JP3637796B2 - Latent heat storage type floor slab structure and construction method - Google Patents

Latent heat storage type floor slab structure and construction method Download PDF

Info

Publication number
JP3637796B2
JP3637796B2 JP36301798A JP36301798A JP3637796B2 JP 3637796 B2 JP3637796 B2 JP 3637796B2 JP 36301798 A JP36301798 A JP 36301798A JP 36301798 A JP36301798 A JP 36301798A JP 3637796 B2 JP3637796 B2 JP 3637796B2
Authority
JP
Japan
Prior art keywords
heat storage
deck plate
latent heat
floor slab
corrugated deck
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36301798A
Other languages
Japanese (ja)
Other versions
JP2000186389A (en
Inventor
貞男 冨家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP36301798A priority Critical patent/JP3637796B2/en
Publication of JP2000186389A publication Critical patent/JP2000186389A/en
Application granted granted Critical
Publication of JP3637796B2 publication Critical patent/JP3637796B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings

Landscapes

  • Building Environments (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、コンクリート製の駆体構造に関し、とくに、冷暖房の高効率化を図った潜熱蓄熱式の床スラブ構造および施工方法に関する。
【0002】
【従来の技術】
省エネルギーシステムの一環として、安価な夜間電力によって得た冷温熱を蓄熱媒体に蓄えておき、その冷温熱を昼間に利用することで冷暖房の効率化を図る蓄熱システムが知られている。なかでも、蓄熱容量が大きく蓄熱槽の小型化が可能な潜熱蓄熱材を利用した蓄熱システムが広く採用され始めている。
【0003】
従来の潜熱蓄熱材を利用した蓄熱システムでは、夜間においてボイラやヒートポンプなどの熱源機を駆動して得た冷温熱を熱伝達媒体を介して蓄熱槽に蓄熱する。昼間においては蓄熱槽に蓄熱された冷温熱を前記熱伝達媒体を介して熱交換器や駆体(コンクリートスラブなど)に放熱して冷暖房負荷の軽減を図る。
【0004】
【発明が解決しようとする課題】
このような従来の潜熱蓄熱材を利用した蓄熱システムでは蓄熱する場所と放熱する場所が異なり、この両者間の熱のやりとりを熱伝達媒体を介して間接的に行う必要があるため、蓄熱槽と熱源機および熱交換器を接続する熱伝達媒体の循環経路に配管やポンプなどを配設するのに甚大な時間やコストを必要とするという問題があった。また熱搬送時の熱損失は避けられないという問題もあった。
【0005】
この発明は前述した従来の問題点に鑑みなされたもので、その目的は、蓄熱・放熱が効率的に行えるとともに、蓄熱槽やその周辺装置を設ける必要がない簡易な構造の潜熱蓄熱式の床スラブ構造および施工方法を提供することにある。
【0006】
【課題を解決するための手段】
この発明の請求項1に記載の潜熱蓄熱式の床スラブ構造は、コンクリート下面の凹凸と波型デッキプレートとが密着されており、その波型デッキプレートの下面に平鋼板などの封止板が接合され、前記波型デッキプレートと前記封止板で挟まれた空間に潜熱蓄熱量の大きい蓄熱材が封入されていることを特徴とする。
【0007】
請求項2に記載の潜熱蓄熱式の床スラブ構造は、請求項1において、前記波型デッキプレートと封止板とに挟まれてなる空間の一部を送風空間とすることを特徴とする。
【0008】
請求項3に記載の潜熱蓄熱式の床スラブ構造の施工方法は、波型デッキプレートの下面に平鋼板などの封止板を接合し、この両者で挟まれた空間に潜熱蓄熱量の大きい蓄熱材を封入するとともに、前記波型デッキプレートの上面に床スラブのコンクリートを打設することを特徴とする。
【0009】
請求項4に記載の潜熱蓄熱式の床スラブ構造の施工方法は、波型デッキプレートの下面に平鋼板などの封止板を接合し、この両者で挟まれた空間に潜熱蓄熱量の大きい蓄熱材を封入するとともに、床のコンクリートスラブの下面に一体的に配置された前記波型デッキプレートと同型の他の波型デッキプレートの下面凹凸に前記波型デッキプレートの上面凹凸をはめ合わせて接合することを特徴とする。
【0010】
【発明の実施の形態】
この発明の実施例に関する潜熱蓄熱式の床スラブの基本構造を図1ないし図2に示す。コンクリートスラブ1の下面の凹凸と波型デッキプレート2とが密着されており、その波型デッキプレート2の下面に平鋼板3が接合されている。前記波型デッキプレート2と前記平鋼板3で挟まれた空間には、例えばコスト・蓄熱容量・耐久性に優れたパラフィン系の潜熱蓄熱材4が封入されており、この潜熱蓄熱材4は所定の添加剤を加えることによって流動性が低く保たれている。
【0011】
つぎに、この床スラブ構造の施工方法について説明する。波型デッキプレート2の下面凸部に所定の大きさの平鋼板3を溶接または接着することで両者を一体化する。この両者によって挟まれてなる空間に前記潜熱蓄熱材4を充填するともに、その両端に図示しない平鋼板などの封止板を溶接または接着して密封する。次に、前述の波型デッキプレート2を型枠としてその上面にコンクリートスラブ1を打設して蓄熱式の床スラブが形成される(図1)。なお、前記平鋼板3はこれに限るものではなく要は封止板としての役割を果たせるものであればよい。
【0012】
別の施工方法について説明する。この方法では、波型デッキプレート2と平鋼板3および潜熱蓄熱材4からなる蓄熱ユニットを床スラブの工事とは別個に製作しておく。また、このユニットの波型デッキプレート2と同じ波型デッキプレート5を型枠として用いて床のコンクリートスラブ1を打設する。そして波型デッキプレート5の下面凹凸に前記波型デッキプレート2の上面凹凸をはめ合わせて両者を接続する(図2)。この両者の接続は、溶接・ネジ止め・磁石の吸引力などの方法による。また、前記波型デッキプレート5と前記波型デッキプレート2の形状は完全に一致する必要があるため、同一メーカの同一型番の波型デッキプレートを用いることが望ましい。
【0013】
この発明の潜熱蓄熱方式の床スラブ構造の利用方法を説明する。床スラブの上方または下方には装飾・防音・断熱としての役割を果たす天井・床部材が配設されるが、通常は両者の間に配線・配管を自由に行えるような空間が設けられる。こうして設けられた床スラブの上面に接するフリーリアクセス空間、または床スラブの下面に接する天井裏空間などの所定位置に冷温風を送風する装置を設置しておく。これを夜間(例えば22時から翌日の6時まで)に駆動させて前記空間の両方もしくは片方に冷温風を通して床スラブに蓄熱する。このとき、床スラブの上面(下面)を流れる冷温風の冷温熱は、コンクリートスラブ1と潜熱蓄熱材4の両方に蓄積される。この両者は空気層を介さず密着されているため熱伝達性が極めて良好である。そのため両者への熱損失の少ない敏速な同時蓄熱が可能であり、蓄熱のための消費電力が低減される。またコンクリートスラブ1と潜熱蓄熱材4の相乗効果によって、コンクリートスラブ1のみを蓄熱する場合に比べて飛躍的に大量の蓄熱が可能である。
【0014】
ここで、床スラブの1m2 あたりの蓄熱量を具体的数値を用いて試算する。この計算で用いた床スラブの断面を図3に示す。波型デッキプレート2の凸部の上端幅は110mmであり、下端幅は142mmである。波型デッキプレート2の凹部の上端幅は120mmであり、下端幅は88mmである。コンクリートスラブの厚さは、波型デッキプレートの凸部上に85mm、凹部上に160mm(75mm+85mm)である。コンクリートの容積比熱を460kcal/m3 ・℃、温度変動が5℃として計算すると、床スラブの1m2 あたりのコンクリートの蓄熱量は276kcalである。また潜熱蓄熱材としてパラフィン(40kcal/kg)を用い、これが床スラブ1m2 あたり35kg収容されているとして計算すると、床スラブの1m2 あたりの潜熱蓄熱材の蓄熱量は1400kcalである。よって、床スラブは1m2 あたり1676kcalの蓄熱が可能である。これは、コンクリートスラブのみの場合の約6倍の蓄熱量である。
【0015】
前記実施例の応用として、波型デッキプレート2と平鋼板3に挟まれてなる空間の一部を冷温風の送風ダクト6として用いる方法がある。その一例を図4に示す。潜熱蓄熱材が充填された部分と前記送風ダクト6とが交互に配置されている。この方法は床の上方または下方に送風する空間がない場合に有効である。また、冷温風と床スラブとの接触面積を大きくして熱交換の高効率化を図る必要がある場合にも有効である。
【0016】
【発明の効果】
この発明の蓄熱式の床スラブは、潜熱蓄熱材とコンクリートスラブが波型デッキプレートを介して密着しており、両者の間に空気層がないため熱伝達性が極めて良好である。そのため両者への熱損失の少ない敏速な同時蓄熱が可能であり、蓄熱のための消費電力が低減される。またコンクリートスラブと潜熱蓄熱材との相乗効果によって、コンクリートスラブのみを蓄熱する場合に比べて飛躍的に大量の蓄熱が可能である。
【0017】
また、床スラブを蓄熱媒体として用いるため、特別に蓄熱槽やその周辺装置を設置する必要がなく、駆体蓄熱と同じ要領で非常に簡単に蓄熱できることからイニシャルコストやランニングコストの低減化および工期短縮が図れる。
【0018】
さらには、潜熱蓄熱材を封入した波型デッキプレートをそのまま型枠として使用したり、床スラブにはめ込み接合して使用できるため、省スペース性・施工性等に優れる。
【図面の簡単な説明】
【図1】この発明の実施例に関する床スラブ(型枠施工)の斜視図である。
【図2】この発明の実施例に関する床スラブ(はめ込み施工)の斜視図である。
【図3】この発明の実施例に関する床スラブの断面図である。
【図4】一部を送風ダクトとして用いた床スラブの断面図である。
【符号の説明】
1 コンクリートスラブ
2 波型デッキプレート
3 平鋼板
4 潜熱蓄熱材
5 波型デッキプレート
6 送風ダクト
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a concrete body structure, and more particularly, to a latent heat storage type floor slab structure and a construction method for improving the efficiency of air conditioning.
[0002]
[Prior art]
As a part of the energy saving system, a heat storage system is known in which cold / hot energy obtained by inexpensive nighttime electric power is stored in a heat storage medium, and the cold / hot heat is used in the daytime to improve the efficiency of air conditioning. Among them, a heat storage system using a latent heat storage material having a large heat storage capacity and capable of downsizing a heat storage tank has been widely adopted.
[0003]
In a conventional heat storage system using a latent heat storage material, cold heat obtained by driving a heat source machine such as a boiler or a heat pump at night is stored in a heat storage tank via a heat transfer medium. In the daytime, the cooling / heating load stored in the heat storage tank is radiated to the heat exchanger and the driving body (concrete slab, etc.) through the heat transfer medium to reduce the cooling / heating load.
[0004]
[Problems to be solved by the invention]
In such a conventional heat storage system using a latent heat storage material, the place where heat is stored differs from the place where heat is dissipated, and it is necessary to exchange heat between the two indirectly via a heat transfer medium. There has been a problem that enormous time and cost are required to arrange pipes and pumps in the circulation path of the heat transfer medium connecting the heat source device and the heat exchanger. There is also a problem that heat loss during heat transfer is unavoidable.
[0005]
The present invention has been made in view of the above-described conventional problems, and its purpose is to efficiently store and dissipate heat and to have a simple structure of a latent heat storage type floor that does not require a heat storage tank and its peripheral devices. It is to provide a slab structure and a construction method.
[0006]
[Means for Solving the Problems]
In the latent heat storage type floor slab structure according to claim 1 of the present invention, the irregularities on the bottom surface of the concrete and the corrugated deck plate are in close contact, and a sealing plate such as a flat steel plate is provided on the bottom surface of the corrugated deck plate. A heat storage material having a large latent heat storage amount is sealed in a space that is joined and sandwiched between the corrugated deck plate and the sealing plate.
[0007]
A latent heat storage type floor slab structure according to a second aspect is characterized in that, in the first aspect, a part of the space sandwiched between the corrugated deck plate and the sealing plate is used as an air blowing space.
[0008]
The construction method of the latent heat storage type floor slab structure according to claim 3 is characterized in that a sealing plate such as a flat steel plate is joined to the lower surface of the corrugated deck plate, and the heat storage with a large latent heat storage amount is sandwiched between the two. A material is enclosed, and concrete of a floor slab is placed on the top surface of the corrugated deck plate.
[0009]
The construction method of the latent heat storage type floor slab structure according to claim 4 is a method of joining a sealing plate such as a flat steel plate to the lower surface of the corrugated deck plate and storing a large amount of latent heat storage in a space sandwiched between the two. In addition to encapsulating the material, the top surface unevenness of the corrugated deck plate is joined to the bottom surface unevenness of another corrugated deck plate of the same type as the corrugated deck plate that is integrally disposed on the bottom surface of the concrete slab of the floor. It is characterized by doing.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
A basic structure of a latent heat storage type floor slab according to an embodiment of the present invention is shown in FIGS. The corrugations on the lower surface of the concrete slab 1 are in close contact with the corrugated deck plate 2, and the flat steel plate 3 is joined to the lower surface of the corrugated deck plate 2. A space between the corrugated deck plate 2 and the flat steel plate 3 is filled with, for example, a paraffin-based latent heat storage material 4 excellent in cost, heat storage capacity, and durability, and the latent heat storage material 4 is predetermined. The fluidity is kept low by adding the additive.
[0011]
Next, the construction method of this floor slab structure will be described. The flat steel plate 3 having a predetermined size is welded or bonded to the lower surface convex portion of the corrugated deck plate 2 to integrate both. The space between the two is filled with the latent heat storage material 4, and a sealing plate such as a flat steel plate (not shown) is welded or bonded to both ends of the space to seal it. Next, a concrete slab 1 is placed on the upper surface of the corrugated deck plate 2 as a mold to form a heat storage type floor slab (FIG. 1). The flat steel plate 3 is not limited to this and may be any material that can serve as a sealing plate.
[0012]
Another construction method will be described. In this method, a heat storage unit composed of the corrugated deck plate 2, the flat steel plate 3, and the latent heat storage material 4 is manufactured separately from the floor slab construction. Also, the floor concrete slab 1 is placed using the same corrugated deck plate 5 as the corrugated deck plate 2 of this unit as a formwork. Then, the upper surface unevenness of the corrugated deck plate 2 is fitted to the lower surface unevenness of the corrugated deck plate 5 to connect them (FIG. 2). The connection between the two is based on methods such as welding, screwing, and magnetic attraction. In addition, since the shape of the corrugated deck plate 5 and the corrugated deck plate 2 need to completely match, it is desirable to use corrugated deck plates of the same manufacturer and the same model number.
[0013]
A method of using the latent heat storage type floor slab structure of the present invention will be described. A ceiling / floor member serving as decoration, soundproofing, and heat insulation is disposed above or below the floor slab, but usually a space is provided between them so that wiring and piping can be freely performed. A device that blows cool / warm air in a predetermined position such as a free access space in contact with the upper surface of the floor slab or a ceiling space in contact with the lower surface of the floor slab is installed. This is driven at night (for example, from 22:00 to 6:00 on the next day), and heat is stored in the floor slab through cool air in one or both of the spaces. At this time, the cold / hot air flowing through the upper surface (lower surface) of the floor slab is accumulated in both the concrete slab 1 and the latent heat storage material 4. Since both of them are in close contact with each other without an air layer, heat transferability is extremely good. Therefore, rapid simultaneous heat storage with little heat loss to both is possible, and power consumption for heat storage is reduced. Further, due to the synergistic effect of the concrete slab 1 and the latent heat storage material 4, a large amount of heat can be stored compared to the case where only the concrete slab 1 is stored.
[0014]
Here, the heat storage amount per 1 m 2 of the floor slab is estimated using specific numerical values. A cross section of the floor slab used in this calculation is shown in FIG. The upper end width of the convex portion of the corrugated deck plate 2 is 110 mm, and the lower end width is 142 mm. The upper end width of the concave portion of the corrugated deck plate 2 is 120 mm, and the lower end width is 88 mm. The thickness of the concrete slab is 85 mm on the convex part of the corrugated deck plate and 160 mm (75 mm + 85 mm) on the concave part. When the specific volume heat of concrete is calculated as 460 kcal / m 3 · ° C. and the temperature fluctuation is 5 ° C., the heat storage amount of concrete per 1 m 2 of the floor slab is 276 kcal. The use of a paraffin (40 kcal / kg) as the latent heat storage material, which is calculated as being 35kg per floor slab 1 m 2 housing, heat storage quantity of latent heat storage material per 1 m 2 of the floor slab is 1400Kcal. Therefore, the floor slab can store 1676 kcal per m 2 . This is about 6 times the amount of heat stored in the case of concrete slabs only.
[0015]
As an application of the above-described embodiment, there is a method in which a part of a space sandwiched between the corrugated deck plate 2 and the flat steel plate 3 is used as a blow duct 6 for cold / hot air. An example is shown in FIG. The portions filled with the latent heat storage material and the air duct 6 are alternately arranged. This method is effective when there is no space for blowing air above or below the floor. It is also effective when it is necessary to increase the contact area between the cool / warm air and the floor slab to increase the efficiency of heat exchange.
[0016]
【The invention's effect】
In the heat storage type floor slab of the present invention, the latent heat storage material and the concrete slab are in close contact with each other via the corrugated deck plate, and since there is no air layer between them, the heat transfer property is extremely good. Therefore, rapid simultaneous heat storage with little heat loss to both is possible, and power consumption for heat storage is reduced. In addition, due to the synergistic effect of the concrete slab and the latent heat storage material, a large amount of heat can be stored compared to the case of storing only the concrete slab.
[0017]
In addition, because floor slabs are used as a heat storage medium, there is no need to install a special heat storage tank or its peripheral equipment, and it is very easy to store heat in the same manner as the heat storage of the precursor. It can be shortened.
[0018]
Furthermore, since the corrugated deck plate in which the latent heat storage material is enclosed can be used as it is as a formwork, or can be used by fitting it into the floor slab, it is excellent in space saving and workability.
[Brief description of the drawings]
FIG. 1 is a perspective view of a floor slab (formwork construction) according to an embodiment of the present invention.
FIG. 2 is a perspective view of a floor slab (inset construction) according to an embodiment of the present invention.
FIG. 3 is a cross-sectional view of a floor slab according to an embodiment of the present invention.
FIG. 4 is a cross-sectional view of a floor slab partially used as an air duct.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Concrete slab 2 Corrugated deck plate 3 Flat steel plate 4 Latent heat storage material 5 Corrugated deck plate 6 Air duct

Claims (4)

コンクリート下面の凹凸と波型デッキプレートとが密着されており、その波型デッキプレートの下面に平鋼板などの封止板が接合され、前記波型デッキプレートと前記封止板で挟まれた空間に潜熱蓄熱量の大きい蓄熱材が封入されていることを特徴とする潜熱蓄熱式の床スラブ構造。The space between the corrugated deck plate and the sealing plate, where the corrugation on the lower surface of the concrete is in close contact with the corrugated deck plate, and a sealing plate such as a flat steel plate is joined to the lower surface of the corrugated deck plate. A latent heat storage type floor slab structure in which a heat storage material having a large latent heat storage amount is enclosed. 請求項1において、前記波型デッキプレートと封止板とに挟まれてなる空間の一部を送風空間とすることを特徴とする潜熱蓄熱式の床スラブ構造。2. The latent heat storage type floor slab structure according to claim 1, wherein a part of a space sandwiched between the corrugated deck plate and the sealing plate is used as an air blowing space. 波型デッキプレートの下面に平鋼板などの封止板を接合し、この両者で挟まれた空間に潜熱蓄熱量の大きい蓄熱材を封入するとともに、前記波型デッキプレートの上面に床スラブのコンクリートを打設することを特徴とする潜熱蓄熱式の床スラブ構造の施工方法。A sealing plate such as a flat steel plate is joined to the bottom surface of the corrugated deck plate, and a heat storage material having a large latent heat storage amount is sealed in the space between the two, and the floor slab concrete is placed on the top surface of the corrugated deck plate. A method for constructing a latent heat storage type floor slab structure, wherein 波型デッキプレートの下面に平鋼板などの封止板を接合し、この両者で挟まれた空間に潜熱蓄熱量の大きい蓄熱材を封入するとともに、床のコンクリートスラブの下面に一体的に配置された前記波型デッキプレートと同型の他の波型デッキプレートの下面凹凸に前記波型デッキプレートの上面凹凸をはめ合わせて接合することを特徴とする潜熱蓄熱式の床スラブ構造の施工方法。A sealing plate such as a flat steel plate is joined to the bottom surface of the corrugated deck plate, and a heat storage material with a large latent heat storage amount is sealed in the space between the two, and it is also placed integrally on the bottom surface of the floor concrete slab. A method for constructing a latent heat storage type floor slab structure, wherein the corrugated deck plate is joined to the corrugated bottom surface of the corrugated deck plate by fitting the corrugated surface of the corrugated deck plate to the corrugated surface of the corrugated deck plate.
JP36301798A 1998-12-21 1998-12-21 Latent heat storage type floor slab structure and construction method Expired - Fee Related JP3637796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36301798A JP3637796B2 (en) 1998-12-21 1998-12-21 Latent heat storage type floor slab structure and construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36301798A JP3637796B2 (en) 1998-12-21 1998-12-21 Latent heat storage type floor slab structure and construction method

Publications (2)

Publication Number Publication Date
JP2000186389A JP2000186389A (en) 2000-07-04
JP3637796B2 true JP3637796B2 (en) 2005-04-13

Family

ID=18478311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36301798A Expired - Fee Related JP3637796B2 (en) 1998-12-21 1998-12-21 Latent heat storage type floor slab structure and construction method

Country Status (1)

Country Link
JP (1) JP3637796B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5931475B2 (en) * 2012-02-01 2016-06-08 大建工業株式会社 Thermal storage structure and manufacturing method thereof
EP3234275B1 (en) * 2014-12-19 2022-02-02 Knauf Gips KG Gypsum board with pcm memory material
JP2019200019A (en) * 2018-05-18 2019-11-21 清水建設株式会社 Air conditioning system storing heat inside housing

Also Published As

Publication number Publication date
JP2000186389A (en) 2000-07-04

Similar Documents

Publication Publication Date Title
US9559387B2 (en) Battery
JP2632597B2 (en) Thermoelectric assembly, super-insulated panel having the same attached, and method of coupling thermo-electric assembly to super-insulated panel
JP2004508531A (en) Indoor energy storage device
JP3637796B2 (en) Latent heat storage type floor slab structure and construction method
US20140260218A1 (en) Combined heat and power (chp) system
WO2013042273A1 (en) Air-conditioning device
CN111238282A (en) Plate-type energy storage device, system and energy storage method
JP2019078413A (en) Natural energy utilization type cold system
JP2007218462A (en) Heat pump heat storage device
JP2955478B2 (en) Thermal storage container
JP2009097746A (en) Heat storage device
JP3165610U (en) Thermal storage floor heating system
JP2012159220A (en) Heat storage type heat exchanger and air conditioning system using the same
JPS61184337A (en) Heat storage tank for floor heating
RU2235251C2 (en) Room-heating and/or cooling device (versions)
WO2020100847A1 (en) Heat exchanger
CN109057143B (en) Novel energy-saving building material
KR102400313B1 (en) Heating and cooling panels using hot and cold water
CN108895871B (en) Novel energy-saving building material with heat storage function
CN217974752U (en) House building with adjustable indoor temperature
CN216977613U (en) Heat exchange device integrated with high-temperature pipeline and low-temperature pipeline
CN109140825B (en) Novel energy-saving building material with water circulation
KR20170124794A (en) Hybrid economizer heat exchanger
KR200375273Y1 (en) Air conditioning and heating system of manhole using geothermal
JPH08158498A (en) Heat storage structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050103

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees