JP3638047B2 - Gas detection method and gas detection apparatus - Google Patents

Gas detection method and gas detection apparatus Download PDF

Info

Publication number
JP3638047B2
JP3638047B2 JP32108095A JP32108095A JP3638047B2 JP 3638047 B2 JP3638047 B2 JP 3638047B2 JP 32108095 A JP32108095 A JP 32108095A JP 32108095 A JP32108095 A JP 32108095A JP 3638047 B2 JP3638047 B2 JP 3638047B2
Authority
JP
Japan
Prior art keywords
oxide semiconductor
film
metal oxide
heater
semiconductor film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32108095A
Other languages
Japanese (ja)
Other versions
JPH09138209A (en
Inventor
吉展 松浦
徹 野村
大輔 松田
裕樹 藤森
真紀 木虎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Original Assignee
Figaro Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc filed Critical Figaro Engineering Inc
Priority to JP32108095A priority Critical patent/JP3638047B2/en
Publication of JPH09138209A publication Critical patent/JPH09138209A/en
Application granted granted Critical
Publication of JP3638047B2 publication Critical patent/JP3638047B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の利用分野】
この発明は金属酸化物半導体ガスセンサの使用方法に関し、特に金属酸化物半導体ガスセンサをパルス的に加熱してガスを検出する方法に関する。この明細書では、ガスはCO,H2,イソブタンやプロパン,CH4,NOx,O2,O3,H2S等の本来のガスの他に,水蒸気をも含むものとする。
【0002】
【従来技術】
出願人は、アルミナ等の基板上に断熱ガラス膜とヒータ膜,絶縁膜,金属酸化物半導体膜を積層したガスセンサを提案した(特開平1−313751号)。絶縁膜は例えば膜厚10μm程度とし、ガラスあるいはガラスとシリカやアルミナ等の非ガラス質セラミック粒子との混合物とする。また基板がシリカ等の熱伝導率の低いセラミックの場合、断熱ガラスを設ける必要はない(特開平6−34732号)。
【0003】
このガスセンサは、SnO2等の金属酸化物半導体膜をパルス的に加熱するのに適している。即ちヒータ膜から基板への熱損失を断熱膜で減少させ、ヒータ膜と金属酸化物半導体膜を薄い絶縁膜を介して積層し、両者間の熱伝導を容易にする。この条件でヒータ膜をパルス的に加熱すると、金属酸化物半導体膜をパルス的に加熱でき、ガスセンサの消費電力を例えば20〜1mW程度に減少させることができる。
【0004】
出願人は、このようなガスセンサの特性が不安定で、ガス中での抵抗値が経時的に増加することを見い出した。センサの劣化は高温・高湿の雰囲気で著しく、極端な場合24時間以内に進行し、センサ抵抗が10倍以上に増加することが有った。
【0005】
【発明の課題】
この発明の課題は、パルス駆動型ガスセンサの経時変動を防止することにある(請求項1〜5)。
【0006】
【発明の構成】
この発明は、基板上にヒータ膜と金属酸化物半導体膜とを配置したガスセンサを用い、前記ヒータ膜をパルス的に発熱させるようにしたガス検出方法において、前記金属酸化物半導体膜に負荷抵抗を直列に接続し、かつ金属酸化物半導体膜と負荷抵抗の直列片に、ヒータ膜の発熱と同期して検出電圧をパルス的に加えることにより、金属酸化物半導体膜への不純物イオンの混入を防止するようにしたことを特徴とする。
【0007】
またこの発明は、基板上にヒータ膜と金属酸化物半導体膜とを設けたガスセンサと、電源と、前記ヒータ膜を電源に接続するためのヒータ側スイッチと、前記金属酸化物半導体膜に接続した負荷抵抗と、前記ヒータ側スイッチをパルス的にオンさせるための手段と、前記金属酸化物半導体膜もしくは負荷抵抗への電圧をAD変換するためのADコンバータと、ADコンバータの出力からガスを検出するための手段とを設けたガス検出装置において、前記金属酸化物半導体膜と負荷抵抗とを電源に接続するためのセンサ側スイッチと、ヒータ側スイッチのオンに同期してセンサ側スイッチをパルス的にオンさせるための手段とを設けることにより、金属酸化物半導体膜への不純物イオンの混入を防止するようにしたことを特徴とする。
【0008】
この発明は基板上にヒータ膜とガラスを含有する絶縁膜と金属酸化物半導体膜とを積層したガスセンサの場合に特に有効で、特にガラスがMg元素を含有する場合に特に有効である。またこの発明で、ヒータ膜の発熱と同期して、あるいはヒータ側スイッチのオンに同期してとは、検出電圧の波形がヒータ膜の発熱波形、やヒータ膜へのヒータパルスの波形、あるいはヒータ側スイッチのオンの波形と同じであることの他、検出電圧の波形がこれらのヒータ側の波形と所定の時間的関係をもっていることを意味する。例えば検出電圧のパルスはセンサ出力をサンプリングできるだけの幅が有れば良く、高速ADコンバータを用いる場合、例えば1μ秒以上の幅があれば良い。従って検出電圧のパルス幅はヒータパルスの幅(ヒータ側スイッチのオンのパルス)よりも狭くても良い。センサの劣化を防止するには検出電圧のパルス幅を短くする必要があり、検出電圧のパルス幅は好ましくは20m秒以下とし、そのデューテイ比は好ましくは1/20以下、より好ましくは1/100以下とする。
【0009】
【発明の作用と効果】
発明者は、パルス駆動型ガスセンサの経時劣化の機構を検討し、絶縁膜等から金属酸化物半導体膜へのMgイオン等の混入により、劣化が生じることを見い出した。劣化は乾燥期には小さく(図6)、湿潤期には大きい(図7)。またセンサを高温・高湿の雰囲気でエージングすると、24時間程度でセンサ抵抗は急激に増加する(表4)。劣化したセンサの金属酸化物半導体膜を元素分析すると、陰極に絶縁膜からのMgイオンが偏析していることが見い出された。そこで劣化の原因は絶縁膜から金属酸化物半導体膜へ拡散したMgイオンであり、センサが室温付近まで冷却した期間にMgイオンが絶縁ガラスから吸着水へ溶出し、検出電圧により陰極側に偏析してセンサ特性を劣化させたものと推定できる。このことは、乾燥時にはセンサの劣化は小さいが湿潤期には大きいことと対応する。また高温高湿の雰囲気でセンサの劣化が著しく進行することとも対応する。
【0010】
そこで検出電圧をヒータ電圧と同期させ、検出電圧を加えるデューテイ比を減少させることを発明者は検討した。そして実験により(表4)、この手法でセンサの劣化を防止できることを確認した。
【0011】
【実施例】
図1〜図9に、実施例と関連するデータとを示す。ガスセンサ1の構造は図1〜図3に示し、図において、2はアルミナ,シリカ,ムライト等の絶縁基板である。4は断熱ガラス膜で、シリカガラスや混成ハイブリッドIC,サーマルヘッド等へのオーバーコートガラス等を用いる。基板2がシリカ等の熱伝導率の小さな材質の場合、断熱ガラス4は不要である。6はヒータ膜で、RuO2膜やPt膜等を用い、薄膜でも厚膜でも良く、ここでは膜厚約10μmのRuO2膜を用いた。8,10はAu膜からなるヒータ電極である。12は絶縁膜で膜厚は例えば5〜20μm程度である。絶縁膜12は例えばMgを含有するガラスからなり、またガラスとセラミックとの混合物でも良い。16はSnO2,In2O3,WO3,ZnO等の金属酸化物半導体の膜で、薄膜でも厚膜でも良いが、実施例では厚さ10μmのSnO2膜を用いた。18,20はAu膜を用いた検出電極,22〜28は電極パッドである。
【0012】
この発明は絶縁膜12からのMgイオンの拡散による劣化の防止に有効であるが、基板2自体からの不純物の侵入等の防止にも有効である。また金属酸化物半導体膜16の汚染で問題になる元素にはMg以外にNa等のアルカリ金属があり、これらは共に電界でマイグレーションし易い元素である。そこでこの発明はMg含有の絶縁膜12が無い場合にも有効である。このような例を図3に示す。図において、30は新たなガスセンサで、基板2にはシリカ等の熱伝導率の小さな材質を用い、ヒータ膜6が金属酸化物半導体膜16の周囲を囲んで、加熱するようにしている。このセンサ30では、基板2等からの金属酸化物半導体膜16の汚染の防止を目的にする。
【0013】
【駆動回路】
図4,図5にガスセンサ1の駆動回路と動作波形を示す。図4において、Rsは金属酸化物半導体膜16の抵抗を,RHはヒータ膜6の抵抗を現す。RHは室温で30Ω程度で最高加熱温度で20Ω程度で、金属酸化物半導体膜16の温度は金属酸化物半導体膜16の代わりに配置したサーミスタ膜の抵抗値から測定した。32は例えば5Vの電源,34はマイクロコンピュータで、S1はヒータ側スイッチ,S2はセンサ側スイッチ,RLは負荷抵抗である。スイッチS2は金属酸化物半導体膜16と電源32の間や、負荷抵抗RLとアースの間等に配置しても良い。同様にヒータ側スイッチS1はヒータ膜6と電源32の間に配置しても良い。さらにヒータ膜6と金属酸化物半導体膜16の電源を別にして、2つの電源を用いても良い。マイクロコンピュータ34にはタイマ36を設けて、動作のタイミングをコントロールし、入出力制御38でスイッチS1,S2を制御し、検出パルスの印加時にADコンバータ40でセンサ出力VRLをAD変換する。AD変換した出力を用いてガス検出手段42でガスを検出し、図示しないブザーやLED等で表示する。もちろんセンサ出力VRLは中間にバッファー増幅器等を介し、間接的にADコンバータ40に入力しても良い。
【0014】
図5に、ガスセンサ1の駆動波形を示す。例えば1秒周期で8m秒〜16m秒程度ヒータ側スイッチS1をオンし、例えば5Vのヒータ電圧を加える。ヒータ電圧は例えば図の鎖線のように徐々に変化させても良く、あるいは1つのヒータパルスを複数のサブパルスに分割して加えても良い。サブパルスを用いるのは、電源電圧が必要なヒータ電圧よりも高い場合に有効である。この結果、金属酸化物半導体膜16は最高加熱温度が例えば300℃(ヒータ電圧のパルス幅8m秒)あるいは450℃(ヒータ電圧のパルス幅16m秒)等にパルス的に加熱される。ヒータパルスの幅が8m秒で、センサ1の平均消費電力は18mWとなり、このセンサを400℃に常時保つのに必要な電力が約400mWで、パルス駆動時の金属酸化物半導体膜16の平均温度は室温+40℃程度で、パルス加熱とパルス加熱の間の金属酸化物半導体膜16の最低温度は室温+10℃程度であった。
【0015】
検出電圧(例えば5V)はヒータパルスに同期して印加し、例えば図の実線のようにヒータパルスと同じ波形で加える、あるいは点線のようにセンサ出力VRLをサンプリングするのに必要な幅で加える。また1回のヒータパルスに対して複数の点でセンサ出力をサンプリングする場合、例えば図の鎖線のように複数の検出電圧のパルスを加える。検出電圧のパルス(検出パルス)の幅はセンサ出力のAD変換が可能な幅であれば良く、例えば1μ秒以上とし、センサの劣化を防止するため20m秒以下が好ましく、検出電圧のデューテイ比は例えば1/20以下、より好ましくは1/100以下とする。COの検出の場合、パルス加熱の開始から約2m秒後にセンサ出力の最大値が生じ、この時点のセンサ出力をサンプリングするようにした。
【0016】
【試験例】
表1の組成のガラスを用いてガスセンサ1を調製した。用いた絶縁膜12はMgO含有量が15wt%のガラス膜である。このセンサ1を用い、検出電圧VC(5V)を常時加え、毎秒1回8m秒のヒータパルス(5V)を加えるとの条件で駆動を続け、ヒータパルスの印加開始から約2m秒後のセンサ出力をAD変換し、図6〜図9の特性を得た。
【0017】
【表1】

Figure 0003638047
【0018】
図6は1995年2月13日から7週間の経時特性で、センサ数は13個、乾燥期における平均的な経時特性である。図7は1995年6月12日から8週間の経時特性で、センサ数は10個である。湿潤期(図7)と乾燥期(図6)を比較すると、湿潤期の方が経時変化は著しく、経時変化によりセンサは一般的に高抵抗化する。図8,図9は1〜4週間程度でセンサ抵抗が著しく増加した例で、高抵抗化の程度は3倍(図8,センサ数6個)ないし10倍弱(図9,センサ数5個)に達している。図8,図9の現象を発見したためセンサの通電装置を検査すると、制御用のマイクロコンピュータ34が図示の期間内で暴走していた形跡が見い出された。暴走の内容は、マイクロコンピュータの構造から、ヒータパルスVHがオフし、検出電圧VCが常時加わり続けるものであったと推定した。また暴走が生じた時期は図8で95年7月頃,図9で95年4月頃であった。これらのことから、センサの経時変化は湿潤期において著しく、ヒータパルスを加えないと急激に進行することが判明した。
【0019】
異常高抵抗化したセンサ(不良品)としなかったセンサ(良品)に対し、金属酸化物半導体膜16をX線局所分析を用い、波長分散スペクトロスコピー(WDS)により元素分析した。Sn,Pt等の当然に存在すべき元素以外の不純物はMgとZnで、CaやBaの混入は検出できず、MgやZnは何れも絶縁ガラス12から混入したものであった。検出電極18,20の間の領域での分析結果を表2に示すが、良品と不良品との間に有意差は見られなかった。次に検出電極18,20の周囲での金属酸化物半導体膜を元素分析した。Mgイオンの分布について結果を表3に示す。なおZnイオンは均一に分布し偏析が見られなかったので、表示を省略する。
【0020】
【表2】
Figure 0003638047
【0021】
【表3】
Figure 0003638047
【0022】
表2,表3から明らかなように、製造直後のセンサでもMgが金属酸化物半導体膜16に拡散しており、劣化に伴いMgが陰極側に偏析する。表2の結果では、異常高抵抗化が生じても電極間領域ではMg濃度の増加が見られず、異常高抵抗化と相関があるのは陰極へのMgの偏析である。図8,図9はヒータパルスを加えないとセンサの劣化が進行することを示し、図6,図7は湿潤期に劣化が著しいことを示している。そこで検出電圧をヒータパルスと同期させたものと、検出電圧VCを常時加えるものの条件を用意し、高温高湿中雰囲気でエージングした。エージング後のCO100ppm中でのセンサ抵抗の平均値(センサ数各7個)を表4に示す。
【0023】
【表4】
Figure 0003638047
実施例,
VC同期2は図5の破線のように、ヒータパルスの開始から1m秒後〜3m秒後の2m秒の間、検出パルスを加える実施例.
【0024】
検出電圧VCを常時加えると劣化が著しく、特に検出電圧VCを常時加え、VHをオフすると劣化が極端に進行する。このモードでは、エージング時間1時間で抵抗値は約6倍に増加する。これらのことから予想されるセンサ1の劣化機構は、絶縁ガラス12中のMg成分が金属酸化物半導体膜16に拡散し、検出電圧により移動して陰極側に偏析するというものである。VHがオフで劣化が著しいことから、劣化は冷間で進行し、付着した吸着水等にMgイオンが溶出して、検出電圧で移動することが推定される。50℃×相対湿度100%で1時間のエージング(VCは連続,VHはオフ)でのMgイオンの偏析状況を表5に示す。エージングによりMg濃度は増加し、特に陰極側でのMg濃度の増加が著しい。このことは上記の劣化機構と合致する。
【0025】
次に表4に戻ると、ヒータパルスと検出パルスの同期により、センサの劣化はほぼ防止されており、表での抵抗値の変動は測定毎の偶発的なものである。またVC同期の効果は極めて著しいため、VC1とVC2の2つのモードの差は見られず、検出電圧をヒータパルスに同期させれば劣化を充分に防止できることが分かった。そして図6〜図9や表1〜表3から明らかなようにパルス駆動ガスセンサの劣化機構は、高湿雰囲気でのMgの拡散と陰極への偏析であり、検出電圧VCをヒータパルスに同期させれば、センサの劣化を防止できる。
【0026】
この発明は、絶縁膜にMgOを含有するガラスを用いる場合に特に有効であるが、図3のように絶縁ガラスを用いないセンサでも有効である。その場合には、例えばアルカリ金属イオン等のMg以外のイオンの検出電圧による偏析を防止し、同様にセンサの劣化を防止できる。
【0027】
【表5】
Figure 0003638047

【図面の簡単な説明】
【図1】 実施例のガスセンサの断面図
【図2】 実施例のガスセンサの平面図
【図3】 実施例のガスセンサの要部拡大断面図
【図4】 実施例のガスセンサの駆動回路を示す図
【図5】 実施例のガスセンサの動作波形を示す特性図
【図6】 乾燥期での従来例のガスセンサの抵抗値ドリフトを示す特性図
【図7】 湿潤期での従来例のガスセンサの抵抗値ドリフトを示す特性図
【図8】 制御回路暴走時の従来例のガスセンサの抵抗値ドリフトを示す特性図
【図9】 制御回路暴走時の従来例のガスセンサの抵抗値ドリフトを示す特性図
【符号の説明】
1,30 ガスセンサ
2 基板
4 断熱ガラス
6 ヒータ膜
8,10 ヒータ電極
12 絶縁膜
16 金属酸化物半導体膜
18,20 検出電極
22〜28 電極パッド
32 電源
34 マイクロコンピュータ
36 タイマ
38 入出力制御
40 ADコンバータ
42 ガス検出手段
S1,S2 スイッチ[0001]
[Field of the Invention]
The present invention relates to a method of using a metal oxide semiconductor gas sensor, and more particularly to a method of detecting gas by heating a metal oxide semiconductor gas sensor in a pulsed manner. In this specification, the gas includes water vapor in addition to the original gas such as CO, H2, isobutane, propane, CH4, NOx, O2, O3, and H2S.
[0002]
[Prior art]
The applicant has proposed a gas sensor in which a heat insulating glass film, a heater film, an insulating film, and a metal oxide semiconductor film are laminated on a substrate such as alumina (Japanese Patent Laid-Open No. 1-313751). The insulating film has a thickness of, for example, about 10 μm and is made of glass or a mixture of glass and non-glassy ceramic particles such as silica and alumina. Further, when the substrate is a ceramic having a low thermal conductivity such as silica, it is not necessary to provide heat insulating glass (Japanese Patent Laid-Open No. 6-34732).
[0003]
This gas sensor is suitable for heating a metal oxide semiconductor film such as SnO2 in a pulsed manner. That is, the heat loss from the heater film to the substrate is reduced by the heat insulating film, and the heater film and the metal oxide semiconductor film are laminated via the thin insulating film, thereby facilitating heat conduction between them. When the heater film is heated in pulses under these conditions, the metal oxide semiconductor film can be heated in pulses, and the power consumption of the gas sensor can be reduced to about 20 to 1 mW, for example.
[0004]
The applicant has found that the characteristics of such a gas sensor are unstable and the resistance value in the gas increases with time. The deterioration of the sensor was remarkable in a high-temperature and high-humidity atmosphere. In extreme cases, the sensor progressed within 24 hours, and the sensor resistance sometimes increased 10 times or more.
[0005]
[Problems of the Invention]
An object of the present invention is to prevent a time-dependent change of a pulse drive type gas sensor (claims 1 to 5).
[0006]
[Structure of the invention]
The present invention relates to a gas detection method using a gas sensor in which a heater film and a metal oxide semiconductor film are arranged on a substrate and generating heat in a pulsed manner in the heater film, wherein a load resistance is applied to the metal oxide semiconductor film. The detection voltage is applied in pulse to the series piece of metal oxide semiconductor film and load resistance in synchronization with the heat generation of the heater film , preventing contamination of impurity ions into the metal oxide semiconductor film. It was made to do.
[0007]
The present invention also provides a gas sensor having a heater film and a metal oxide semiconductor film provided on a substrate, a power source, a heater switch for connecting the heater film to the power source, and the metal oxide semiconductor film. A load resistor, a means for turning on the heater-side switch in a pulsed manner, an AD converter for AD converting the voltage to the metal oxide semiconductor film or the load resistor, and detecting gas from the output of the AD converter And a sensor-side switch for connecting the metal oxide semiconductor film and the load resistor to a power source, and the sensor-side switch in a pulsed manner in synchronization with the heater-side switch being turned on. It is characterized in that impurity ions are prevented from being mixed into the metal oxide semiconductor film by providing a means for turning on.
[0008]
The present invention is particularly effective in the case of a gas sensor in which a heater film, an insulating film containing glass and a metal oxide semiconductor film are stacked on a substrate, and particularly effective when the glass contains Mg element. In addition, in the present invention, in synchronization with the heat generation of the heater film, or in synchronization with the heater side switch being turned on, the detection voltage waveform is the waveform of the heat generation of the heater film, the waveform of the heater pulse to the heater film, or the heater In addition to being the same as the ON waveform of the side switch, it means that the waveform of the detected voltage has a predetermined temporal relationship with these heater side waveforms. For example, the detection voltage pulse only needs to have a width sufficient to sample the sensor output. When a high-speed AD converter is used, the detection voltage pulse may have a width of, for example, 1 μsec or more. Therefore, the pulse width of the detection voltage may be narrower than the width of the heater pulse (heater side switch ON pulse). In order to prevent deterioration of the sensor, it is necessary to shorten the pulse width of the detection voltage. The pulse width of the detection voltage is preferably 20 milliseconds or less, and the duty ratio is preferably 1/20 or less, more preferably 1/100. The following.
[0009]
[Operation and effect of the invention]
The inventor studied the mechanism of deterioration with time of the pulse-driven gas sensor and found that deterioration occurs due to the mixing of Mg ions or the like from the insulating film or the like into the metal oxide semiconductor film. Degradation is small during the dry season (FIG. 6) and large during the wet season (FIG. 7). When the sensor is aged in a high temperature and high humidity atmosphere, the sensor resistance increases rapidly in about 24 hours (Table 4). Elemental analysis of the deteriorated metal oxide semiconductor film of the sensor revealed that Mg ions from the insulating film were segregated at the cathode. Therefore, the cause of degradation is Mg ions diffused from the insulating film to the metal oxide semiconductor film. Mg ions are eluted from the insulating glass into the adsorbed water during the period when the sensor is cooled to near room temperature, and segregate to the cathode side by the detection voltage. Therefore, it can be estimated that the sensor characteristics are deteriorated. This corresponds to the fact that the deterioration of the sensor is small during drying but large during the wet period. This also corresponds to the remarkable deterioration of the sensor in a high temperature and high humidity atmosphere.
[0010]
Therefore, the inventor studied to synchronize the detection voltage with the heater voltage and reduce the duty ratio for applying the detection voltage. And by experiment (Table 4), it was confirmed that deterioration of the sensor can be prevented by this method.
[0011]
【Example】
1 to 9 show data related to the embodiment. The structure of the gas sensor 1 is shown in FIGS. 1 to 3, in which 2 is an insulating substrate such as alumina, silica or mullite. Reference numeral 4 denotes a heat insulating glass film which uses silica glass, a hybrid hybrid IC, an overcoat glass for a thermal head, or the like. When the substrate 2 is made of a material having a low thermal conductivity such as silica, the heat insulating glass 4 is unnecessary. A heater film 6 is a RuO2 film, a Pt film, or the like, which may be a thin film or a thick film. Here, a RuO2 film having a thickness of about 10 μm is used. Reference numerals 8 and 10 denote heater electrodes made of an Au film. An insulating film 12 has a film thickness of about 5 to 20 μm, for example. The insulating film 12 is made of, for example, glass containing Mg, and may be a mixture of glass and ceramic. Reference numeral 16 denotes a metal oxide semiconductor film such as SnO 2, In 2 O 3, WO 3, or ZnO, which may be a thin film or a thick film. In the embodiment, a SnO 2 film having a thickness of 10 μm was used. Reference numerals 18 and 20 are detection electrodes using an Au film, and reference numerals 22 to 28 are electrode pads.
[0012]
Although the present invention is effective for preventing deterioration due to diffusion of Mg ions from the insulating film 12, it is also effective for preventing intrusion of impurities from the substrate 2 itself. In addition to Mg, elements that cause problems due to contamination of the metal oxide semiconductor film 16 include alkali metals such as Na, both of which are easily migrated by an electric field. Therefore, the present invention is also effective when there is no Mg-containing insulating film 12. Such an example is shown in FIG. In the figure, reference numeral 30 denotes a new gas sensor. The substrate 2 is made of a material having a low thermal conductivity such as silica, and the heater film 6 surrounds the metal oxide semiconductor film 16 and heats it. This sensor 30 aims to prevent contamination of the metal oxide semiconductor film 16 from the substrate 2 or the like.
[0013]
[Drive circuit]
4 and 5 show the driving circuit and operation waveforms of the gas sensor 1. FIG. In FIG. 4, Rs represents the resistance of the metal oxide semiconductor film 16, and RH represents the resistance of the heater film 6. RH was about 30Ω at room temperature and about 20Ω at the maximum heating temperature, and the temperature of the metal oxide semiconductor film 16 was measured from the resistance value of the thermistor film disposed instead of the metal oxide semiconductor film 16. For example, 32 is a power source of 5V, 34 is a microcomputer, S1 is a heater side switch, S2 is a sensor side switch, and RL is a load resistance. The switch S2 may be disposed between the metal oxide semiconductor film 16 and the power source 32, or between the load resistor RL and the ground. Similarly, the heater side switch S 1 may be disposed between the heater film 6 and the power source 32. Further, two power sources may be used separately from the power sources of the heater film 6 and the metal oxide semiconductor film 16. The microcomputer 34 is provided with a timer 36 to control the operation timing, the input / output control 38 controls the switches S1 and S2, and the AD converter 40 AD converts the sensor output VRL when the detection pulse is applied. Gas is detected by the gas detection means 42 using the AD-converted output, and is displayed by a buzzer, LED or the like not shown. Of course, the sensor output VRL may be indirectly input to the AD converter 40 via a buffer amplifier or the like.
[0014]
FIG. 5 shows a driving waveform of the gas sensor 1. For example, the heater side switch S1 is turned on for about 8 milliseconds to 16 milliseconds in a 1 second period, and a heater voltage of 5 V, for example, is applied. For example, the heater voltage may be gradually changed as shown by a chain line in the figure, or one heater pulse may be divided into a plurality of sub-pulses. The use of the sub pulse is effective when the power supply voltage is higher than the required heater voltage. As a result, the metal oxide semiconductor film 16 is heated in a pulse manner such that the maximum heating temperature is, for example, 300 ° C. (heater voltage pulse width 8 msec) or 450 ° C. (heater voltage pulse width 16 msec). The width of the heater pulse is 8 msec, the average power consumption of the sensor 1 is 18 mW, the power required to keep the sensor at 400 ° C. is about 400 mW, and the average temperature of the metal oxide semiconductor film 16 during pulse driving. Is room temperature + 40 ° C., and the minimum temperature of the metal oxide semiconductor film 16 between pulse heating is about room temperature + 10 ° C.
[0015]
The detection voltage (for example, 5V) is applied in synchronization with the heater pulse, and is applied with the same waveform as the heater pulse, for example, as shown by the solid line in the figure, or is applied with a width necessary for sampling the sensor output VRL, as shown by the dotted line. When sampling the sensor output at a plurality of points with respect to one heater pulse, for example, pulses of a plurality of detection voltages are applied as shown by chain lines in the figure. The width of the detection voltage pulse (detection pulse) only needs to be a width that allows AD conversion of the sensor output. For example, it is 1 μsec or more, preferably 20 ms or less to prevent sensor deterioration, and the detection voltage duty ratio is For example, 1/20 or less, more preferably 1/100 or less. In the case of detecting CO, the maximum value of the sensor output occurs approximately 2 milliseconds after the start of pulse heating, and the sensor output at this point is sampled.
[0016]
[Test example]
A gas sensor 1 was prepared using glass having the composition shown in Table 1. The insulating film 12 used is a glass film having an MgO content of 15 wt%. Using this sensor 1, the detection voltage VC (5V) is constantly applied, and the driving is continued under the condition that the heater pulse (5V) is applied once every second, and the sensor output is about 2 milliseconds after the start of the heater pulse application. Were subjected to AD conversion, and the characteristics shown in FIGS. 6 to 9 were obtained.
[0017]
[Table 1]
Figure 0003638047
[0018]
FIG. 6 shows the time-dependent characteristics for 7 weeks from February 13, 1995, the number of sensors is 13, and the average time-dependent characteristics in the dry period. FIG. 7 shows the time-lapse characteristics for 8 weeks from June 12, 1995. The number of sensors is 10. When the wet period (FIG. 7) is compared with the dry period (FIG. 6), the change over time is more remarkable in the wet period, and the sensor generally has a higher resistance due to the change over time. 8 and 9 are examples in which the sensor resistance has increased remarkably in about 1 to 4 weeks. The degree of increase in resistance is 3 times (FIG. 8, 6 sensors) to 10 times less (FIG. 9, 5 sensors). ). When the current-carrying device of the sensor was inspected because the phenomenon shown in FIGS. 8 and 9 was discovered, it was found that the control microcomputer 34 had runaway within the illustrated period. The content of the runaway was estimated from the microcomputer structure that the heater pulse VH was turned off and the detection voltage VC was constantly applied. The runaway occurred around July 1995 in FIG. 8 and around April 1995 in FIG. From these facts, it has been found that the change with time of the sensor is remarkable in the wet period and proceeds rapidly if no heater pulse is applied.
[0019]
The metal oxide semiconductor film 16 was subjected to elemental analysis by wavelength dispersion spectroscopy (WDS) using X-ray local analysis for a sensor (non-defective product) that was not abnormally high resistance (defective product). Impurities other than elements that should naturally exist, such as Sn and Pt, were Mg and Zn. Ca and Ba could not be detected, and both Mg and Zn were mixed from the insulating glass 12. The analysis results in the region between the detection electrodes 18 and 20 are shown in Table 2. No significant difference was found between the non-defective product and the defective product. Next, elemental analysis of the metal oxide semiconductor film around the detection electrodes 18 and 20 was performed. The results for the distribution of Mg ions are shown in Table 3. Since Zn ions are uniformly distributed and no segregation is observed, the display is omitted.
[0020]
[Table 2]
Figure 0003638047
[0021]
[Table 3]
Figure 0003638047
[0022]
As can be seen from Tables 2 and 3, Mg diffuses into the metal oxide semiconductor film 16 even in the sensor immediately after manufacture, and Mg segregates to the cathode side with the deterioration. In the results shown in Table 2, even when abnormally high resistance occurs, the Mg concentration does not increase in the inter-electrode region, and it is the segregation of Mg to the cathode that correlates with the abnormally high resistance. FIGS. 8 and 9 show that the deterioration of the sensor proceeds unless the heater pulse is applied, and FIGS. 6 and 7 show that the deterioration is remarkable in the wet period. Accordingly, conditions were prepared for the detection voltage synchronized with the heater pulse and the detection voltage VC constantly applied, and aging was performed in a high-temperature and high-humidity atmosphere. Table 4 shows the average value of sensor resistance in CO 100 ppm after aging (7 sensors each).
[0023]
[Table 4]
Figure 0003638047
Example,
VC synchronization 2 is an embodiment in which a detection pulse is applied for 2 ms from 1 ms to 3 ms after the start of the heater pulse, as indicated by the broken line in FIG.
[0024]
When the detection voltage VC is constantly applied, the deterioration is remarkable. In particular, when the detection voltage VC is constantly applied and VH is turned off, the deterioration proceeds extremely. In this mode, the resistance value increases about 6 times in one hour of aging time. The deterioration mechanism of the sensor 1 that is expected from these is that the Mg component in the insulating glass 12 diffuses into the metal oxide semiconductor film 16, moves by the detection voltage, and segregates on the cathode side. Since VH is off and the deterioration is remarkable, it is estimated that the deterioration proceeds cold, and Mg ions are eluted in the adsorbed adsorbed water and move at the detection voltage. Table 5 shows the segregation state of Mg ions after aging (VC is continuous, VH is off) at 50 ° C. × 100% relative humidity for 1 hour. The Mg concentration increases due to aging, and the increase in Mg concentration on the cathode side is particularly remarkable. This is consistent with the degradation mechanism described above.
[0025]
Next, returning to Table 4, the deterioration of the sensor is almost prevented by the synchronization of the heater pulse and the detection pulse, and the fluctuation of the resistance value in the table is accidental for each measurement. Further, since the effect of VC synchronization is extremely remarkable, no difference between the two modes VC1 and VC2 is observed, and it has been found that deterioration can be sufficiently prevented by synchronizing the detection voltage with the heater pulse. As can be seen from FIGS. 6 to 9 and Tables 1 to 3, the deterioration mechanism of the pulse-driven gas sensor is Mg diffusion and segregation to the cathode in a high humidity atmosphere, and the detection voltage VC is synchronized with the heater pulse. If so, the deterioration of the sensor can be prevented.
[0026]
The present invention is particularly effective when glass containing MgO is used for the insulating film, but it is also effective for a sensor that does not use insulating glass as shown in FIG. In that case, for example, segregation due to the detection voltage of ions other than Mg, such as alkali metal ions, can be prevented, and deterioration of the sensor can be similarly prevented.
[0027]
[Table 5]
Figure 0003638047

[Brief description of the drawings]
1 is a cross-sectional view of a gas sensor according to an embodiment. FIG. 2 is a plan view of a gas sensor according to the embodiment. FIG. 3 is an enlarged cross-sectional view of a main part of the gas sensor according to the embodiment. FIG. 5 is a characteristic diagram showing operation waveforms of the gas sensor of the embodiment. FIG. 6 is a characteristic diagram showing resistance value drift of the conventional gas sensor in the dry period. FIG. 7 is a resistance value of the conventional gas sensor in the wet period. [Fig. 8] Characteristic diagram showing resistance value drift of the conventional gas sensor during control circuit runaway [Fig. 9] Characteristic diagram showing resistance value drift of the conventional gas sensor during control circuit runaway Description】
1,30 Gas sensor 2 Substrate 4 Insulating glass 6 Heater film 8, 10 Heater electrode 12 Insulating film 16 Metal oxide semiconductor film 18, 20 Detection electrode 22-28 Electrode pad 32 Power supply 34 Microcomputer 36 Timer 38 Input / output control 40 AD converter 42 Gas detection means S1, S2 switch

Claims (5)

基板上にヒータ膜と金属酸化物半導体膜とを配置したガスセンサを用い、前記ヒータ膜をパルス的に発熱させるようにしたガス検出方法において、
前記金属酸化物半導体膜に負荷抵抗を直列に接続し、かつ金属酸化物半導体膜と負荷抵抗の直列片に、ヒータ膜の発熱と同期した検出電圧をパルス的に加えることにより、金属酸化物半導体膜への不純物イオンの混入を防止することを特徴とするガス検出方法。
In a gas detection method using a gas sensor in which a heater film and a metal oxide semiconductor film are arranged on a substrate, the heater film generates heat in a pulsed manner.
A load resistance is connected in series to the metal oxide semiconductor film, and a detection voltage synchronized with the heat generation of the heater film is applied to the series piece of the metal oxide semiconductor film and the load resistance in a pulsed manner, whereby the metal oxide semiconductor A gas detection method characterized by preventing impurity ions from being mixed into a film .
前記ガスセンサが、基板上にヒータ膜とMg元素を含有する絶縁膜と金属酸化物半導体膜を積層したものであり、金属酸化物半導体膜への不純物イオンとしてのMgイオンの混入を防止することを特徴とする、請求項1のガス検出方法。The gas sensor is formed by laminating a heater film, an Mg-containing insulating film, and a metal oxide semiconductor film on a substrate, and prevents contamination of Mg ions as impurity ions into the metal oxide semiconductor film. The gas detection method according to claim 1, wherein the gas detection method is characterized. 前記検出電圧のパルス幅が1μ秒以上で20m秒以下、検出電圧のオンのデューテイ比が1/20以下であることを特徴とする、請求項1または2のガス検出方法。3. The gas detection method according to claim 1, wherein the pulse width of the detection voltage is 1 μs or more and 20 msec or less, and the detection voltage ON duty ratio is 1/20 or less. 基板上にヒータ膜と金属酸化物半導体膜とを設けたガスセンサと、電源と、前記ヒータ膜を電源に接続するためのヒータ側スイッチと、前記金属酸化物半導体膜に接続した負荷抵抗と、前記ヒータ側スイッチをパルス的にオンさせるための手段と、前記金属酸化物半導体膜もしくは負荷抵抗への電圧をAD変換するためのADコンバータと、ADコンバータの出力からガスを検出するための手段とを設けたガス検出装置において、
前記金属酸化物半導体膜と負荷抵抗とを電源に接続するためのセンサ側スイッチと、ヒータ側スイッチのオンに同期してセンサ側スイッチをパルス的にオンさせるための手段とを設けることにより、金属酸化物半導体膜への不純物イオンの混入を防止するようにしたことを特徴とする、ガス検出装置。
A gas sensor provided with a heater film and a metal oxide semiconductor film on a substrate; a power supply; a heater-side switch for connecting the heater film to the power supply; a load resistor connected to the metal oxide semiconductor film; Means for pulsingly turning on the heater side switch, an AD converter for AD converting the voltage to the metal oxide semiconductor film or the load resistance, and means for detecting gas from the output of the AD converter In the gas detector provided,
By providing a sensor-side switch for connecting the metal oxide semiconductor film and the load resistor to a power source, and means for pulsingly turning on the sensor-side switch in synchronization with the heater-side switch being turned on , A gas detection device characterized in that impurity ions are prevented from being mixed into an oxide semiconductor film .
前記ガスセンサが、基板上にヒータ膜とMg元素を含有する絶縁膜と金属酸化物半導体膜とを積層したものであり、金属酸化物半導体膜への不純物イオンとしてのMgイオンの混入を防止することを特徴とする、請求項4のガス検出装置。The gas sensor includes a heater film, an Mg-containing insulating film, and a metal oxide semiconductor film stacked on a substrate, and prevents Mg ions as impurity ions from entering the metal oxide semiconductor film. The gas detection device according to claim 4, wherein:
JP32108095A 1995-11-14 1995-11-14 Gas detection method and gas detection apparatus Expired - Fee Related JP3638047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32108095A JP3638047B2 (en) 1995-11-14 1995-11-14 Gas detection method and gas detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32108095A JP3638047B2 (en) 1995-11-14 1995-11-14 Gas detection method and gas detection apparatus

Publications (2)

Publication Number Publication Date
JPH09138209A JPH09138209A (en) 1997-05-27
JP3638047B2 true JP3638047B2 (en) 2005-04-13

Family

ID=18128593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32108095A Expired - Fee Related JP3638047B2 (en) 1995-11-14 1995-11-14 Gas detection method and gas detection apparatus

Country Status (1)

Country Link
JP (1) JP3638047B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005085821A1 (en) * 2004-03-05 2008-01-24 株式会社ミクニ Detection element
US7827852B2 (en) * 2007-12-20 2010-11-09 General Electric Company Gas sensor and method of making
US8555701B1 (en) 2011-08-05 2013-10-15 Cps Products, Inc. Enhanced metal oxide gas sensor

Also Published As

Publication number Publication date
JPH09138209A (en) 1997-05-27

Similar Documents

Publication Publication Date Title
JP3570644B2 (en) Gas sensor
Anothainart et al. Light enhanced NO2 gas sensing with tin oxide at room temperature: conductance and work function measurements
US4543176A (en) Oxygen concentration detector under temperature control
JP4714867B2 (en) Oxygen sensor
JP3638047B2 (en) Gas detection method and gas detection apparatus
US7441440B2 (en) Thin semiconductor film gas sensor device
JPH09288076A (en) Meat freshness measuring apparatus using gas sensor, measuring method therefor and manufacture of gas sensor
Bowser et al. Sample heating and simultaneous temperature measurement in inelastic electron tunneling spectroscopy
Heinrich et al. Fault current limiting properties of YBCO-films on sapphire substrates
JP3522257B2 (en) Gas detection method and device
JP2919874B2 (en) Ozone detector
JP2791472B2 (en) Gas detector
JP2816704B2 (en) Gas detection method
GB1526751A (en) Gas sensitive resistive elements
JP2911928B2 (en) Gas detection method
JP3275939B2 (en) Cleaning method for carbon monoxide sensor
JP7203662B2 (en) Temperature control method and temperature control device
JP2791474B2 (en) Incomplete combustion detection method and apparatus
JP3265326B2 (en) Gas sensor
RU2367051C1 (en) High-voltage resistor fuse
JP2000193637A (en) Hydrocarbon sensor
Fleischer et al. In situ Hall measurements at temperatures up to 1100 degrees C with selectable gas atmospheres
JPS55166032A (en) Gas detecting element and gas detecting method
JP2829552B2 (en) Gas detection element
SU636518A1 (en) Thermoelectric device for investigating alloy unhomogeneity

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees