空部及び孔部に、目的物質を担持する機能を持つ中空多孔性澱粉粒子よりなる中空多孔性担体及びその製造方法並びに当該中空多孔性担体を用いた製剤及びその製造方法に関する。本発明の中空多孔性担体に担持した製剤は、制御可能な安定性、持続性、除放性などの機能を付与されているため、医薬品、農薬、香料、肥料などの分野において、優れた効果並びに経済性を発揮することができる。
【0002】
【従来の技術】
従来より、香料、色素、医薬、農薬、肥料など目的物質の保護、安定化、効力の持続あるいは所定の条件で放出させる手段として、マイクロカプセル中に包接、イオン交換樹脂に結合、ワックス中に分散するなどの技術がある。更に、小型化を目指した方法として、特開平1−159047では、澱粉粒子を架橋し、この内部を生澱粉分解酵素により分解しマイクロカプセルとしている。また、特開平5−112469では、澱粉に生澱粉分解酵素を作用させた多孔性澱粉粒よりなる多孔性担体を用いて、目的物質を該多孔性担体の孔部に担持させている。
【0003】
しかしながら、上記した従来の技術のうち、マイクロカプセル、イオン交換樹脂およびワックスを用いる方法は、効力の持続性や放出条件の制御が難しい。また、特開平1−159047の方法、すなわち澱粉粒子を架橋した後、生澱粉分解酵素で中空部をつくる方では、架橋反応という煩雑な処理が必要であり、人体に対する架橋剤の毒性も危惧される。さらに、特開平5−112469では、酵素により未処理の生澱粉を生澱粉分解酵素により分解する結果、多孔性になった澱粉粒子は非常にもろくなり、加熱あるいは撹拌により粒子が崩壊してしまうため、多孔性担体として使用しがたい。
【0004】
【発明が解決しようとする課題】
本発明は、第1に、内部に中空部を有する湿熱処理澱粉粒子に、澱粉分解能を有する酵素を作用させ多孔性となし、当該粒子の中空部及び孔部に、目的物質を担持する機能を持つ中空多孔性澱粉粒子よりなる中空多孔性担体を提供することを目的とする。
【0005】
第2に、内部に中空部を有する湿熱処理澱粉粒子に、澱粉分解能を有する酵素を作用させ多孔性となし、当該粒子の中空部及び孔部に、目的物質を担持する機能を持つ中空多孔性澱粉粒子とすることで製造する中空多孔性担体の製造方法を提供することを目的とする。
【0006】
第3に、内部に中空部を有する湿熱処理澱粉粒子に、澱粉分解能を有する酵素を作用させ多孔性となし、当該粒子の中空部及び孔部に、目的物質を担持させた製剤を提供することを目的とする。
【0007】
第4に、内部に中空部を有する湿熱処理澱粉粒子に、澱粉分解能を有する酵素を作用させ多孔性となし、当該粒子の中空部及び孔部に、目的物質を担持させることで製造する製剤の製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、(a)澱粉粒子を湿熱処理することにより澱粉の中空粒子を得る工程;および(b)得られる中空湿熱澱粉粒子に澱粉分解能を有する酵素を作用させて多孔性ととする工程;を包含する中空多孔性担体の製造方法を提供するものであり、そのことにより上記目的が達成される。
【0009】
澱粉粒子を担体として、使用する場合の有利な点は、その粒子サイズがミクロン単位と小さいこと、更に、その粒径分布はアマランサス澱粉の約1μmから馬鈴薯澱粉の約100μmと広く、澱粉の種類を選択することにより保持時間、放出時間の調節が可能なことである。その上、澱粉、特に薬品などで処理されていない澱粉には食品あるいは医薬などの用途において安心して使用できる利点がある。
【0010】
更に、湿熱処理澱粉粒子を使用する場合の有利な点として、本発明者らが発見し、第34回澱粉研究懇談会、資料集、27頁(1994年6月)で報告している下記の事実を挙げることができる。通常の澱粉粒子の内部が、澱粉分子で完全に充填され、空隙、空洞が存在しないのに反し、適当な条件で湿熱処理された澱粉粒子の内部には、ほぼ中心部に澱粉粒子の直径の約2分の1以上の大きさの直径を持つ真球状の中空部が存在することである。この中空部の空間は目的物の担持にとってきわめて有利なものである。従って、澱粉分解酵素を作用させ、澱粉粒子の表面から中空部にまで到達する孔を造り、孔部を経て目的物質を粒子の中空部にまで導くことにより、孔部及び中空部に効率よく大量に充填することができる。
【0011】
更に、本発明者らは、湿熱処理澱粉粒子は、内部が空洞化した分だけ、外側の構造が強化されていることも見出している。例えば、湿熱処理されたコーンスターチの場合、通常、水中、100℃、強い撹拌下に数10分の加熱により、やや膨潤するが、崩壊、糊化することはない。一方、未処理のコーンスターチでは、95℃、20分の加熱により容易に膨潤、糊化するほど澱粉粒子は脆い。このような澱粉粒子の欠点を改良するため、特開平1−159047では、エピクロロヒドリン、トリメタリン酸ナトリウムなどで架橋し粒子構造の強化を計っている。
【0012】
しかしこれらの薬品は人体に対する安全性に問題があり好ましくない。他方、湿熱処理澱粉は、水と熱のみの処理で得られる、天然物と同様な澱粉であり、その上、優れた耐熱性、機械耐性を備えている。従って、湿熱処理澱粉粒子から多孔性担体を製造し、目的物質を担持さすことは、きわめて有意義なことである。
【0013】
湿熱処理澱粉粒子は、熱的並びに機械的特性が改善されている反面において、澱粉分解性酵素に対する消化性は向上している。例えば、125℃、30分、水分25%で湿熱処理した澱粉のα-アミラーゼ消化性は、スピターゼLHを用い、40℃、2時間反応後、70%であるのに対し、未処理のコーンスターチは、同一条件で6%の消化性しか示さなかった。湿熱処理澱粉粒子におけるこのようなアミラーゼ消化性の飛躍的向上は、生澱粉を用いる従来法では、生澱粉分解酵素しか使用が許されなかったのに反し、すべての澱粉分解性酵素の使用が可能であり、酵素の使用量も削減することができ工業上きわめて有利である。更に、湿熱処理澱粉粒子の有利な点は、既に述べたように、粒子の外殻構造が強化されている分だけ、内部は中空部以外の部分も脆くなっているため、酵素による分解も起こり易く、粒子内部の中空部体積は増加し易い。結果として、粒子表面には少ない数の小さい孔を造り、粒子の外殻構造を強固に保ったままで、粒子内部の有効保持体積を増加さすことができる。
【0014】
本発明で使用する澱粉の種類については、特に制限はなく、通常の澱粉例えばコーンスターチ、ハイアミロースコーンスターチ、馬鈴薯澱粉、小麦澱粉、米澱粉などが挙げられる。
【0015】
本発明で使用する湿熱処理条件については、特に制限はないが、通常、温度90から150℃、水分15から40%、時間10分から15時間の範囲で澱粉を処理する。処理条件が弱い場合には、内部の中空部が形成できないか、できてもその体積が小さい。従って、澱粉の種類を考慮した上で、十分大きな中空のできる条件を選ぶことが肝要である。
【0016】
本発明に用いる澱粉分解酵素としては、湿熱処理澱粉の酵素消化性は格段に向上しているので、上記のように生澱粉分解酵素に限定されることなく、通常のα-アミラーゼ、グルコアミラーゼなど澱粉分解酵素のいずれもが使用できる。
【0017】
本発明の中空多孔性担体に目的物質を担持させる方法は、特に制限されるものではないが、目的物質が液体の場合には、中空多孔性担体に含浸、混合して担持させる。固体の場合には、粉末にして混合後、ボールミル、ハイブリダイザー(商品名:(株)奈良機械製作所製)などのような機械的方法で担持させることができる。また、溶媒に溶解し、吸収後、溶媒を蒸発乾燥し、担持させる方法などがある。
【0018】
更に、目的物質を担持した担体を、適当なコーティング材で被覆し安定化することもできる。コーティング材としては、特に制限はなく通常のコーティング材が用いられるが、例えば、蛋白、多糖類、天然樹脂などが例示される。
【0019】
【実施例】
次に実施例を挙げて本発明を詳しく説明するが、本発明はこれらの実施例にのみ制限されるものではない。
【0020】
実施例1
中空部を有する湿熱処理コーンスターチ粒子の作成
コーンスターチ1000gを2リットルの耐圧反応層に充填し、撹拌下に真空ポンプで30mmHgまで減圧にし、ついで過熱スチームを導入し、温度125℃で60分間加熱後、再度100mmHgまで減圧にし冷却する。得られた湿熱処理澱粉粒子をパラフィンワックスで固定し、マイナス40℃でマイクロトームにより切断し、走査電子顕微鏡で観察した結果、中心部に澱粉粒子の直径の約2分の1の直径の真球状の中空部が認められた。また、本方法で得られた湿熱処理澱粉は95℃、30分以上の撹拌下の加熱においても、粒子の崩壊、糊化は認められなかった。
【0021】
実施例2
α-アミラーゼによる多孔化
実施例1で得られた中空部を有する湿熱処理コーンスターチ粒子を、以下の条件で酵素分解した。湿熱処理コーンスターチ濃度0.4%、BLA(長瀬産業(株)製結晶細菌液化型アミラーゼ)0.002%、酢酸緩衝液0.02M(pH 4.8)、温度35℃、24時間、撹拌下に反応させた。酵素を失活後、濾過、水洗、乾燥して中空多孔体を得た。顕微鏡観察により、澱粉粒子1個あたり数10個以上の孔が認められた。フェノール−硫酸法によって測定した可溶化率は50%であった。
【0022】
実施例3
ペパーミントオイルの中空多孔性担体への担持
実施例2で得られた中空多孔性担体100部に対し十分に乾燥した条件下で、ペパーミントオイル100部を加え、10分間室温で撹拌し、ペパーミントオイルを中空多孔性担体へ担持した製剤を得た。なお、本担体へ担持できる目的物質は、ペパーミントオイルに限られず、医薬、農薬、肥料なども担持が可能である。
安定保持時間も数か月以上と長く、十分に実用用途へ適応できるものであった。
【0023】
実施例4
大豆油の中空多孔性担体への担持
実施例2で得られた中空多孔性担体100部に対し十分に乾燥した条件下で、大豆油700部を加え、10分間室温で撹拌し、大豆油を中空多孔性担体へ担持した製剤を得た。
【0024】
実施例5
中空部を有する湿熱処理馬鈴薯澱粉粒子の作成
馬鈴薯澱粉1000gを2 の耐圧反応層に充填し、撹拌下に真空ポンプで60mmHgまで減圧にし、ついで過熱スチームを導入し、温度130℃、水分25%で60分間加熱後、再度100mmHgまで減圧し冷却する。得られた湿熱処理澱粉粒子の切断面の走査電子顕微鏡写真は、中心部に澱粉粒子の直径の約2分の1の直径の真球状の中空部を示した。
【0025】
実施例6
グルコアミラーゼによる多孔化
実施例5で得られた中空部を有する湿熱処理馬鈴薯澱粉粒子を、実施例2と同様の条件でグルコアミラーゼ(天野製薬株式会社、グルクザイムAF6)により分解した。但し、反応時間は144時間、撹拌下に行った。酵素を失活後、濾過、水洗、乾燥して中空多孔体を得た。顕微鏡観察により、澱粉粒子には無数の孔が認められた。フェノール−硫酸法によって測定した可溶化率は45%であった。
【0026】
実施例7
実施例6で得られた中空多孔性担体100部に対し十分に乾燥した条件下で、ペパーミントオイル80部を加え、10分間室温で撹拌し、ペパーミントオイルを中空多孔性担体へ担持した製剤を得た。
【0027】
【発明の効果】
本発明の湿熱処理澱粉粒子を用いた中空多孔性担体は、人体に対し安全で、しかも担持容量が大きく、熱的、機械的性質にも優れている。本中空多孔性担体を用いる目的物質の担持方法は簡単、高効率である。その製剤は安定し、効力の持続性、放出の制御性に優れている。
[0001]
[Industrial application fields]
The present invention is a hollow porous material having a function of supporting a target substance in the hollow part and pore part of the particle by causing an enzyme having starch decomposing action to act on the wet heat-treated starch particles having a hollow part inside. The present invention relates to a hollow porous carrier comprising conductive starch particles, a method for producing the same, a preparation using the hollow porous carrier, and a method for producing the same. Since the preparation supported on the hollow porous carrier of the present invention has functions such as controllable stability, sustainability and sustained release, it has excellent effects in fields such as pharmaceuticals, agricultural chemicals, fragrances and fertilizers. In addition, economic efficiency can be exhibited.
[0002]
[Prior art]
Conventionally, as a means to protect, stabilize, maintain efficacy or release under specified conditions for target substances such as fragrances, pigments, pharmaceuticals, agricultural chemicals, and fertilizers, inclusion in microcapsules, binding to ion exchange resins, in wax There are techniques such as decentralization. Furthermore, as a method aiming at miniaturization, Japanese Patent Laid-Open No. 1-159047 crosslinks starch particles and decomposes the inside with a raw starch degrading enzyme to form microcapsules. In JP-A-5-112469, a target substance is supported in the pores of a porous carrier using a porous carrier made of porous starch granules in which a raw starch-degrading enzyme is allowed to act on starch.
[0003]
However, among the above-described conventional techniques, in the method using microcapsules, ion exchange resins and waxes, it is difficult to maintain the efficacy and control the release conditions. Further, the method disclosed in Japanese Patent Application Laid-Open No. 1-159047, that is, the method of forming a hollow portion with a raw starch-degrading enzyme after crosslinking starch particles requires a complicated treatment called a crosslinking reaction, and the toxicity of the crosslinking agent to the human body is also a concern. . Furthermore, in JP-A-5-111469, as a result of decomposing untreated raw starch by an enzyme with a raw starch-degrading enzyme, the porous starch particles become very brittle, and the particles collapse due to heating or stirring. It is difficult to use as a porous carrier.
[0004]
[Problems to be solved by the invention]
The first aspect of the present invention is that a hydrothermally treated starch particle having a hollow portion is made porous by allowing an enzyme having starch decomposing action to be porous, and has a function of supporting a target substance in the hollow portion and pore portion of the particle. An object is to provide a hollow porous carrier comprising hollow porous starch particles.
[0005]
Secondly, the wet heat-treated starch particles having a hollow portion therein are made porous by allowing an enzyme having starch decomposing action to act, and the hollow porosity and function of supporting the target substance in the hollow portions and pore portions of the particles. It aims at providing the manufacturing method of the hollow porous support | carrier manufactured by setting it as starch particle | grains.
[0006]
Third, to provide a formulation in which an enzyme having starch decomposing action is made porous on wet-heat-treated starch particles having a hollow portion therein, and the target substance is supported in the hollow portion and pore portion of the particle. With the goal.
[0007]
Fourth, a wet-heat-treated starch particle having a hollow part inside is made porous by allowing an enzyme having starch decomposing action to be porous, and the target substance is supported in the hollow part and pore part of the particle. An object is to provide a manufacturing method.
[0008]
[Means for Solving the Problems]
The present invention includes (a) a step of obtaining starch hollow particles by heat-treating the starch particles; and (b) a step of allowing the resulting hollow wet-heat starch particles to be made porous by causing an enzyme having starch decomposability to act; In which the above object is achieved.
[0009]
The advantage of using starch particles as a carrier is that the particle size is as small as micron, and the particle size distribution is wide from about 1 μm for amaranth starch to about 100 μm for potato starch. By selecting, it is possible to adjust the retention time and the release time. In addition, starch, particularly starch that has not been treated with chemicals, has the advantage that it can be used with peace of mind in applications such as food or medicine.
[0010]
Further, as an advantage in the case of using wet heat-treated starch particles, the present inventors have discovered and reported in the 34th Starch Research Meeting, Reference Material, page 27 (June 1994) I can mention the facts. The inside of normal starch particles is completely filled with starch molecules, and there are no voids or cavities. On the other hand, starch particles that have been heat-moisture treated under appropriate conditions have a diameter approximately equal to the diameter of the starch particles. That is, there is a true spherical hollow portion having a diameter of about a half or more. This space in the hollow portion is extremely advantageous for carrying the object. Therefore, by making the starch degrading enzyme act, creating a hole that reaches the hollow part from the surface of the starch particle, and guiding the target substance to the hollow part of the particle through the hole part, it is possible to efficiently produce a large amount in the hole part and the hollow part. Can be filled.
[0011]
Furthermore, the present inventors have also found that the wet-heat-treated starch particles have an outer structure that is reinforced by the amount of cavitation inside. For example, in the case of corn starch that has been subjected to wet heat treatment, it usually swells slightly by heating in water at 100 ° C. under strong stirring for several tens of minutes, but does not disintegrate or gelatinize. On the other hand, in the untreated corn starch, the starch particles are more fragile as they are easily swollen and gelatinized by heating at 95 ° C. for 20 minutes. In order to improve the disadvantages of such starch particles, Japanese Patent Application Laid-Open No. 1-159047 attempts to strengthen the particle structure by crosslinking with epichlorohydrin, sodium trimetaphosphate or the like.
[0012]
However, these chemicals are not preferred because they have problems with safety to the human body. On the other hand, the wet heat-treated starch is a starch similar to a natural product obtained by treatment only with water and heat, and also has excellent heat resistance and mechanical resistance. Therefore, it is very meaningful to produce a porous carrier from wet heat-treated starch particles and to carry the target substance.
[0013]
Although the heat-treated starch particles have improved thermal and mechanical properties, the digestibility to starch-degrading enzymes is improved. For example, starch that has been heat-moisture treated at 125 ° C. for 30 minutes and moisture of 25% has an α-amylase digestibility of 70% after reacting at 40 ° C. for 2 hours using spitase LH, whereas untreated corn starch is It showed only 6% digestibility under the same conditions. Such dramatic improvement in amylase digestibility in heat-moisture treated starch particles allows the use of all starch-degrading enzymes, whereas conventional methods using raw starch only allowed the use of raw starch-degrading enzymes. In addition, the amount of enzyme used can be reduced, which is extremely advantageous in industry. In addition, as described above, the advantage of the wet heat-treated starch particles is that the outer shell structure of the particles has been strengthened, so that the inside is also fragile except for the hollow portion. It is easy to increase the volume of the hollow portion inside the particle. As a result, a small number of small holes can be formed on the particle surface, and the effective retention volume inside the particle can be increased while the outer shell structure of the particle is kept strong.
[0014]
There is no restriction | limiting in particular about the kind of starch used by this invention, For example, normal starch, for example, corn starch, high amylose corn starch, potato starch, wheat starch, rice starch, etc. are mentioned.
[0015]
Although there is no restriction | limiting in particular about the wet heat treatment conditions used by this invention, Usually, starch is processed in the temperature of 90 to 150 degreeC, the water | moisture content of 15 to 40%, and the time for 10 minutes to 15 hours. When the processing conditions are weak, the inner hollow portion cannot be formed or the volume is small. Therefore, it is important to select a sufficiently large hollow condition in consideration of the type of starch.
[0016]
As the starch degrading enzyme used in the present invention, the enzymatic digestibility of the wet heat-treated starch is remarkably improved, so that it is not limited to the raw starch degrading enzyme as described above, and normal α-amylase, glucoamylase, etc. Any of the amylolytic enzymes can be used.
[0017]
The method for supporting the target substance on the hollow porous carrier of the present invention is not particularly limited, but when the target substance is a liquid, the hollow porous carrier is impregnated, mixed and supported. In the case of a solid, after being powdered and mixed, it can be supported by a mechanical method such as a ball mill or a hybridizer (trade name: manufactured by Nara Machinery Co., Ltd.). Further, there is a method of dissolving in a solvent, absorbing, evaporating and drying the solvent, and carrying it.
[0018]
Furthermore, the carrier carrying the target substance can be coated with an appropriate coating material and stabilized. The coating material is not particularly limited, and a normal coating material is used. Examples thereof include proteins, polysaccharides, and natural resins.
[0019]
【Example】
EXAMPLES Next, although an Example is given and this invention is demonstrated in detail, this invention is not restrict | limited only to these Examples.
[0020]
Example 1
Preparation of wet heat-treated cornstarch particles having a hollow part 1000 g of cornstarch was filled in a pressure-resistant reaction layer of 2 liters, and the pressure was reduced to 30 mmHg with a vacuum pump with stirring. Then, superheated steam was introduced, heated at a temperature of 125 ° C. for 60 minutes, Reduce the pressure to 100 mmHg again and cool. The obtained wet heat-treated starch particles were fixed with paraffin wax, cut with a microtome at −40 ° C., and observed with a scanning electron microscope. As a result, a spherical shape having a diameter of about one-half of the diameter of the starch particles at the center. The hollow part was recognized. In addition, the wet-heat-treated starch obtained by this method did not disintegrate or gelatinize even when heated at 95 ° C. with stirring for 30 minutes or more.
[0021]
Example 2
Porousization with α-amylase The heat-treated corn starch particles having a hollow portion obtained in Example 1 were enzymatically decomposed under the following conditions. Hygrothermal corn starch concentration 0.4%, BLA (Nagase Sangyo Co., Ltd. crystal liquefaction amylase) 0.002%, acetate buffer 0.02M (pH 4.8), temperature 35 ° C., 24 hours, with stirring To react. After deactivating the enzyme, it was filtered, washed with water and dried to obtain a hollow porous body. By microscopic observation, several tens or more pores were observed per starch particle. The solubilization rate measured by the phenol-sulfuric acid method was 50%.
[0022]
Example 3
Loading Peppermint Oil on Hollow Porous Carrier 100 parts of peppermint oil was added to 100 parts of the hollow porous carrier obtained in Example 2 under sufficiently dry conditions and stirred at room temperature for 10 minutes. A preparation supported on a hollow porous carrier was obtained. The target substance that can be supported on the carrier is not limited to peppermint oil, but can also support drugs, agricultural chemicals, fertilizers, and the like.
The stable holding time was as long as several months or more, and it was fully adaptable to practical use.
[0023]
Example 4
Loading Soybean Oil on Hollow Porous Carrier 700 parts of soybean oil was added to 100 parts of the hollow porous carrier obtained in Example 2, and the mixture was stirred for 10 minutes at room temperature. A preparation supported on a hollow porous carrier was obtained.
[0024]
Example 5
Preparation of wet heat-treated potato starch particles having a hollow part 1000 g of potato starch was filled in 2 pressure-resistant reaction layers, and the pressure was reduced to 60 mmHg with a vacuum pump under stirring, followed by introduction of superheated steam at a temperature of 130 ° C. and a moisture of 25%. After heating for 60 minutes, the pressure is reduced to 100 mmHg and cooled again. A scanning electron micrograph of the cut surface of the obtained heat-moisture treated starch particles showed a true spherical hollow portion having a diameter about one-half of the diameter of the starch particles at the center.
[0025]
Example 6
Porous formation with glucoamylase The wet heat-treated potato starch particles having a hollow part obtained in Example 5 were decomposed with glucoamylase (Amano Pharmaceutical Co., Ltd., Gluczyme AF6) under the same conditions as in Example 2. However, the reaction time was 144 hours with stirring. After deactivating the enzyme, it was filtered, washed with water and dried to obtain a hollow porous body. A myriad of pores was observed in the starch particles by microscopic observation. The solubilization rate measured by the phenol-sulfuric acid method was 45%.
[0026]
Example 7
Under sufficiently dry conditions with respect to 100 parts of the hollow porous carrier obtained in Example 6, 80 parts of peppermint oil was added and stirred at room temperature for 10 minutes to obtain a preparation in which the peppermint oil was supported on the hollow porous carrier. It was.
[0027]
【The invention's effect】
The hollow porous carrier using the wet heat-treated starch particles of the present invention is safe for the human body, has a large carrying capacity, and is excellent in thermal and mechanical properties. The loading method of the target substance using the present hollow porous carrier is simple and highly efficient. The formulation is stable and has excellent sustained efficacy and controlled release.

Claims (1)

(a)澱粉粒子を湿熱処理することにより澱粉の中空粒子を得る工程;および
(b)得られる中空湿熱澱粉粒子に澱粉分解能を有する酵素を作用させて多孔性ととする工程;
を包含する中空多孔性担体の製造方法。
(a) obtaining starch hollow particles by heat-treating the starch particles; and
(b) a step of making the resulting hollow moist and hot starch particles porous with an enzyme having starch decomposability;
A process for producing a hollow porous carrier comprising
JP29097994A 1994-11-25 1994-11-25 Production and use of hollow porous carrier using starch Expired - Lifetime JP3638645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29097994A JP3638645B2 (en) 1994-11-25 1994-11-25 Production and use of hollow porous carrier using starch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29097994A JP3638645B2 (en) 1994-11-25 1994-11-25 Production and use of hollow porous carrier using starch

Publications (2)

Publication Number Publication Date
JPH08143602A JPH08143602A (en) 1996-06-04
JP3638645B2 true JP3638645B2 (en) 2005-04-13

Family

ID=17762900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29097994A Expired - Lifetime JP3638645B2 (en) 1994-11-25 1994-11-25 Production and use of hollow porous carrier using starch

Country Status (1)

Country Link
JP (1) JP3638645B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11850293B2 (en) * 2018-09-21 2023-12-26 The Procter & Gamble Company Active agent-containing matrix particles and processes for making same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005005484A1 (en) * 2003-07-11 2005-01-20 Asahi Kasei Chemicals Corporation Functional starch powder
JP5159092B2 (en) * 2005-11-11 2013-03-06 旭化成ケミカルズ株式会社 Solid formulation that controls the elution of active ingredients to be sustained release
JP5159094B2 (en) * 2005-11-11 2013-03-06 旭化成ケミカルズ株式会社 Nucleated solid preparations that control the elution of active ingredients to be sustained release
JP5159095B2 (en) * 2005-11-11 2013-03-06 旭化成ケミカルズ株式会社 Solid formulation that controls the elution of active ingredients to be sustained release
JP5159091B2 (en) * 2005-11-11 2013-03-06 旭化成ケミカルズ株式会社 Solid formulation that controls the elution of active ingredients to be sustained release
JP5159093B2 (en) * 2005-11-11 2013-03-06 旭化成ケミカルズ株式会社 Multi-layer solid preparation that controls the release of active ingredients to be sustained release
JP4572206B2 (en) * 2007-01-31 2010-11-04 大王製紙株式会社 Application method of toilet paper and fragrance composition on toilet paper
CN105384831A (en) * 2015-12-13 2016-03-09 熊小芳 Preparation method of crosslinked starch containing 3-chloro-1,2-epoxypropane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11850293B2 (en) * 2018-09-21 2023-12-26 The Procter & Gamble Company Active agent-containing matrix particles and processes for making same

Also Published As

Publication number Publication date
JPH08143602A (en) 1996-06-04

Similar Documents

Publication Publication Date Title
Kaziem et al. α-Amylase triggered carriers based on cyclodextrin anchored hollow mesoporous silica for enhancing insecticidal activity of avermectin against Plutella xylostella
US4985082A (en) Microporous granular starch matrix compositions
Lawal Modified starches as direct compression excipients–effect of physical and chemical modifications on tablet properties: A review
Jane et al. Characterization of Granular cold water? Soluble Starch
JP3638645B2 (en) Production and use of hollow porous carrier using starch
US3242051A (en) Coating by phase separation
JP5048690B2 (en) Agricultural treatment agent with delayed effect, especially for seed germination and plant development
JPH0428691B2 (en)
EP1888650B1 (en) Mineral-bound starch compositions and methods of making same
Franca et al. Spray-dried cellulose nanofibrils microparticles as a vehicle for enhanced efficiency fertilizers
Sheng et al. Encapsulation and characterisation of grape seed proanthocyanidin extract using sodium alginate and different cellulose derivatives
EP2740532A1 (en) Method of producing a starch-containing material
CA1121649A (en) Starch for instant pudding
JP2007529576A (en) Natural plant cell wall compositions and methods of use
JP3910555B2 (en) Hollow carrier and functional particles, and production method thereof
IE45648B1 (en) Improvements in or relating to biologically active gels
Yu et al. Imidacloprid-loaded mesoporous silica nanoparticles simultaneously coated with myristyl alcohol and polydopamine for NIR-triggered delivery on Aphis craccivora Koch
Gonzalez et al. Surface removal enhances the formation of a porous structure in potato starch
EP0695173B1 (en) Manufacturing matrices
JP2002511404A (en) Coated starch capsules and methods for their manufacture
Ma et al. Fabrication of polydopamine reduced CuO nanoparticle–alginate composite nanogels for management of Pseudomonas synringae pv. tabaci in tobacco
KR102507593B1 (en) Method for preparing amorphous granular starch using ethanol and high hydrostatic pressure
EP0574721A1 (en) Process for preparing a stable waxy starch product and the product obtained
RU2745023C1 (en) Method for producing porous starch enhanced with a carbon skeleton
JP3046105B2 (en) Chitosan-plant fiber composite and method for preparing the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term