JP3637798B2 - Vinyl chloride resin for paste - Google Patents

Vinyl chloride resin for paste Download PDF

Info

Publication number
JP3637798B2
JP3637798B2 JP00625699A JP625699A JP3637798B2 JP 3637798 B2 JP3637798 B2 JP 3637798B2 JP 00625699 A JP00625699 A JP 00625699A JP 625699 A JP625699 A JP 625699A JP 3637798 B2 JP3637798 B2 JP 3637798B2
Authority
JP
Japan
Prior art keywords
polymerization
vinyl chloride
particles
latex
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00625699A
Other languages
Japanese (ja)
Other versions
JP2000204211A (en
Inventor
剛 白神
実 内田
禎樹 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP00625699A priority Critical patent/JP3637798B2/en
Publication of JP2000204211A publication Critical patent/JP2000204211A/en
Application granted granted Critical
Publication of JP3637798B2 publication Critical patent/JP3637798B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、ペースト用塩化ビニル系樹脂に関し、詳しくは特にペーストゾルとして有用な、すなわち、低可塑剤量配合に対応可能で、低せん断領域から高せん断領域までの広いせん断速度領域にわたって低粘度で発泡壁紙加工性に優れたペーストゾルを与えるペースト用塩化ビニル系樹脂に関する。
【0002】
【従来の技術】
塩化ビニル系樹脂のペースト加工は、塩化ビニル系ペースト樹脂及び可塑剤を必須成分とし、必要に応じて安定剤、充填剤等を加えて混合・混練してペーストゾル化し、その流動性を利用して賦形し、その後加熱ゲル化して成形加工する方法である。ペースト加工においては、その加工性と加工製品の品質は、ペーストゾルの流動性(ゾル粘度)と密接な関係があり、必須成分である可塑剤の配合量が少ないほどペーストゾルは高粘度となり、加工製品は高硬度となる。すなわち、高硬度のペースト加工製品を得るためには、可塑剤の配合量を減らせばよいが、ペーストゾルの粘度が高くなりすぎると、塗工性が悪くなり、ついには塗工できなくなってしまうという問題があった。
【0003】
従来、塩化ビニル系樹脂100重量部に対して可塑剤を50重量部以下配合したペーストゾルは、著しく高粘度であり、希釈剤を添加したり、あるいは塩化ビニル系ペースト樹脂よりも大きな粒子を併用することにより、ゾル粘度を下げて塗工を行っていたのが現状であった。しかし、希釈剤を多量に添加した場合、加熱ゲル化時に希釈剤が発揮して加工製品にピンホールが生じたり、希釈剤の蒸気が作業環境を汚染する等の問題があった。また、一般に平均粒径が20〜100μmの範囲にある塩化ビニル系ブレンディング樹脂(以下、「BR」という。)を併用した場合、薄膜用途においては、塗工時に大粒子による筋斑が発生したり、また低温加工用途では、ゲル化不良の大粒子が未溶融物として残る等による、加工性、耐候性等が悪いという問題があった。
このような、希釈剤あるいはBRを使用した場合の、加工製品に欠陥が生じやすいという問題を解決し、外観性及び引っ張り特性、耐衝撃性、耐熱性、耐寒性、耐候性等の品質面を損なうことなく、低可塑剤量配合に対応できる塩化ビニル系ペースト樹脂の開発が望まれていた。
【0004】
【発明が解決しようとする課題】
本発明は、上記従来の問題点を解決するもので、BRを使用せず低希釈剤配合および低可塑剤量配合に対応可能であり、高品質を維持しながら、低せん断領域から高せん断領域までの広い範囲のせん断速度領域にわたって低粘度で発泡壁紙用途の加工性に優れたペーストゾルを与えるペースト用塩化ビニル系樹脂を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、平均粒径が0.9〜1.8μmの大粒子と0.2〜0.7μmの小粒子とからなり、大粒子の構造が平均重合度600〜900の内核とその回りに内核の平均重合度より100以上大きい重合度で、かつ平均重合度700〜1500の外核からなり、また小粒子の平均重合度が600〜1500、更に小粒子の個数が大粒子の10〜50倍である粒子から構成された平均粒径1〜80μmの造粒体からなるペースト用塩化ビニル系樹脂に関する。
【0006】
【発明の実施の形態】
本発明のペースト用塩化ビニル系樹脂は大粒子と小粒子からなり、これらから構成された造粒体からなる。大粒子の平均粒径は0.9〜1.8μmであり、好ましくは1.0〜1.6μmである。0.9μm未満では粒子比表面積が大きくなり、粒子表面の電気的二重層に捕捉されて流動性に寄与しない可塑剤が多くなるため流動性に寄与する可塑剤量が減り、プラスチゾル流動性が低下し、一方、1.8μmを超える場合は、重合時の攪拌により粒子同士が衝突し、その衝撃力により凝集体を形成しやすく製造効率が悪くなるので好ましくない。小粒子の平均粒径は0.2〜0.7μmであり、好ましくは、0.3〜0.6μmである。0.2μm未満では前述したように比表面積が大きくなりプラスチゾル流動性が低下し、一方、0.8μmを超える場合は、重合時に発生させる粒子核数の制御が困難で製造効率が悪くなるので好ましくない。
【0007】
また、小粒子の個数は、大粒子の10〜50倍であることが必要であり、好ましくは20〜40である。
小粒子の個数が大粒子の10〜50倍であると、小粒子と大粒子を乾燥造粒した場合の粒子充填度が高く空隙が少なくなるのでプラスチゾル流動性が向上するが、この範囲外では、プラスチゾルの流動性が低くなり、特に、10倍未満では発泡性が悪化し、50倍を超えると製品光沢上好ましくない。
【0008】
次に、小粒子の平均重合度は600〜1500であり、好ましくは700〜1400である。600未満では溶融性が向上するが、発泡セル強度が低くセルパンク性が劣り、一方、1500を越えると溶融性が悪いため発泡性が低下するので好ましくない。
大粒子の平均重合度は内核が600〜900、外核は700〜1500であり、かつ、外核は内核の平均重合度より100以上、大きいことが必要である。内核の平均重合度が600未満では重合温度が高くなりすぎ、重合缶の耐圧要求が高いため好ましくない。又連鎖移動剤を使用する場合、使用量が多くなりすぎるため、重合反応の制御が困難となる。一方、大粒子の内核の平均重合度が900を超えると大粒子の溶融性が低下し、発泡性が悪化するので好ましくない。外核の平均重合度が700未満では発泡時のセルパンク性が劣り、1500を超えると発泡性が低下するので好ましくない。外核と内核の平均重合度差が100未満では外核と内核の溶融性差が小さくなるので艶消し性が不十分となるため好ましくない。大粒子の内核の好ましい平均重合度は600〜800、外核の好ましい平均重合度は800〜1400であり、外核は内核の平均重合度より200以上大きいことが好ましい。
【0009】
そして、本発明のペースト用塩化ビニル系樹脂は、大粒子と小粒子とから構成された平均粒径1〜80μmの造粒体である。好ましくは2〜60μmであり、緻密で崩壊しにくい凝集体粒子が好ましい。1μm未満では噴霧乾燥・粉砕工程が複雑で製造効率が悪く好ましくなく、一方、80μmを超えると凝集体粒子が低可塑剤量配合では崩壊せずに残るため、塗工時の筋斑の原因となりやすく、また、ロータリースクリーン印刷に使用した場合は、目詰まりを起こすので好ましくない。
【0010】
本発明のペースト用塩化ビニル系樹脂は、塩化ビニルの単独重合体及び塩化ビニルと共重合可能なコモノマーとの共重合体である。塩化ビニルと共重合可能なコモノマーとしては、酢酸ビニル、プロピオン酸ビニル、ステアリン酸ビニル等のビニルエステル、アクリル酸、メタクリル酸、イタコン酸などの一価不飽和酸、これらの一価不飽和酸のアルキルエステル、メチルビニルエーテル、エチルビニルエーテル、オクチルビニルエーテル、ラウリルビニルエーテル等のビニルエーテル、マレイン酸、フマル酸などの二価不飽和酸、これらの二価不飽和酸のアルキルエステル、塩化ビニリデン等のハロゲン化ビニリデン、不飽和ニトリルなどが挙げられる。これらは、一種または二種以上の混合物で使用することができる。
【0011】
本発明の塩化ビニル系樹脂の製造方法としては、塩化ビニルまたは塩化ビニルと共重合可能なコモノマーの混合物を、水性媒体中で界面活性剤の存在下、乳化重合または微細懸濁重合により得られる塩化ビニル系樹脂の水性分散液(以下「ラテックス」という。)を噴霧乾燥機で乾燥造粒して製造することができる。
まず、小粒子と大粒子を含む樹脂を製造するには、塩化ビニルまたは塩化ビニルとこれと共重合可能なコモノマーとの混合物を水性媒体中で、乳化剤および水溶性重合開始剤の存在下に乳化重合する方法、または乳化剤および油溶性重合開始剤の存在下に微細懸濁重合する方法等、従来の一般的な重合方法により製造できる。
【0012】
内核と外核から構成される大粒子を製造する方法は、まず、乳化重合で製造した大粒子の内核となる粒子(以下「シード」という。)のラテックスをあらかじめ重合缶に仕込み、このシードを更に乳化重合により粒径を成長させて大粒子を得る方法、大粒子の内核を微細懸濁重合で製造したシードラテックスを使用して、このシードを更に微細懸濁重合により粒径を成長させて大粒子を得る方法、及び大粒子の内核を微細懸濁重合で製造したシードラテックスを使用して、このシードを次に乳化重合により粒径を成長させて大粒子を得る方法等が挙げられる。この際小粒子は、大粒子を製造する際に、新たに発生する粒子が小粒子となる。また、小粒子及び大粒子とも各々別の重合により製造したラテックス同士を混合する方法により小粒子と大粒子からなる樹脂を得ることもできる。
【0013】
塩化ビニル系重合体ラテックスの製造に用いる重合開始剤としては、乳化重合の場合は、例えば過硫酸塩(ナトリウム塩、カリウム塩、アンモニウム塩等)、過酸化水素等の水溶性過酸化物、またはこれらの水溶性過酸化物と水溶性還元剤(例えば亜硫酸ナトリウム、ピロ亜硫酸ナトリウム、亜硫酸水素ナトリウム、アスコルビン酸、ナトリウムホルムアルデヒドスルホキシレートなど)とからなる水溶性レドックス開始剤、また微細懸濁重合の場合は、アゾビスイソブチロニトリル、アゾビス−2,4−ジメチルバレロニトリル、ラウロイルパーオキサイド、t−ブチルパーオキシピバレート等の単量体可溶性(油溶性)開始剤、またはこれらの油溶性開始剤と前記の水溶性還元剤の組み合わせからなるレドックス開始剤が挙げられる。
【0014】
また、ラテックスの製造に用いられる乳化剤としては、例えば高級アルコール硫酸エステル塩(アルカリ金属塩、アンモニウム塩)、アルキルベンゼンスルホン酸塩(アルカリ金属塩、アンモニウム塩)、高級脂肪酸塩(アルカリ金属塩、アンモニウム塩)、その他のアニオン界面活性剤、ノニオン界面活性剤、カチオン界面活性剤が挙げられる。これらの界面活性剤は一種類でも、二種以上併用してもよい。好ましいのは、アニオン界面活性剤である。また、アニオン界面活性剤および/またはノニオン界面活性剤は、重合用乳化剤とは別に、ラテックスの調整時、または調整後に添加してもよい。
【0015】
更に、ラテックスの製造においては、重合調整剤、その他の助剤類を用いてもよい。重合調整剤としては、例えばトリクロルエチレン、四塩化炭素、2−メルカプトエタノール、オクチルメルカプタン等の連鎖移動剤、フタル酸ジアリル、イソシアヌル酸トリアリル、エチレングリコールジアクリレート、トリメチロールプロパントリメタクリレートなどの架橋剤が挙げられる。他の助剤類としては、例えばレドックス開始剤の活性化剤として作用する塩化第二銅、硫酸第一鉄、硫酸第二ニッケル等の水溶性遷移金属塩、またはリン酸一もしくは二水素アルカリ金属塩、フタル酸水素カリウム、炭酸水素ナトリウムなどのpH調整剤等が挙げられる。
【0016】
塩化ビニル重合体ラテックス中の固形分含量は、特に制限されるものではなく、通常20〜80重量%、好ましくは40〜65重量%であり、重合反応終了後のラテックスをそのまま用いてもよいし、限外濾過等の方法で濃縮したものを用いてもよい。ラテックスの粘度は普通0.1Pa・sec以下である。
次に、大粒子と小粒子とから構成された造粒体にするには、重合で得られたラテックスから水分を除去するため噴霧乾燥により造粒体とする。
噴霧乾燥に使用する乾燥機は、回転円盤式や二流体ノズル式の噴霧乾燥機のようにラテックスを微噴霧できるタイプのものが挙げられる。
【0017】
微噴霧するための方法としては、回転円盤式の場合、乾燥気流はラテックスの噴霧方向に合わせて旋回流とすることが好ましい。造粒体の粒径は、円盤の回転数、円盤径、ラテックス処理量を適宜選択することにより求める平均粒径を得ることができるが、一般的にはラテックスの処理量で調整することが多い。
二流体ノズル式の場合、乾燥気流は微噴霧されたラテックス液滴どうしが衝突により粒径肥大を起こさないよう、乾燥気流及び噴霧気流の乱れを抑制することが重要で、垂直下降並流型にすることが好ましい。造粒体の粒径は、ラテックスを微噴霧するための噴霧用空気/ラテックス流量の比率を調整する方法により、求める平均粒径のものを得ることができる。
いずれの場合でも、乾燥済みの粉体および乾燥気流の出口は、乾燥機底部から排出される型式でも下部コーンの側壁から排出される形式でもかまわない。また、乾燥後、粉砕機や篩粉機を通して粗粒子を除去して平均粒径1〜80μmの造粒体としても構わない。
【0018】
本発明に用いる乾燥用気体は、入手のしやすさから空気を用いるのが好ましい。また、その流量は乾燥温度を考慮した乾燥機における熱バランスから決定することができ、乾燥温度は乾燥機入口で一般的に100〜200℃に、また出口では45〜70℃、好ましくは50〜65℃に調節することが好ましい。
本発明の塩化ビニル樹脂は、このような乾燥方法により平均粒径1〜80μmの造粒体とするが、粒径の大きさや造粒体の硬さ等により、発泡壁紙用のケミカルエンボス、メカニカルエンボス及びロータリースクリーンの各用途に好適に使用することができる。
例えば、ラテックスを2流体のノズル式の噴霧乾燥機で乾燥した平均粒径10〜30μmの造粒体は、ロータリースクリーン印刷用に好適であり、回転円盤式の噴霧乾燥機で乾燥した平均粒径50〜80μmの造粒体は、そのままで、または、粉砕して平均粒径1〜10μmにして、ケミカルエンボス用及びメカニカルエンボス用に好適に使用することができる。
【0019】
これら発泡壁紙用に使用するには本発明のペースト用塩化ビニル系樹脂に可塑剤及び発泡剤を加え、更に必要に応じて、安定剤、充填剤、補強剤、希釈剤、減粘剤、酸化防止剤、紫外線吸収剤、難燃剤、帯電防止剤、滑剤、顔料、表面処理剤、チキソトロープ剤及び接着性付与剤等の1種又は2種以上を加えて混練して、ペーストゾル組成物とし、その流動性を利用して賦形し、その後加熱ゲル化して成形加工される。なお、希釈剤を使用する場合は、多量に添加すると加工製品の外観を損ない、また作業環境を汚染するので、これらの問題を巻き起こさない範囲内で使用するのが好ましい。
【0020】
使用する可塑剤について特に制限はないが、1次可塑剤として、ジ−2−ヘキシルフタレート、ジ−n−オクチルフタレート、ジブチルフタレート、ジイソノニルフタレート等のフタル酸エステル、トリクレジルホスフェート、トリ−2−エチルヘキシルアジペート等のアジピン酸エステル、ジ−2−エチルヘキシルセバケート等のセバシン酸エステル、ジ−2−エチルヘキシルアゼレート等のアゼライン酸エステル、トリ−2−エチルヘキシルトリメリテート等のトリメリット酸エステル、ポリエステル系可塑剤等を用いることができる。これらは単独で又は2種以上組み合わせて用いられる。また、クエン酸エステル、グリコール酸エステル、塩素化パラフィン、塩素化脂肪酸エステル、エポキシ系可塑剤等の2次可塑剤を併用してもよい。これらの2次可塑剤も単独で、又は2種以上組み合わせて用いられる。その他の配合剤についても公知のものを使用することができる。
【0021】
可塑剤の量は特に制限されないが、本発明のペースト用塩化ビニル系樹脂は、特に低可塑剤配合に好適であり、例えば、塩化ビニル系樹脂100重量部に対して可塑剤20〜60重量部配合しても、高品質を維持しながら、低せん断領域から高せん断領域までの広い範囲にわたって低粘度で加工性に優れたペーストゾルとなる。
使用する発泡剤としては、特に制限はないが、例えばアゾ系、スルホヒドラジド系、ニトロソ系等の化合物が用いられる。これらは単独で又は2種以上組み合わせて用いることもできる。発泡剤は、塩化ビニル系樹脂100重量部に対して2〜6重量部配合して使用することができる。
更に、本発明のペースト用塩化ビニル系樹脂は、床材、帆布、レーザー、自動車用部品の鋼板、日用雑貨等の分野にも利用することができる。
【0022】
【実施例】
以下、本発明を実施例及び比較例により、更に詳細に説明するが、本発明は、その要旨を超えない限り以下の実施例に限定されるものではない。なお評価方法は以下の方法により行った。
【0023】
<粒径分布>
レーザー回折粒径分布測定装置(堀場製作所(株)製 LA−910)にフローセルホルダーをセットし、分散媒として塩化ビニル系樹脂ラテックスの場合は、イオン交換水を、造粒体の場合は、0.1重量%ポリオキシエチレンソルビタンモノラウレート水溶液約200mlをバスに入れ、攪拌・循環させた。回折像のブランクを測定し、次いで塩化ビニル系樹脂ラテックスまたは造粒体を少量バスに添加し、30秒間分散させた後、試料の粒径分布を測定した。得られた粒径分布から平均粒径及び小粒子/大粒子の個数比を算出した。
【0024】
<平均重合度>
JIS−K6721のウベローデ粘度計を用いて、溶液粘度測定法により平均重合度を算出した。
【0025】
<プラスチゾルの調整>
実施例及び比較例で得られた塩化ビニル系樹脂100部に対して、可塑剤(フタル酸ジ−2−エチルヘキシル)を45部、炭酸カルシウム(白石工業(株)製、ホワイトンB)を50部、化学発泡剤(大塚化学(株)製、ユニホームAZL30)を3部、金属石鹸複合安定剤(旭電化(株)製、FL23)を2.5部、白色顔料(大日精化工業(株)製、VT2030ホワイト)を20部、鉱物油系炭化水素(日本石油(株)製、ミネラルスピリットA)を11部の比で、プラネタリーミキサー(HOBART社製、HOBART MIXER N−50型)内へ、塩化ビニル樹脂量として300g相当を計量、投入し、61rpmにて5分間、125rpmにて15分間、攪拌・混合してプラスチゾルを得た。
【0026】
<B8H粘度>
プラスチゾルを作成後、23℃、50%RHの室内で2時間熟成した後、東京計器(株)製B8H型粘度計で#6ローターを使用して、回転速度50rpmの粘度を測定した。
【0027】
<発泡性、表面平滑性、エンボスシャープ性>
プラスチゾルを日本製紙(株)製の基材へ、ガードナーナイフを用いて0.1mmの厚みでコーティングし、熱風式乾燥機に入れ130℃、1分間加熱し、ゲル化させた。次いで、このゲル化シートを200℃、1分間熱風式乾燥機へ入れ発泡体を得た。発泡性、表面平滑性(エアパンク性)については発泡体をカミソリで切り込みを入れ、断面の目視により発泡セルの状態および発泡体表面の表面平滑性について次の評価基準で判定を行った。
また、ケミカルエンボスシャープ性については、上記ゲル化シートに発泡抑制剤の入ったインクで柄を印刷後、200℃、1分間熱風式乾燥機に入れ発泡体を得、発泡体表面の凹凸模様のエッジのシャープ性を次の判定基準で測定した。
【0028】
【表1】

Figure 0003637798
【0029】
<光沢度>
発泡体シートの表面を日本電色工業(株)製デジタル変角光沢計VG−1D型を用いて、入射角/受光角が60度/60度の条件で光沢度を測定した。数値は小さい程艶が消えている状態で、製品外観上、5以下が望まれる。
【0030】
<ロータリースクリーン印刷適性>
ロータリースクリーン印刷機(ストークス社製、PD−3型)に100メッシュラッカースクリーン又は135メッシュノバススクリーンをセットし、厚さ0.15mm、幅30mmのスキージイをホルダーに取り付けた。スクリーン内部にプラスチゾルを供給し、ライン速度30m/分にて基材へ塗工した。ロータリースクリーン(以下、「RS」という。)印刷適性については、次のように目視により判定した。
【0031】
【表2】
Figure 0003637798
1)ゾルがスクリーン開口部を抜けて柄模様を忠実に表現したかどうかを判定
2)柄の中央部と周囲部で塗工肉厚に差がなく表面が平滑であるかを判定
【0032】
<実施例1>
まず、乳化重合法により塩化ビニル単量体を重合させて塩化ビニル系重合体のシードラテックスを製造した。攪拌機を備えた容積15m3 の重合缶を使用し、脱イオン水8t、シード重合初期乳化剤を添加せず、シード重合初期開始剤として過硫酸カリウム0.65kgを加え、50℃攪拌下で20分後に塩化ビニル単量体6.5t、レドックス系重合開始剤として過硫酸カリウム1.4kg、ピロ亜硫酸ナトリウム7kg、主乳化剤としてラウリル硫酸ナトリウム40kgを仕込み、反応温度は64℃で重合した。得られたシードラテックス重合体中の重合体粒子の平均粒径は0.5μmであり、平均重合度は800であった。
【0033】
次に、このシードラテックスを用いて2段目の乳化重合を行い、塩化ビニル重合体の大粒子と小粒子を製造した。シードの重合に用いたのと同じ重合缶に脱イオン水7t、塩化ビニル単量体7t、シード重合体が塩化ビニル単量体に対して3.8重量%、レドックス系重合開始剤として過硫酸カリウム1kg、ピロ亜硫酸ナトリウム6kg、主乳化剤としてラウリル硫酸ナトリウム40kgを仕込み、反応温度は53℃で重合した。
【0034】
得られたラテックス中の大粒子の平均粒径は1.37μm、小粒子の平均粒径は0.54μm、小粒子と大粒子の個数比は20、大粒子の外核の平均重合度は1300、小粒子の平均重合度は1300であった。
ついで、このラテックスを回転円盤式の噴霧乾燥機で表1に示した乾燥条件で乾燥し、平均粒径が約50μmの粉体の造粒体を得、これを更に粉砕して約3μmの塩化ビニル樹脂を造粒体を得た。得られた造粒体を前記した評価方法に従い評価した結果を表1に示した。
【0035】
<実施例2>
実施例1において、2段目の乳化重合により得られたラテックスを2流体ノズル式の噴霧乾燥機に代え、また表1に示した乾燥条件に代えて乾燥した他は、同様な方法で平均粒径が約20μmの粉体の塩化ビニル樹脂造粒体を得た。
得られた造粒体を前記した評価方法に従い評価した結果を表1に示した。
【0036】
<実施例3>
実施例1において、シードラテックスの製造の際、シード重合初期開始剤とともにシード重合初期乳化剤としてラウリル硫酸ナトリウム0.65kgを加え、50℃で20分攪拌したこと、またシード重合温度を74℃に代えた他は同様な方法で、平均粒径0.3μm、平均重合度600のシードラッテクス重合体粒子を得、更に、2段目の重合において、シード重合体を塩化ビニル単量体に対して0.5重量%に代え、反応温度を64℃に代えた他は、同様な方法により重合した。
得られたラテックス中の大粒子の平均粒径は、1.40μm、小粒子の平均粒径は0.54μm、小粒子と大粒子の個数比は12、大粒子の外核及び小粒子の平均重合度は800であった。
ついでこのラテックスを実施例1と同様な方法で乾燥し、約3μmの塩化ビニル樹脂造粒体を得た。
得られた造粒体を前記した評価方法に従い評価した結果を表1に示した。
【0037】
<実施例4>
実施例1において、シードラテックスの製造の際、シード重合初期開始剤の量を0.325kgに代え、またシード重合温度を70℃に代えた他は、同様な方法で、平均粒径0.6μm、平均重合度700のシードラテックス重合体粒子を得、更に、2段目の重合において、シード重合体を塩化ビニル単量体に対して13重量%に代え、反応温度を49℃に代えた他は、同様な方法により重合した。
得られたラテックス中の大粒子の平均粒径は、1.16μm、小粒子の平均粒径は0.26μm、小粒子と大粒子の個数比は50、大粒子の外核及び小粒子の平均重合度は1500であった。
ついで、このラテックスを実施例1と同様な方法で乾燥し、約3μmの塩化ビニル樹脂造粒体を得た。
得られた造粒体を前記した評価方法に従い評価した結果を表1に示した。
【0038】
<比較例1>
実施例1において、2段目の重合において得られたラテックスを、2流体ノズル式の噴霧乾燥機に代え、また表1に示した乾燥条件に代えて乾燥した他は、同様な方法で平均粒径が約100μmの粉体の塩化ビニル樹脂造粒体を得た。
得られた造粒体を前記した評価方法に従い評価した結果を表1に示した。
【0039】
<比較例2>
実施例1において、シードラテックスの製造の際、シード重合初期開始剤とともに、シード重合初期乳化剤としてラウリル硫酸ナトリウム0.325kgを加え、50℃で20分攪拌したことの他は、同様な方法で平均粒径0.4μm、平均重合度800のシードラテックス重合体粒子を得、更に、2段目の重合において、シード重合体を塩化ビニル単量体に対して1.0重量%に代え、反応温度を62.5℃に代えた他は、同様な方法により重合した。
得られたラテックス中の大粒子の平均粒径は、1.36μm、小粒子の平均粒径は0.49μm、小粒子と大粒子の個数比は25、大粒子の外核及び小粒子の平均重合度は850であった。
ついでこのラテックスを実施例1と同様な方法で乾燥し、約3μmの塩化ビニル樹脂造粒体を得た。
得られた造粒体を前記した評価方法に従い評価した結果を表1に示した。
【0040】
<比較例3>
実施例1において、シードラテックスの製造の際、シード重合初期開始剤の量を0.325kgに代え、またシード重合温度を61℃に代えた他は、同様な方法で平均粒径0.6μm、平均重合度900のシードラテックス重合体粒子を得、更に、2段目の重合において、シード重合体を塩化ビニル単量体に対して16重量%に代え、反応温度を51℃に代えた他は、同様な方法により重合した。
得られたラテックス中の大粒子の平均粒径は0.90μm、小粒子の平均粒径は0.17μm、小粒子と大粒子の個数比は100、大粒子の外核及び小粒子の平均重合度は1400であった。
ついで、このラテックスを実施例1と同様な方法で乾燥し、約3μmの塩化ビニル樹脂造粒体を得た。
得られた造粒体を前記した評価方法に従い評価した結果を表1に示した。
【0041】
<比較例4>
実施例4において、2段目の重合において、シード重合体を塩化ビニル単量体に対して8重量%に代えた他は、同様な方法により重合した。
得られたラテックス中の大粒子の平均粒径は0.77μm、小粒子の平均粒径は0.28μm、小粒子と大粒子の個数比は20、大粒子の外核及び小粒子の平均重合度は1500であった。
ついでこのラテックスを実施例4と同様な方法で乾燥し、約3μmの塩化ビニル樹脂造粒体を得た。
得られた造粒体を前記した評価方法に従い評価した結果を表1に示した。
【0042】
【表3】
Figure 0003637798
【0043】
【表4】
Figure 0003637798
【0044】
【発明の効果】
本発明のペースト用塩化ビニル系樹脂は、ブレンディングレジンを使用せず、希釈剤または可塑剤の配合量が少なくても低粘度なため、発泡壁紙用として、発泡性、表面平滑性及びエンボスシャープ性に優れており、また艶消し性に優れ、ロータリースクリーン印刷適性にも優れた発泡体を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vinyl chloride resin for pastes, and is particularly useful as a paste sol, that is, can be applied to a low plasticizer content and has a low viscosity over a wide shear rate range from a low shear region to a high shear region. The present invention relates to a vinyl chloride resin for paste which gives a paste sol excellent in foam wallpaper processing.
[0002]
[Prior art]
For the paste processing of vinyl chloride resin, vinyl chloride paste resin and plasticizer are essential components, and if necessary, stabilizers, fillers, etc. are added, mixed and kneaded to form a paste sol, and its fluidity is utilized. This is a method of forming by heating and then gelling by heating. In paste processing, the workability and quality of processed products are closely related to the fluidity (sol viscosity) of the paste sol, and the smaller the compounding amount of the plasticizer, which is an essential component, the higher the paste sol becomes, The processed product has high hardness. That is, in order to obtain a paste processed product with high hardness, it is sufficient to reduce the blending amount of the plasticizer. However, if the viscosity of the paste sol becomes too high, the coating property is deteriorated and finally the coating becomes impossible. There was a problem.
[0003]
Conventionally, paste sols containing less than 50 parts by weight of plasticizer for 100 parts by weight of vinyl chloride resin are extremely high in viscosity. Add diluent or use larger particles than vinyl chloride paste resin. As a result, the present situation was that the coating was performed with the sol viscosity lowered. However, when a large amount of diluent is added, there are problems such that the diluent exhibits during hot gelation to cause pinholes in the processed product, and the vapor of the diluent contaminates the working environment. In addition, when a vinyl chloride blending resin (hereinafter referred to as “BR”) generally having an average particle diameter in the range of 20 to 100 μm is used in combination, in thin film applications, streaks due to large particles may occur during coating. Moreover, in low temperature processing applications, there is a problem that workability, weather resistance, etc. are poor due to, for example, large particles with poor gelation remaining as unmelted materials.
When such diluents or BR are used, the problem that defects are likely to occur in processed products is solved, and quality aspects such as appearance and tensile properties, impact resistance, heat resistance, cold resistance, and weather resistance are improved. There has been a demand for the development of a vinyl chloride paste resin that can be applied to a low plasticizer content without damaging the plasticizer.
[0004]
[Problems to be solved by the invention]
The present invention solves the above-mentioned conventional problems, can be used for low diluent blending and low plasticizer blending without using BR, and maintains high quality from a low shear region to a high shear region. It is an object of the present invention to provide a vinyl chloride resin for paste which gives a paste sol having a low viscosity over a wide range of shear rate up to and excellent in processability for foamed wallpaper.
[0005]
[Means for Solving the Problems]
The present invention comprises large particles having an average particle size of 0.9 to 1.8 μm and small particles having a particle size of 0.2 to 0.7 μm, and the structure of the large particles is around the inner core having an average degree of polymerization of 600 to 900. It is composed of an outer core having an average degree of polymerization of 100 or more than the average degree of polymerization of the inner core and an average degree of polymerization of 700 to 1500. The average degree of polymerization of small particles is 600 to 1500, and the number of small particles is 10 to 50 of the large particles. The present invention relates to a vinyl chloride resin for paste made of granules having an average particle diameter of 1 to 80 μm composed of double particles.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The vinyl chloride resin for paste of the present invention is composed of large particles and small particles, and is composed of a granulated body composed of these particles. The average particle size of the large particles is 0.9 to 1.8 μm, preferably 1.0 to 1.6 μm. If the particle size is less than 0.9 μm, the specific surface area of the particle increases, and the amount of plasticizer that contributes to fluidity decreases because the amount of plasticizer that is trapped by the electric double layer on the particle surface and does not contribute to fluidity decreases, and plastisol fluidity decreases. On the other hand, if it exceeds 1.8 μm, particles collide with each other by stirring during polymerization, and the impact force tends to form an aggregate, which is not preferable. The average particle size of the small particles is 0.2 to 0.7 μm, preferably 0.3 to 0.6 μm. If it is less than 0.2 μm, the specific surface area becomes large and the plastisol fluidity decreases as described above. On the other hand, if it exceeds 0.8 μm, it is difficult to control the number of particle nuclei generated during the polymerization and the production efficiency is deteriorated. Absent.
[0007]
The number of small particles needs to be 10 to 50 times that of large particles, and preferably 20 to 40.
When the number of small particles is 10 to 50 times that of large particles, the particle filling degree when dry granulation of small particles and large particles is high and voids are reduced, so that the plastisol fluidity is improved. The flowability of plastisol is lowered. Particularly, when it is less than 10 times, the foaming property is deteriorated, and when it exceeds 50 times, the product gloss is not preferable.
[0008]
Next, the average degree of polymerization of the small particles is 600-1500, preferably 700-1400. If it is less than 600, the meltability is improved, but the foamed cell strength is low and the cell puncture property is inferior. On the other hand, if it exceeds 1500, the meltability is poor and the foamability is lowered.
The average degree of polymerization of the large particles is 600 to 900 for the inner core, 700 to 1500 for the outer core, and the outer core needs to be 100 or more larger than the average degree of polymerization of the inner core. If the average polymerization degree of the inner core is less than 600, the polymerization temperature becomes too high, and the pressure resistance requirement of the polymerization can is high, which is not preferable. Further, when a chain transfer agent is used, the amount used is too large, so that it is difficult to control the polymerization reaction. On the other hand, if the average degree of polymerization of the inner core of the large particles exceeds 900, the meltability of the large particles decreases and the foamability deteriorates, which is not preferable. When the average degree of polymerization of the outer core is less than 700, the cell puncture property at the time of foaming is inferior, and when it exceeds 1500, the foamability is lowered, which is not preferable. If the difference in the average degree of polymerization between the outer core and the inner core is less than 100, the difference in meltability between the outer core and the inner core becomes small, so that the matte property becomes insufficient. The preferred average degree of polymerization of the inner core of the large particles is 600 to 800, the preferred average degree of polymerization of the outer core is 800 to 1400, and the outer core is preferably 200 or more larger than the average degree of polymerization of the inner core.
[0009]
The vinyl chloride resin for paste of the present invention is a granulated body having an average particle diameter of 1 to 80 μm composed of large particles and small particles. It is preferably 2 to 60 μm, and aggregate particles that are dense and hardly disintegrate are preferred. If it is less than 1 μm, the spray drying / pulverization process is complicated and the production efficiency is poor, which is not preferable. On the other hand, if it exceeds 80 μm, the aggregate particles remain undisintegrated with a low plasticizer content, which causes streaks during coating. It is easy to use, and when used for rotary screen printing, clogging occurs, which is not preferable.
[0010]
The vinyl chloride resin for paste of the present invention is a homopolymer of vinyl chloride and a copolymer of a comonomer copolymerizable with vinyl chloride. Comonomers copolymerizable with vinyl chloride include vinyl esters such as vinyl acetate, vinyl propionate and vinyl stearate, monounsaturated acids such as acrylic acid, methacrylic acid and itaconic acid, and those monounsaturated acids. Alkyl ethers, vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, octyl vinyl ether, lauryl vinyl ether, diunsaturated acids such as maleic acid and fumaric acid, alkyl esters of these diunsaturated acids, vinylidene halides such as vinylidene chloride, Examples include unsaturated nitriles. These can be used alone or in a mixture of two or more.
[0011]
In the production method of the vinyl chloride resin of the present invention, vinyl chloride or a mixture of comonomers copolymerizable with vinyl chloride is obtained by emulsion polymerization or fine suspension polymerization in the presence of a surfactant in an aqueous medium. An aqueous dispersion of vinyl resin (hereinafter referred to as “latex”) can be produced by drying and granulating with a spray dryer.
First, to produce a resin containing small particles and large particles, vinyl chloride or a mixture of vinyl chloride and a comonomer copolymerizable therewith is emulsified in an aqueous medium in the presence of an emulsifier and a water-soluble polymerization initiator. It can be produced by a conventional general polymerization method such as a polymerization method or a fine suspension polymerization method in the presence of an emulsifier and an oil-soluble polymerization initiator.
[0012]
A method for producing large particles composed of an inner core and an outer core is as follows. First, latex of particles (hereinafter referred to as “seed”), which is an inner core of large particles produced by emulsion polymerization, is charged in a polymerization can in advance, Further, a method of obtaining a large particle by growing the particle size by emulsion polymerization, and using a seed latex in which the inner core of the large particle is produced by fine suspension polymerization, the seed is further grown by fine suspension polymerization. Examples thereof include a method for obtaining large particles, and a method for obtaining large particles by using a seed latex in which the inner core of the large particles is produced by fine suspension polymerization and then growing the particle size by emulsion polymerization. At this time, when the small particles are produced, the newly generated particles become small particles. Moreover, it is also possible to obtain a resin composed of small particles and large particles by a method of mixing latexes produced by different polymerizations for both small particles and large particles.
[0013]
In the case of emulsion polymerization, the polymerization initiator used for production of the vinyl chloride polymer latex is, for example, a persulfate (sodium salt, potassium salt, ammonium salt, etc.), a water-soluble peroxide such as hydrogen peroxide, or A water-soluble redox initiator composed of these water-soluble peroxides and a water-soluble reducing agent (for example, sodium sulfite, sodium pyrosulfite, sodium hydrogen sulfite, ascorbic acid, sodium formaldehyde sulfoxylate, etc.) In the case, azobisisobutyronitrile, azobis-2,4-dimethylvaleronitrile, lauroyl peroxide, t-butyl peroxypivalate, etc., monomer-soluble (oil-soluble) initiator, or these oil-soluble initiators And a redox initiator comprising a combination of an agent and the water-soluble reducing agent.
[0014]
Examples of emulsifiers used in the production of latex include higher alcohol sulfates (alkali metal salts, ammonium salts), alkylbenzene sulfonates (alkali metal salts, ammonium salts), higher fatty acid salts (alkali metal salts, ammonium salts). ), Other anionic surfactants, nonionic surfactants, and cationic surfactants. These surfactants may be used alone or in combination of two or more. Preference is given to anionic surfactants. Further, the anionic surfactant and / or the nonionic surfactant may be added during or after the adjustment of the latex, separately from the emulsifier for polymerization.
[0015]
Furthermore, in the production of latex, a polymerization regulator and other auxiliary agents may be used. Examples of the polymerization regulator include chain transfer agents such as trichloroethylene, carbon tetrachloride, 2-mercaptoethanol, octyl mercaptan, and crosslinking agents such as diallyl phthalate, triallyl isocyanurate, ethylene glycol diacrylate, and trimethylolpropane trimethacrylate. Can be mentioned. Other auxiliaries include, for example, water-soluble transition metal salts such as cupric chloride, ferrous sulfate, and nickel nickel sulfate that act as activators of redox initiators, or alkali metal mono- or dihydrogen phosphates. Examples thereof include pH adjusters such as salts, potassium hydrogen phthalate, and sodium hydrogen carbonate.
[0016]
The solid content in the vinyl chloride polymer latex is not particularly limited, and is usually 20 to 80% by weight, preferably 40 to 65% by weight. The latex after completion of the polymerization reaction may be used as it is. Alternatively, those concentrated by a method such as ultrafiltration may be used. The viscosity of the latex is usually 0.1 Pa · sec or less.
Next, in order to obtain a granulated body composed of large particles and small particles, the granulated body is formed by spray drying in order to remove moisture from the latex obtained by polymerization.
Examples of the dryer used for spray drying include those that can finely spray latex, such as a rotary disk type or two-fluid nozzle type spray dryer.
[0017]
As a method for finely spraying, in the case of a rotating disk type, it is preferable that the dry air flow is a swirl flow in accordance with the latex spraying direction. The particle diameter of the granulated body can be obtained by appropriately selecting the number of rotations of the disk, the diameter of the disk, and the amount of latex treated, but generally it is often adjusted by the amount of latex treated. .
In the case of the two-fluid nozzle type, it is important to suppress the disturbance of the dry air flow and the spray air flow so that the finely sprayed latex droplets do not cause particle size enlargement due to collision. It is preferable to do. With respect to the particle size of the granulated material, a desired average particle size can be obtained by adjusting the ratio of the atomizing air / latex flow rate for finely spraying the latex.
In any case, the dried powder and the outlet of the dry airflow may be of a type discharged from the bottom of the dryer or a type discharged from the side wall of the lower cone. In addition, after drying, coarse particles may be removed through a pulverizer or a sieve and a granulated body having an average particle diameter of 1 to 80 μm.
[0018]
The drying gas used in the present invention is preferably air because it is easily available. Further, the flow rate can be determined from the heat balance in the dryer in consideration of the drying temperature. The drying temperature is generally 100 to 200 ° C. at the dryer inlet and 45 to 70 ° C., preferably 50 to 50 ° C. at the outlet. It is preferable to adjust to 65 ° C.
The vinyl chloride resin of the present invention is made into a granulated material having an average particle size of 1 to 80 μm by such a drying method. Depending on the size of the particle size, the hardness of the granulated material, etc., chemical embossing for foamed wallpaper, mechanical It can use suitably for each use of embossing and a rotary screen.
For example, a granulate having an average particle size of 10 to 30 μm obtained by drying latex with a two-fluid nozzle type spray dryer is suitable for rotary screen printing, and an average particle size dried with a rotary disk type spray dryer. The granulated body of 50 to 80 μm can be suitably used for chemical embossing and mechanical embossing as it is or by pulverizing to an average particle diameter of 1 to 10 μm.
[0019]
In order to use for these foam wallpaper, a plasticizer and a foaming agent are added to the vinyl chloride resin for paste of the present invention, and a stabilizer, a filler, a reinforcing agent, a diluent, a viscosity reducing agent, an oxidation agent are added as necessary. 1 type or 2 types or more of an inhibitor, an ultraviolet absorber, a flame retardant, an antistatic agent, a lubricant, a pigment, a surface treatment agent, a thixotropic agent, an adhesiveness imparting agent and the like are added and kneaded to obtain a paste sol composition, It is shaped using its fluidity, and then heated to gel and molded. When a diluent is used in a large amount, the appearance of the processed product is impaired and the working environment is contaminated. Therefore, it is preferable to use it within a range that does not cause these problems.
[0020]
Although there is no restriction | limiting in particular about the plasticizer to be used, As primary plasticizer, phthalic acid ester, such as di-2-hexyl phthalate, di-n-octyl phthalate, dibutyl phthalate, diisononyl phthalate, tricresyl phosphate, tri-2 -Adipic acid ester such as ethylhexyl adipate, sebacic acid ester such as di-2-ethylhexyl sebacate, azelaic acid ester such as di-2-ethylhexyl azelate, trimellitic acid ester such as tri-2-ethylhexyl trimellitate, A polyester plasticizer or the like can be used. These may be used alone or in combination of two or more. In addition, secondary plasticizers such as citric acid esters, glycolic acid esters, chlorinated paraffins, chlorinated fatty acid esters, and epoxy plasticizers may be used in combination. These secondary plasticizers are also used alone or in combination of two or more. Known other compounding agents can also be used.
[0021]
The amount of the plasticizer is not particularly limited, but the vinyl chloride resin for paste of the present invention is particularly suitable for blending with a low plasticizer, for example, 20 to 60 parts by weight of a plasticizer with respect to 100 parts by weight of the vinyl chloride resin. Even if it mix | blends, it becomes a paste sol excellent in workability with low viscosity over a wide range from a low shear region to a high shear region while maintaining high quality.
The foaming agent to be used is not particularly limited, and for example, azo, sulfohydrazide, nitroso compounds and the like are used. These may be used alone or in combination of two or more. The foaming agent can be used by blending 2 to 6 parts by weight with respect to 100 parts by weight of the vinyl chloride resin.
Furthermore, the vinyl chloride resin for paste of the present invention can be used in the fields of flooring, canvas, laser, steel plate for automobile parts, daily goods and the like.
[0022]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to a following example, unless the summary is exceeded. The evaluation method was as follows.
[0023]
<Particle size distribution>
A flow cell holder is set in a laser diffraction particle size distribution measuring apparatus (LA-910, manufactured by Horiba, Ltd.). In the case of a vinyl chloride resin latex as a dispersion medium, ion-exchanged water is used. About 200 ml of a 1 wt% polyoxyethylene sorbitan monolaurate aqueous solution was placed in a bath and stirred and circulated. The blank of the diffraction image was measured, and then a small amount of vinyl chloride resin latex or granulated material was added to the bath and dispersed for 30 seconds, and then the particle size distribution of the sample was measured. The average particle size and the number ratio of small particles / large particles were calculated from the obtained particle size distribution.
[0024]
<Average polymerization degree>
The average degree of polymerization was calculated by a solution viscosity measurement method using an Ubbelohde viscometer of JIS-K6721.
[0025]
<Adjustment of plastisol>
For 100 parts of the vinyl chloride resin obtained in Examples and Comparative Examples, 45 parts of plasticizer (di-2-ethylhexyl phthalate) and 50 parts of calcium carbonate (Shiraishi Kogyo Co., Ltd., Whiten B) are used. Parts, 3 parts of chemical foaming agent (Otsuka Chemical Co., Ltd., Uniform AZL30), 2.5 parts of metal soap composite stabilizer (Asahi Denka Co., Ltd., FL23), white pigment (Daiichi Seika Kogyo Co., Ltd.) VT2030 White), 20 parts mineral oil (Japan Petroleum Co., Ltd., Mineral Spirit A) in a ratio of 11 parts in a planetary mixer (HOBART MIXER N-50 model) The amount of vinyl chloride resin equivalent to 300 g was weighed and charged, and stirred and mixed at 61 rpm for 5 minutes and at 125 rpm for 15 minutes to obtain a plastisol.
[0026]
<B8H viscosity>
After preparing the plastisol, it was aged for 2 hours in a room at 23 ° C. and 50% RH, and then the viscosity at a rotational speed of 50 rpm was measured with a B8H type viscometer manufactured by Tokyo Keiki Co., Ltd. using a # 6 rotor.
[0027]
<Foaming properties, surface smoothness, emboss sharpness>
The plastisol was coated on a substrate made by Nippon Paper Industries Co., Ltd. with a thickness of 0.1 mm using a Gardner knife, placed in a hot air dryer and heated at 130 ° C. for 1 minute to gel. Next, this gelled sheet was put into a hot air dryer at 200 ° C. for 1 minute to obtain a foam. About foamability and surface smoothness (air puncture property), the foam was cut with a razor, and the state of the foam cell and the surface smoothness of the foam surface were determined by visual observation of the cross section according to the following evaluation criteria.
As for chemical embossing sharpness, after printing a pattern with an ink containing a foaming inhibitor on the gelled sheet, it was placed in a hot air dryer at 200 ° C. for 1 minute to obtain a foam. Edge sharpness was measured according to the following criteria.
[0028]
[Table 1]
Figure 0003637798
[0029]
<Glossiness>
The glossiness of the surface of the foam sheet was measured under the conditions of an incident angle / light receiving angle of 60 degrees / 60 degrees using a digital variable angle gloss meter VG-1D manufactured by Nippon Denshoku Industries Co., Ltd. The smaller the numerical value, the more the gloss is lost.
[0030]
<Applicability to rotary screen printing>
A 100 mesh lacquer screen or a 135 mesh Nova screen was set on a rotary screen printer (PD-3 type, manufactured by Stokes), and a squeegee having a thickness of 0.15 mm and a width of 30 mm was attached to the holder. Plastisol was supplied inside the screen and applied to the substrate at a line speed of 30 m / min. The rotary screen (hereinafter referred to as “RS”) printability was visually determined as follows.
[0031]
[Table 2]
Figure 0003637798
1) Determine whether the sol has passed the screen opening and faithfully represented the pattern
2) Determine whether there is no difference in the coating thickness between the center and the periphery of the handle and the surface is smooth
[0032]
<Example 1>
First, a vinyl chloride monomer was polymerized by an emulsion polymerization method to produce a vinyl chloride polymer seed latex. 15m capacity with stirrer Three 6 ml of deionized water, no seed polymerization initial emulsifier was added, 0.65 kg of potassium persulfate was added as a seed polymerization initial initiator, and after 20 minutes of stirring at 50 ° C., the vinyl chloride monomer 6 0.5 t, 1.4 kg of potassium persulfate as a redox polymerization initiator, 7 kg of sodium pyrosulfite, 40 kg of sodium lauryl sulfate as a main emulsifier, and polymerization was conducted at a reaction temperature of 64 ° C. The average particle diameter of the polymer particles in the obtained seed latex polymer was 0.5 μm, and the average degree of polymerization was 800.
[0033]
Next, the second stage emulsion polymerization was performed using this seed latex to produce large particles and small particles of vinyl chloride polymer. Deionized water 7t, vinyl chloride monomer 7t, seed polymer 3.8% by weight with respect to vinyl chloride monomer, persulfuric acid as redox polymerization initiator in the same polymerization vessel used for seed polymerization 1 kg of potassium, 6 kg of sodium pyrosulfite, and 40 kg of sodium lauryl sulfate as the main emulsifier were charged, and polymerization was carried out at a reaction temperature of 53 ° C.
[0034]
The average particle size of the large particles in the obtained latex is 1.37 μm, the average particle size of the small particles is 0.54 μm, the number ratio of small particles to large particles is 20, and the average degree of polymerization of the outer core of the large particles is 1300. The average degree of polymerization of the small particles was 1300.
Next, this latex was dried with a rotary disk type spray dryer under the drying conditions shown in Table 1 to obtain a powder granulate having an average particle size of about 50 μm, which was further pulverized to obtain a chloride of about 3 μm. A granulated product of vinyl resin was obtained. Table 1 shows the results of evaluating the obtained granulate according to the evaluation method described above.
[0035]
<Example 2>
In Example 1, the average particle size was determined in the same manner except that the latex obtained by emulsion polymerization in the second stage was replaced with a two-fluid nozzle spray dryer and dried in place of the drying conditions shown in Table 1. A powdered vinyl chloride resin granule having a diameter of about 20 μm was obtained.
Table 1 shows the results of evaluating the obtained granulate according to the evaluation method described above.
[0036]
<Example 3>
In Example 1, when producing the seed latex, 0.65 kg of sodium lauryl sulfate as a seed polymerization initial emulsifier was added together with the seed polymerization initial initiator, and the mixture was stirred at 50 ° C. for 20 minutes, and the seed polymerization temperature was changed to 74 ° C. Otherwise, seed latex polymer particles having an average particle size of 0.3 μm and an average degree of polymerization of 600 are obtained in the same manner. Further, in the second stage polymerization, the seed polymer is zero with respect to the vinyl chloride monomer. Polymerization was carried out in the same manner except that the reaction temperature was changed to 64 ° C. instead of 0.5 wt%.
The average particle size of the large particles in the obtained latex is 1.40 μm, the average particle size of the small particles is 0.54 μm, the number ratio of the small particles to the large particles is 12, the outer core of the large particles and the average of the small particles The degree of polymerization was 800.
The latex was then dried in the same manner as in Example 1 to obtain a vinyl chloride resin granule having a size of about 3 μm.
Table 1 shows the results of evaluating the obtained granulate according to the evaluation method described above.
[0037]
<Example 4>
In Example 1, in the production of the seed latex, the average particle size of 0.6 μm was obtained in the same manner except that the amount of the seed polymerization initial initiator was changed to 0.325 kg and the seed polymerization temperature was changed to 70 ° C. In addition, seed latex polymer particles having an average degree of polymerization of 700 were obtained, and in the second stage polymerization, the seed polymer was changed to 13% by weight with respect to the vinyl chloride monomer, and the reaction temperature was changed to 49 ° C. Was polymerized in the same manner.
The average particle size of the large particles in the obtained latex is 1.16 μm, the average particle size of the small particles is 0.26 μm, the number ratio of the small particles to the large particles is 50, the outer core of the large particles and the average of the small particles The degree of polymerization was 1500.
The latex was then dried in the same manner as in Example 1 to obtain a vinyl chloride resin granule having a size of about 3 μm.
Table 1 shows the results of evaluating the obtained granulate according to the evaluation method described above.
[0038]
<Comparative Example 1>
In Example 1, the latex obtained in the second-stage polymerization was replaced with a two-fluid nozzle spray dryer and dried in place of the drying conditions shown in Table 1. A powdered vinyl chloride resin granule having a diameter of about 100 μm was obtained.
Table 1 shows the results of evaluating the obtained granulate according to the evaluation method described above.
[0039]
<Comparative example 2>
In Example 1, in the production of the seed latex, together with the seed polymerization initial initiator, 0.325 kg of sodium lauryl sulfate as a seed polymerization initial emulsifier was added and stirred at 50 ° C. for 20 minutes. A seed latex polymer particle having a particle size of 0.4 μm and an average degree of polymerization of 800 was obtained. Further, in the second stage polymerization, the seed polymer was changed to 1.0% by weight with respect to the vinyl chloride monomer, and the reaction temperature was changed. Polymerization was carried out in the same manner except that was changed to 62.5 ° C.
The average particle size of the large particles in the obtained latex is 1.36 μm, the average particle size of the small particles is 0.49 μm, the number ratio of small particles to large particles is 25, the outer core of the large particles and the average of the small particles The degree of polymerization was 850.
The latex was then dried in the same manner as in Example 1 to obtain a vinyl chloride resin granule having a size of about 3 μm.
Table 1 shows the results of evaluating the obtained granulate according to the evaluation method described above.
[0040]
<Comparative Example 3>
In Example 1, when the seed latex was produced, the average particle size was 0.6 μm in the same manner except that the amount of the seed polymerization initial initiator was changed to 0.325 kg and the seed polymerization temperature was changed to 61 ° C. The seed latex polymer particles having an average degree of polymerization of 900 were obtained, and in the second stage polymerization, the seed polymer was changed to 16% by weight with respect to the vinyl chloride monomer, and the reaction temperature was changed to 51 ° C. Polymerization was conducted in the same manner.
The average particle size of the large particles in the obtained latex is 0.90 μm, the average particle size of the small particles is 0.17 μm, the number ratio of small particles to large particles is 100, the outer core of the large particles and the average polymerization of the small particles The degree was 1400.
The latex was then dried in the same manner as in Example 1 to obtain a vinyl chloride resin granule having a size of about 3 μm.
Table 1 shows the results of evaluating the obtained granulate according to the evaluation method described above.
[0041]
<Comparative example 4>
In Example 4, the polymerization was performed in the same manner except that the seed polymer was changed to 8% by weight based on the vinyl chloride monomer in the second stage polymerization.
The average particle size of the large particles in the obtained latex is 0.77 μm, the average particle size of the small particles is 0.28 μm, the number ratio of small particles to large particles is 20, the outer core of the large particles and the average polymerization of the small particles The degree was 1500.
Next, this latex was dried in the same manner as in Example 4 to obtain a vinyl chloride resin granulated product of about 3 μm.
Table 1 shows the results of evaluating the obtained granulate according to the evaluation method described above.
[0042]
[Table 3]
Figure 0003637798
[0043]
[Table 4]
Figure 0003637798
[0044]
【The invention's effect】
The vinyl chloride resin for paste of the present invention does not use a blending resin and has a low viscosity even if the amount of diluent or plasticizer is small. In addition, it is possible to provide a foam having excellent mattness and excellent rotary screen printability.

Claims (1)

平均粒径が0.9〜1.8μmの大粒子と0.2〜0.7μmの小粒子とからなり、大粒子の構造が平均重合度600〜900の内核とその回りに内核の平均重合度より100以上大きい重合度で、かつ平均重合度700〜1500の外核からなり、また小粒子の平均重合度が600〜1500、更に小粒子の個数が大粒子の10〜50倍である粒子から構成された平均粒径1〜80μmの造粒体からなることを特徴とするペースト用塩化ビニル系樹脂。It consists of large particles with an average particle size of 0.9-1.8 μm and small particles with a particle size of 0.2-0.7 μm. Particles having an outer core with an average degree of polymerization of 700 to 1500, an average degree of polymerization of 600 to 1500, and the number of small particles being 10 to 50 times that of large particles A vinyl chloride resin for paste, comprising a granulated body having an average particle diameter of 1 to 80 μm, comprising
JP00625699A 1999-01-13 1999-01-13 Vinyl chloride resin for paste Expired - Fee Related JP3637798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00625699A JP3637798B2 (en) 1999-01-13 1999-01-13 Vinyl chloride resin for paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00625699A JP3637798B2 (en) 1999-01-13 1999-01-13 Vinyl chloride resin for paste

Publications (2)

Publication Number Publication Date
JP2000204211A JP2000204211A (en) 2000-07-25
JP3637798B2 true JP3637798B2 (en) 2005-04-13

Family

ID=11633408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00625699A Expired - Fee Related JP3637798B2 (en) 1999-01-13 1999-01-13 Vinyl chloride resin for paste

Country Status (1)

Country Link
JP (1) JP3637798B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4526843B2 (en) * 2004-03-19 2010-08-18 新第一塩ビ株式会社 Vinyl chloride resin particles for paste and composition thereof
JP5793624B2 (en) * 2012-09-20 2015-10-14 エルジー・ケム・リミテッド Low energy consumption vinyl chloride latex and method for producing the same
KR101591147B1 (en) * 2012-09-20 2016-02-02 주식회사 엘지화학 Low energy consuming polyvinyl chloride based latex and method for preparing the same
KR101445240B1 (en) 2012-11-02 2014-09-29 한화케미칼 주식회사 Polyvinyl chloride based resin and Method for preparing the same
CN112166137B (en) 2018-10-08 2023-06-09 株式会社Lg化学 Composition for polymerizing vinyl chloride-based polymer and method for preparing vinyl chloride-based polymer using the same
JP7413766B2 (en) 2019-12-24 2024-01-16 東ソー株式会社 Paste vinyl chloride resin

Also Published As

Publication number Publication date
JP2000204211A (en) 2000-07-25

Similar Documents

Publication Publication Date Title
JP3621885B2 (en) Acrylic polymer fine particles and plastisol using the same
JP3637798B2 (en) Vinyl chloride resin for paste
JP2970659B2 (en) Vinyl chloride resin for paste processing, vinyl chloride resin composition for paste processing, and foam comprising the same
JP4249075B2 (en) Vinyl chloride plastisol composition and foam molded article
EP0998520B1 (en) Pvc mixture and method for its production
CN103119089B (en) Vinyl chloride resin aggregate particles, process for producing same, and glove obtained using same
JP6115133B2 (en) Vinyl chloride resin for paste processing and method for producing the same
JP3946215B2 (en) Acrylic polymer fine particles
JP2009091423A (en) Polyvinyl chloride-based resin for paste processing
JP4529320B2 (en) Vinyl chloride resin for matte paste processing and matte paste composition comprising the same
JP2001040012A (en) Vinyl chloride resin for paste, method for producing the same and vinyl chloride resin composition used for paste and comprising the same
JP5003692B2 (en) Method for producing vinyl chloride resin for paste
JP3328980B2 (en) Plastisol composition
JP3998762B2 (en) Vinyl chloride resin granules for paste processing and method for producing the same
JP3301138B2 (en) Vinyl chloride resin composition for paste and method for producing the same
JP4866554B2 (en) Method for producing (meth) acrylic polymer aggregated particles for acrylic sol
JP4257932B2 (en) Manufacturing method of PVC resin for paste
JPH0711036A (en) Plastisol composition
JP4481483B2 (en) Method for producing plastisol acrylic resin
KR20190075346A (en) Vinyl chloride polymer and preparation method thereof
JP2003238621A (en) Polyvinyl chloride resin for paste processing
JP7105923B2 (en) Vinyl chloride polymer polymerization composition and method for producing vinyl chloride polymer using the same
JP4192508B2 (en) Method for producing vinyl chloride resin for paste processing
JP5081366B2 (en) Polyvinyl chloride resin granules for paste processing
JP2006335793A (en) Method for producing acrylic polymer powder and plastisol composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050103

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees