JP3636835B2 - Substrate dividing method and light emitting element manufacturing method using the substrate dividing method - Google Patents

Substrate dividing method and light emitting element manufacturing method using the substrate dividing method Download PDF

Info

Publication number
JP3636835B2
JP3636835B2 JP20864096A JP20864096A JP3636835B2 JP 3636835 B2 JP3636835 B2 JP 3636835B2 JP 20864096 A JP20864096 A JP 20864096A JP 20864096 A JP20864096 A JP 20864096A JP 3636835 B2 JP3636835 B2 JP 3636835B2
Authority
JP
Japan
Prior art keywords
substrate
groove
light
reflective film
absorbing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20864096A
Other languages
Japanese (ja)
Other versions
JPH1044139A (en
Inventor
淳 市原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP20864096A priority Critical patent/JP3636835B2/en
Publication of JPH1044139A publication Critical patent/JPH1044139A/en
Application granted granted Critical
Publication of JP3636835B2 publication Critical patent/JP3636835B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はガラス基板、セラミック基板、シリコンウエハ、化合物半導体ウエハ等の脆性基板の分割方法に関し、殊に発光ダイオード(LED)やレーザダイオード(LD)等の発光素子を複数形成してなる光学素子基板を個別の素子単位に分割する基板分割方法及びその基板分割工程を使用する発光素子製造方法に関する。
【0002】
【従来の技術】
従来より、例えば半導体ウエハをチップやペレット等の素子単位に分離、分割する方法として、回転ブレードを用いたダイサーによってダイシング溝を形成し、その溝に沿ってクラッキングする方法が一般的である(特開昭51ー28754号公報、特開昭56ー135007号公報等参照)。
【0003】
【発明が解決しようとする課題】
しかしながら、一般に、ダイサーにはダイヤモンド砥石製ブレードが使用されているが、ダイシング溝の幅がブレード幅で規制されるため、50μm以上の切り代を必要とし、ウエハ全体に占めるダイシング領域の面積が大きくなりウエハ1枚あたりのチップ取れ数の向上を妨げていた。逆に幅狭のブレードを用いると横方向にマイクロクラックが生じ易くなるという問題があった。
【0004】
また、レーザダイオードの製造においては、図7に示すように、基板ウエハ50に各レーザダイオード素子51を形成し、その各素子の活性層53をエッチングによって露出させ反射面を形成した後、そのエッチング溝底面の所定箇所55をダイヤモンドブレード54によりカットして所定方向56にそって素子毎に分割していた。この場合、ブレード54の刃幅が該エッチング溝程度あるため、素子角部に当たるのを避けて反射面から距離Tだけ離れた溝底面の中央をカットしているが、該反射面から射出されるレーザ光Lが距離Tの突出部分に反射して干渉を起こしてしまうという問題を生じていた。勿論、一点鎖線で示すように、素子端面の近傍までカット位置を近づけるのは素子端面を削ることになり事実上無理であった。さらに、分割時に破片が飛び散って素子の反射面を傷付けたり、端面に破片が付着したりして所定の反射率を得ることができなかった。
【0005】
殊に、最近青色レーザダイオード製造に使用されようとしているサファイア(Al23)基板は大きいモース硬度9(参考:ダイヤモンドは硬度10)をもつため、機械的切断力により分離するとクラックが発生しやすく上記ダイサーによるダイシングを行うことは極めて困難であった。図8はサファイア基板を用いたGaN系LED素子のチップブレーキング工程を示す。サファイア基板を用いたGaN系では、基板の表裏側に設けられる上下一対の電極を備えたGaAs、GaP系のものと比較して、表側に電極対を形成する必要があるという特徴がある。図において基板60にPN接合領域62からなる発光素子部61が複数形成され、その発光素子部61の上部に一方の電極63が、また発光素子部61に隣接して他方の電極64がそれぞれ形成されており、電極64を含む発光素子部61によって単位発光素子領域が形成されている。かかるサファイア基板においても、電極64付近の所定箇所66をダイヤモンドブレード65によってカットして所定方向67にそって素子領域毎に分割していたが、この場合も、ブレード65を用いるときその刃幅スペースを確保するために電極64から離間した箇所66でカットしなければならず、チップサイズの小型化を実現できなかった。
【0006】
しかも、従来の回転ブレードによるダイシングは通常直線的な溝を形成するものであり、矩形の分割形状に限られるため、直角方向と異なるジグザグなへき開方位にそって非直線的にダイシングする場合には適さなかった。
ところで、これらの脆性基板にダイサーのみによるダイシングを行うと、ウエハクラッキングが発生する点につき、予め半導体ウエハの表面にペレット分割のダイシング溝を浅く形成しておき、ついでその溝に水を注入して低温固化させそのときの体積膨張でウエハを分割する方法が提案されている(特開昭57ー7137号公報等参照)。しかし、この場合低温固化用の複雑な設備を必要とし、また低温固化処理によってウエハ全体に冷却ダメージを与える恐れがあった。
【0007】
本発明にかかる課題は、上記従来の問題点に鑑み、切り代をできるだけ小さくして小型チップサイズを得ることができ、かつ被分割基板に与えるダメージが少なくて済む簡易な基板分割方法を提供することである。
【0008】
【課題を解決するための手段】
本出願にかかる発明者は、ガラスは透明体であり、単にレーザを照射するのみでは所望の方向に割断されにくいが、予め溝を形成しておきそれに向けてレーザ光を集光することによって、あるいはガラス表面にレーザ光を吸収させる媒体を塗布しておき、その媒体にレーザ光を吸収させることによってガラスを割断できる点に着目したものである(工作機械技術研究会・編 監修・安井武司 「工作機械シリーズ レーザ加工」P127〜134、「YAGレーザによるガラス切断加工」(黒部利次著) 大北出版 平成2年9月10日発行 参照)。
【0009】
そこで、上記課題を解決するために、請求項1にかかる発明の基板分割方法は基板の一方の面に複数の素子領域を形成し、その一方の面と反対側の面に反射膜を形成し、前記一方の面と前記反対側の面のいずれかで、かつ前記複数の素子領域の各素子領域の間に溝を形成し、また前記溝に臨む開口部を前記反射膜に設け、ついで前記反対側の面から前記開口部に向け光を照射して前記溝の底部より吸収させ、その底部近傍の体積熱膨張によって前記基板を前記溝にそって分割することを特徴とする。
【0010】
また、請求項2にかかる発明は、請求項1記載の基板分割方法において所定波長の光を吸収する光学特性を有した光吸収材を前記溝の底部に入れ、前記反対側の面から前記開口部に向け前記光を照射して前記溝の底部の前記光吸収材に吸収させ、そのときの前記光吸収材およびその底部近傍の体積熱膨張によって前記基板を前記溝にそって分割することを特徴とする。
【0011】
さらに、請求項3にかかる発光素子製造方法は、請求項1または請求項2記載の基板分割方法を用いて、前記基板の一方の面に複数の発光素子領域を形成するとともに前記複数の発光素子領域のそれぞれの領域上に一方の電極を形成し、また前記反対側の面に他方の電極を形成し、かつ前記他方の電極を覆うように前記反射膜を形成し、さらに前記反射膜及び前記基板の一部を除去して前記開口部及び前記溝を前記反対側に形成することを特徴とする。
【0012】
本発明における上記基板は、例えばシリコン半導体を用いるときはシリコンウエハが、またエピタキシャル成長層を備えた基板等が用いられる。また、照射光としてレーザ光、赤外光等を使用でき、好ましくは高出力なものがよい。
さらに、上記光吸収材は、一般に印刷インク等に用いられる有機顔料、例えばアゾ顔料、あるいはフタロシアニン系縮合多環系顔料などを、またより具体的には市販のマジックインキ(商品名)に使用される合成染料を用いてもよい。
【0013】
なお、光の照射は基板の素子領域と反対側の反射膜側から行うが、溝の形成は基板の表裏側いずれかの一方に施せばよい。また、溝の深さ及び幅は、脆性基板の割断性質や、光照射時の光吸収材の膨張性等によって決定される。
【0014】
【発明の効果】
本発明によれば、かかる脆性基板に予めエッチング等で比較的浅い溝を形成しておき、かつ光照射によって分割することができるので、最小限の切り代を設けるだけで済み、チップあるいはペレットの基板1枚あたりの取れ数を格段に向上させることができる。また、光透過性のある脆性基板に対してレーザ光等の照射によって簡易に実施できるので、基板全体を冷却したり加熱したりせずに、基板に与えるダメージの少ない、つまり素子品質に影響しない基板分割を行える。さらに、従来のようにダイサーでは直線的なダイシングのみであるが、本発明では少なくとも溝パターンを適宜選択して、例えばへき開方位にそった分割を別途複雑な設備を用いることなく簡単に行うことができる。
【0015】
殊に、本発明においては、光の照射側に反射膜を形成し、該反射膜及び基板を一部除去することにより形成した溝を用いるので、該溝の周囲も含め照射光の余分なものは反射膜で反射され、該溝以外に不必要な照射光を基板内に導入させないため、素子領域や電極に光を照射することによって生じる素子破壊や電極の損傷を防ぐことができる。しかも、LEDやLD等の発光素子チップの製造におけるチップ単位への分割工程に適用したとき、本発明の反射膜は素子領域からの発光の一部で反射膜側に射出する光を反射膜で素子領域側に反射させるので、素子発光自体の漏光を防止する防止膜として供することができ、素子発光特性の向上にも寄与する。さらに、本発明にかかる溝はレーザダイオードの反射面形成のためなどのエッチング工程を利用して簡単に形成でき、かつへき開用の分割溝として利用でき、しかも発生レーザの干渉を起こさない反射面のフラット化を実現することができる。
【0016】
【発明の実施の形態】
以下、本発明を実施した例を図面によって説明する。
図1は本発明をレーザダイオード製造工程に適用した例を示す。基板10はレーザダイオード製造用の赤外光透過性GaAs素材からなり、通常のレーザ素子形成工程(図示せず)に従い基板10上に活性層13等の素子領域を形成した後、各チップ11毎に分割するため本発明の基板分割処理工程を行う。
【0017】
まず、所定のチップ分割パターンに対応した分割溝12をドライエッチング技術を用いて、各チップの反射面を露出させる程度の深さに穿設する。また、溝12はGaAs基板のへき開面方向にそった方向に形成され、例えば、100μm厚さの基板であれば、深さ4μm、幅2μm程度の溝12を用いる。次に、溝12に光吸収材15を入れる。光吸収材15は上述したような顔料を含むインク溶液を用いる。このインク溶液は次のレーザ照射工程で用いるレーザ光を吸収する色の顔料を有し、例えばYAGレーザを用いるときには波長1.06μmの光を吸収させるようにすればよい(上記文献「YAGレーザによるガラス切断加工」にはYAGレーザには青色塗布インクが適するとある。)。光吸収材15の溝注入あるいは埋設は、基板表面にスピンコート法により予め塗布し、その後表面の余分の溶液を拭き取って取り除き、溝12底部にのみ光吸収材15を残存させるようにして行う。
【0018】
上記の溝12形成の後、あるいはその形成前に、上記素子領域の表面側と反対の裏面側に反射膜18を形成する。反射膜18はAlやAu等の金属を蒸着ないしスパッタリングによって形成される。反射膜18を形成した後、溝12の直下の箇所に溝幅より若干広い開口部19が形成される。もちろん照射光量や光吸収材の特性によっては開口部19の幅を溝幅より狭くしてもよい。
【0019】
図1に示すように、上記反射膜18と開口部19とを形成し、かつ光吸収材15の溝12への注入状態で、基板10の裏面から上記レーザ光を照射する。このとき基板表面側の素子形成領域への影響をなるべく避けるため、光学レンズ系17によってレーザ光16のフォーカスポイントが出来るだけ溝12の底部に合うように調整して光吸収材15にレーザ光16を集光させる。レーザ光を開口部19に向けて照射することによって、開口部19を通過した成分L1は光吸収材15に吸収され、光吸収材15が局部的に急激に熱膨張するとともにその周辺の基板10部位も加熱され膨張するため、基板10の裏面方向に向かい、かつ溝の形成方向にそってクラック14が成長していき、各チップ11単位に分割することができる。また、開口部19周辺に照射された光成分L2は反射膜18によって入射方向と逆に反射され、基板10内に進入しない。したがって、かかる開口部19を用いることによって、チップ分割に必要とする光量を光吸収材15に与えることができるので、余分なレーザ光が基板10を透過して該素子領域にダメージを与えるという虞がなくなる。そして、上述のように、素子反射面をエッチングで形成するレーザダイオードチップの製造において、溝12の形成を反射面形成のエッチング工程を利用して簡単に形成することができる。それによって、反射面と実質的に同一の面方向に分割が可能になるため、ダイヤモンドブレードを使用するときに生じる余分の切り代による突出部をなくすことができる。すなわち、該突出部に起因する反射光の干渉を生じることのない、フラットな反射面を備えたレーザダイオードチップを得ることができる。また、溝12をへき開方向に設定することによってへき開を容易にして、最適なチップサイズで円滑な分割を行うことができる。
【0020】
上記の例ではGaAs基板への光吸収性が比較的弱いYAGレーザ光を用いているので、溝12に光吸収材料を投入して光吸収性を高めているが、GaAs基板への光吸収性がよいArレーザ光(例えば波長0.49μm)やHe−Neレーザ光(例えば波長0.63μm)を用いれば、そのような光吸収材を使用せず、直接溝12に入射させるようにしてもよい。その場合、溝12底部に入射したレーザ光を基板自体が吸収し、その周辺で体積熱膨張して上記の例と同様に分割クラックを発生することができる。
【0021】
図2は青色レーザダイオード製造用サファイア(Al23)基板の切断例を示す。基板1は光透過性に優れた単結晶サファイアであり、その表面にレーザダイオードの素子形成領域としてのエピタキシャル層2が設けられている。このエピタキシャル層2は、GaN、InGaN、AlGaN、GaNからなる多層構造であり、全体の厚みは約4μmである。基板1の厚さDはエピタキシャル層2を含み約80μmである。
【0022】
上記の基板1にレーザダイオードの素子形成を行った後(素子形成工程は省略)、レーザダイオードチップ個々に分離、分割する分割工程を図1と同様にして行う。この場合も、所定のチップ分割パターンに対応した分割溝3をドライエッチング技術を用いて基板1表面に穿設するが、この例では溝3の幅Wを4μm、深さSを8μmとする。次に、溝3に光吸収材4を入れる。光吸収材4は上記のような顔料を含むインク溶液を用いる。そして、基板1の裏面から上記のレーザ光5を照射し、光学レンズ系6によってレーザ光5を光吸収材4に集光させる。これによって、光吸収材4およびその周辺の基板1部位は基板1を透過したレーザ光5を吸収し、図1に示すように、裏面方向A及び横方向B、Cに局部的に急激に熱膨張するため、基板1の裏面方向Aにそってクラック7が成長していき、溝3の形成方向にそった基板分割を行うことができる。また、この場合も基板1の裏面側に、上記図1の例と同様の金属反射膜8を形成し、かつその一部を除去して溝3に対向する開口部9を設けており、その開口部9を通じてレーザ光5を導入する。光吸収材4に必要でない余分の光成分51は開口部9周辺の反射膜8に反射して基板1側に進入せず、素子領域に照射光の損傷を与えずに済む。
【0023】
次に、サファイア基板を用いたGaN系LEDチップの製造への本発明の応用例を図3に示す。図において基板20表面側に通常のLED素子形成工程(図示せず)に従いPN接合領域22からなる発光素子部21が複数形成されている。発光素子部21の上部には一方の電極23が、また発光素子部21に隣接する基板部位がエッチング処理によって除去されて段差部が形成され、その段差部表面に他方の電極24が形成されている。電極24を含む発光素子部21は単位発光素子領域を構成する。基板20の裏面には反射膜25が形成されている。この反射膜25は2000オングストローム程度のアルミニュウムや金等を用いて上記の各例と同様に蒸着ないしスパッタリングによって形成される。ついで、基板20の裏面側において、電極24の上記段差部の端部から距離tだけ離間した箇所に反射膜25及び基板20の一部を除去して溝29を形成する。溝29の形成はダイヤモンドブレードによるスクライブ処理あるいはドライエッチング処理で行われる。この例では溝29と反射膜25の除去による開口部の幅が実質的に同じになるが、溝29を反射膜25の開口部より広くするときは、マスキング材を用いて反射膜25に対して基板20内のエッチングを進行させるようにしてもよい。各発光素子部21を区画するように例えば縦横に溝パターンを予め施し、各溝底部に上記の光吸収材28を注入した後、反射膜25側からYAGレーザ光をレンズ系26を用いて溝29に向けて照射する。このとき溝29周辺に照射された光L21は上記開口部周囲の反射膜25によって反射されるため、基板20を透過して溝29内に余分の光が進入するのを遮られる。溝29内に進入した光L20は光吸収材28に吸収され、上記のような熱膨張作用により溝29方向にそったクラック27を生じさせる。溝28を基板20のへき開方向に穿設することによって簡易にへき開方向にそった分割を行え、また溝29の位置を自在に設定できるので、ダイヤモンドブレードのスクライブでは困難であった電極24端部の真近でのスクライビングを行うことができ、チップサイズの小型化を実現できる。そして、余分な光L21が反射して排除されるため、発光素子部21や電極23、24に対して外部レーザ光の照射による劣化を発生させない。また、LEDチップ毎に分割した後も各チップには反射膜25が残存するので、LED素子の発光を基板20裏面側に漏れさせずに表面側に反射させ発光光量の有効利用を図ることができる。なお、この例ではサファイア基板を透過するYAGレーザ光を光源として用いているので、光吸収材28を溝29に注入しその光吸収性を利用しているが、サファイア基板への光吸収性に富むCO2レーザ光を用いれば光吸収材を注入しなくてもよい。
【0024】
図4はLED素子の製造に本発明を適用した例を示す。
図においてGaAsやGaP系の基板30表面側に通常のLED素子形成工程(図示せず)に従い発光素子部31が複数形成されている。各発光素子部31はエッチング溝32を介して分離形成されている。各素子上部には上電極33が形成され、その電極素材にはAu−Ti−AuZnNi(あるいはAuBeNi)等の合金を用いる。一方、基板30の裏面側には基板30とオーミックコンタクト接続用の下電極34が形成されている。下電極34にはAu−Ge−Ni等の基板とのオーミックコンタクト性のよい合金を用いる。また、下電極34とのオーミックコンタクト部分での反射効率は一般に低下するため、LED発光効率を高めるために全面に電極形成をすることを避けており、例えば網目状や水玉模様の電極パターンを使用する。ついで、基板30の裏面に下電極34を覆うように金属反射膜35が形成されている。この反射膜35は1000オングストローム程度の金やアルミニュウム等の金属を用いて上記の各例と同様に蒸着ないしスパッタリングによって形成される。そして、エッチング溝32の中間部に相当する基板裏面側の箇所に溝36をスクライブ処理あるいはドライエッチング処理によって反射膜35及び基板30の一部を除去して穿設している。溝36の形成は矩形のLEDチップ単位に分割するように縦横に施されている。その後、エキスパンドテープ37に上電極33側で基板を図に示すように貼着し、その貼着形態でチップ分割工程を以上の例と同様に行う。即ち、各溝底部に上記の光吸収材38を注入した後、反射膜35側から上記のYAGレーザ光等をレンズ系40を用いて溝36に向けて照射すると、溝周辺に照射された光L31は反射膜35の開口部周囲の金属膜によって反射されるため、基板30を透過せず発光素子部31及び上電極33に光照射による劣化を起こさせない。溝36に入射したレーザ光L30は光吸収材38に吸収され、溝38の形成方向にそったクラック39を生じさせ、LEDチップ単位に分割できる。この例においても、上記図3のLED製造における分割工程と同様に、分割後の反射膜35を残存させることにより、LED素子の発光を表面側に反射させるので発光光量の有効利用を図ることができ、殊に下電極34を必要とするLED素子の場合、上述のように、下電極34とのオーミックコンタクト部分での光反射が弱くなるので、反射膜35によってその反射光量の補強に寄与し、LED発光利用効率を向上させることができる。さらに、エキスパンドテープ37を利用したときには、照射レーザ光が基板30を透過してテープ貼着箇所を照射してしまうと、接着力の低下を生じてテープからLEDチップが落下するという虞があるが、本実施例では光照射を溝38の範囲に規制できるのでそのようなテープ接着への影響を与えずに済む。
【0025】
上記の図3及び図4の例では基板裏面側から反射膜(25、35)とともに基板の一部を除去して溝(29、36)を形成するものであり、反射膜を利用して溝形成のアライメント精度を高めることができる。
以上の実施例における光吸収材には従前より半導体製造プロセスに使用されているフォトレジスト材料を用いてもよい。即ち、溝形成後、スピンコート法によって塗布し、ついで溝底部にのみ残留するようにアッシング(ashing)処理を施し、さらに窒素ガス雰囲気で加熱処理してその残留レジストを炭化させることによって生じた炭化物を光吸収材として用いればよい。また、上記の基板分割方法は、図6の分割溝パターン71に示すように、シリコン基板あるいはGaAs基板のウエハ主面を{100}面とするものに適用して平面視矩形のチップ製造を行うことができる。
【0026】
さらに、本発明は図5に示すように{111}面のウエハ主面の基板にも適用できる。つまり、図6の場合、へき開方位は<110>となり直角方向での矩形分割が適するが、図5の場合にはへき開方位が図6と比較して60度の方向に傾斜するため、ハニカム形状の分割が適する。そのためには、そのへき開方位にそった図5のハニカム状の分割溝パターン70を予め形成しておくことによって、上記図1ないし図4の実施例の分割手順に従い平面視6角形のチップ分割を行うことができる。勿論、6角形以外にも3角形の繰り返しパターンで溝形成を行えば、平面視3角形のチップを製造できる。なお、このような碁盤目と異なるハニカム形状の他に、より複雑な溝パターンであってもエッチング技術を用いて任意に形成することにより、所望の平面形状のチップ分割も可能になる。
【図面の簡単な説明】
【図1】図1は本発明の実施例であるレーザダイオード用基板の分割例を示す模式断面図である。
【図2】図2は本発明の実施例であるサファイア基板の分割例を示す模式断面図である。
【図3】図3は本発明のLED素子のチップ分割工程を示す模式断面図である。
【図4】図4は本発明の別のLED素子のチップ分割工程を示す模式断面図である。
【図5】図5は本発明のハニカム分割例を示すウエハ平面図である。
【図6】図6は本発明の矩形分割例を示すウエハ平面図である。
【図7】図7は従来のレーザダイオード基板の分割例を示すウエハ断面図である。
【図8】図8は従来のサファイア基板の分割例を示す模式断面図である。
【符号の説明】
1 基板
2 エピタキシャル層
3 溝
4 光吸収材
5 レーザ光
8 反射膜
9 開口部
12 溝
15 光吸収材
16 レーザ光
18 反射膜
19 開口部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for dividing a brittle substrate such as a glass substrate, a ceramic substrate, a silicon wafer, and a compound semiconductor wafer, and in particular, an optical element substrate formed by forming a plurality of light emitting elements such as a light emitting diode (LED) and a laser diode (LD). In particular, the present invention relates to a substrate dividing method for dividing an element into individual element units and a light emitting element manufacturing method using the substrate dividing step.
[0002]
[Prior art]
Conventionally, for example, as a method of separating and dividing a semiconductor wafer into element units such as chips and pellets, a method of forming a dicing groove by a dicer using a rotating blade and cracking along the groove (specially) No. 51-28754, Japanese Patent Laid-Open No. 56-135007, etc.).
[0003]
[Problems to be solved by the invention]
However, in general, a diamond grinder blade is used for the dicer, but since the width of the dicing groove is regulated by the blade width, a cutting allowance of 50 μm or more is required, and the area of the dicing region occupying the entire wafer is large. As a result, improvement in the number of chips per wafer was hindered. Conversely, when a narrow blade is used, there is a problem that microcracks are easily generated in the lateral direction.
[0004]
In the manufacture of the laser diode, as shown in FIG. 7, each laser diode element 51 is formed on the substrate wafer 50, the active layer 53 of each element is exposed by etching to form a reflection surface, and then the etching is performed. A predetermined portion 55 on the bottom surface of the groove was cut by a diamond blade 54 and divided into elements along a predetermined direction 56. In this case, since the blade width of the blade 54 is about the same as the etching groove, the center of the groove bottom surface that is separated from the reflecting surface by a distance T is cut to avoid hitting the corner of the element, but emitted from the reflecting surface. There has been a problem that the laser beam L is reflected on the protruding portion of the distance T and causes interference. Of course, as indicated by the alternate long and short dash line, bringing the cutting position closer to the vicinity of the element end face results in cutting the element end face, which is practically impossible. In addition, debris scatters at the time of division and damages the reflection surface of the element, or debris adheres to the end surface, and a predetermined reflectance cannot be obtained.
[0005]
In particular, the sapphire (Al 2 O 3 ) substrate which is recently used in the production of blue laser diodes has a large Mohs hardness of 9 (reference: diamond has a hardness of 10), so that cracks occur when separated by mechanical cutting force. It was very difficult to perform dicing with the dicer. FIG. 8 shows a chip breaking process of a GaN-based LED element using a sapphire substrate. The GaN system using a sapphire substrate is characterized in that it is necessary to form an electrode pair on the front side as compared with a GaAs or GaP system provided with a pair of upper and lower electrodes provided on the front and back sides of the substrate. In the figure, a plurality of light emitting element portions 61 each including a PN junction region 62 are formed on a substrate 60, one electrode 63 is formed on the light emitting element portion 61, and the other electrode 64 is formed adjacent to the light emitting element portion 61. The unit light emitting element region is formed by the light emitting element portion 61 including the electrode 64. Even in such a sapphire substrate, a predetermined portion 66 in the vicinity of the electrode 64 is cut by a diamond blade 65 and divided into element regions along a predetermined direction 67. In this case as well, the blade width space is used when the blade 65 is used. In order to ensure this, it is necessary to cut at a portion 66 separated from the electrode 64, and the chip size cannot be reduced.
[0006]
Moreover, the conventional dicing with a rotating blade usually forms a straight groove and is limited to a rectangular divided shape, so when dicing nonlinearly along a zigzag cleavage direction different from the perpendicular direction. It was not suitable.
By the way, when dicing only with a dicer is performed on these brittle substrates, a dicing groove divided into pellets is previously formed shallowly on the surface of the semiconductor wafer, and then water is injected into the groove. There has been proposed a method of solidifying at low temperature and dividing the wafer by volume expansion at that time (see Japanese Patent Application Laid-Open No. 57-7137, etc.). However, in this case, complicated equipment for low-temperature solidification is required, and the low-temperature solidification treatment may cause cooling damage to the entire wafer.
[0007]
An object of the present invention is to provide a simple substrate dividing method capable of obtaining a small chip size by making the cutting margin as small as possible and reducing damage to the substrate to be divided in view of the above-mentioned conventional problems. That is.
[0008]
[Means for Solving the Problems]
The inventor of the present application is that the glass is a transparent body and is not easily cleaved in a desired direction by simply irradiating a laser, but by forming a groove in advance and condensing the laser light toward it, Alternatively, it is focused on the fact that glass can be cleaved by applying a medium that absorbs laser light on the glass surface, and absorbing the laser light on that medium. (Supervised by Machine Tool Technical Committee, edited by Takeshi Yasui “ Machine Tool Series Laser Processing ”P127-134,“ Glass Cutting with YAG Laser ”(written by Toshiji Kurobe), published by Daikita Publishing, September 10, 1990).
[0009]
In order to solve the above problems, the substrate dividing method according to the first aspect of the present invention forms a plurality of element regions on one surface of a substrate and forms a reflective film on the surface opposite to the one surface. A groove is formed in any one of the one surface and the opposite surface and between each of the plurality of element regions, and an opening facing the groove is provided in the reflective film, The opening is irradiated from the opposite surface toward the opening to be absorbed from the bottom of the groove, and the substrate is divided along the groove by volumetric thermal expansion in the vicinity of the bottom.
[0010]
According to a second aspect of the present invention, in the substrate dividing method according to the first aspect, a light absorbing material having an optical characteristic of absorbing light of a predetermined wavelength is placed in the bottom of the groove, and the opening is formed from the opposite surface. Irradiating the light toward the portion and causing the light absorbing material at the bottom of the groove to absorb the light, and dividing the substrate along the groove by volume thermal expansion in the vicinity of the light absorbing material and the bottom at that time Features.
[0011]
Further, according to a third aspect of the present invention, there is provided a method for manufacturing a light emitting element, wherein the substrate dividing method according to claim 1 or 2 is used to form a plurality of light emitting element regions on one surface of the substrate and the plurality of light emitting elements. One electrode is formed on each of the regions, the other electrode is formed on the opposite surface, and the reflective film is formed so as to cover the other electrode, and the reflective film and the A part of the substrate is removed, and the opening and the groove are formed on the opposite side.
[0012]
As the substrate in the present invention, for example, when a silicon semiconductor is used, a silicon wafer or a substrate provided with an epitaxial growth layer is used. Further, laser light, infrared light, or the like can be used as the irradiation light, and high output light is preferable.
Further, the light absorbing material is used for organic pigments generally used for printing inks, such as azo pigments or phthalocyanine-based condensed polycyclic pigments, and more specifically for commercially available magic inks (trade names). Synthetic dyes may be used.
[0013]
Light irradiation is performed from the side of the reflective film opposite to the element region of the substrate, but the groove may be formed on either the front or back side of the substrate. Further, the depth and width of the groove are determined by the cleaving property of the brittle substrate, the expansibility of the light absorbing material during light irradiation, and the like.
[0014]
【The invention's effect】
According to the present invention, since a relatively shallow groove is formed in advance on such a brittle substrate by etching or the like and can be divided by light irradiation, it is only necessary to provide a minimum cutting margin. The number of pieces per substrate can be significantly improved. In addition, since it can be easily implemented by irradiating a laser beam or the like to a fragile substrate having light transmittance, the entire substrate is not cooled or heated, so that there is little damage to the substrate, that is, the element quality is not affected. Substrate can be divided. Furthermore, as with conventional dicers, only dicing is linear, but in the present invention, at least a groove pattern is selected as appropriate, and for example, division along the cleavage direction can be easily performed without using complicated equipment. it can.
[0015]
In particular, in the present invention, a reflection film is formed on the light irradiation side, and a groove formed by partially removing the reflection film and the substrate is used. Is reflected by the reflective film, and unnecessary irradiation light other than the groove is not introduced into the substrate, so that it is possible to prevent element destruction and electrode damage caused by irradiating light to the element region and the electrode. Moreover, when applied to a chip-by-chip dividing process in the manufacture of light-emitting element chips such as LEDs and LDs, the reflective film of the present invention is a part of the light emitted from the element region, and the light emitted to the reflective film side is reflected by the reflective film. Since the light is reflected toward the element region, it can be used as a prevention film for preventing light leakage of the element light emission itself, which contributes to improvement of the element light emission characteristics. Further, the groove according to the present invention can be easily formed by using an etching process for forming a reflecting surface of a laser diode, and can be used as a dividing groove for cleavage, and the reflecting surface which does not cause interference of the generated laser. Flattening can be realized.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an example in which the present invention is implemented will be described with reference to the drawings.
FIG. 1 shows an example in which the present invention is applied to a laser diode manufacturing process. The substrate 10 is made of an infrared light transmitting GaAs material for manufacturing a laser diode. After forming an element region such as an active layer 13 on the substrate 10 in accordance with a normal laser element forming process (not shown), each substrate 11 In order to divide the substrate, the substrate dividing process of the present invention is performed.
[0017]
First, the division grooves 12 corresponding to a predetermined chip division pattern are drilled to a depth that exposes the reflection surface of each chip using a dry etching technique. The groove 12 is formed in a direction along the cleavage plane direction of the GaAs substrate. For example, if the substrate is 100 μm thick, the groove 12 having a depth of about 4 μm and a width of about 2 μm is used. Next, the light absorbing material 15 is put into the groove 12. The light absorbing material 15 uses an ink solution containing a pigment as described above. This ink solution has a pigment of a color that absorbs laser light used in the next laser irradiation step. For example, when using a YAG laser, it is sufficient to absorb light having a wavelength of 1.06 μm (the above-mentioned document “Glass by YAG Laser”). Blue cutting ink is suitable for YAG laser for “cutting”.) Injecting or embedding the light absorbing material 15 into the groove is performed in advance by applying it to the substrate surface in advance by a spin coating method, and then wiping off the excess solution on the surface so that the light absorbing material 15 remains only at the bottom of the groove 12.
[0018]
After the formation of the groove 12 or before the formation, the reflective film 18 is formed on the back side opposite to the front side of the element region. The reflective film 18 is formed by vapor deposition or sputtering of a metal such as Al or Au. After the reflective film 18 is formed, an opening 19 that is slightly wider than the groove width is formed immediately below the groove 12. Of course, the width of the opening 19 may be narrower than the groove width depending on the amount of irradiation light and the characteristics of the light absorbing material.
[0019]
As shown in FIG. 1, the laser light is irradiated from the back surface of the substrate 10 in a state where the reflection film 18 and the opening 19 are formed and the light absorbing material 15 is injected into the groove 12. At this time, in order to avoid the influence on the element forming region on the substrate surface side as much as possible, the optical lens system 17 adjusts the focus point of the laser beam 16 so that it matches the bottom of the groove 12 as much as possible. To collect light. By irradiating the laser beam toward the opening 19, the component L1 that has passed through the opening 19 is absorbed by the light absorbing material 15, and the light absorbing material 15 is rapidly thermally expanded locally, and the substrate 10 in the vicinity thereof. Since the portion is also heated and expanded, the crack 14 grows in the direction of the back surface of the substrate 10 and along the groove forming direction, and can be divided into units of each chip 11. Further, the light component L2 irradiated around the opening 19 is reflected by the reflective film 18 in the direction opposite to the incident direction, and does not enter the substrate 10. Therefore, by using the opening 19, it is possible to give the light absorbing material 15 the amount of light required for chip division, so that excess laser light may pass through the substrate 10 and damage the element region. Disappears. As described above, in the manufacture of the laser diode chip in which the element reflection surface is formed by etching, the groove 12 can be easily formed using the reflection surface formation etching process. As a result, it is possible to divide in substantially the same plane direction as the reflecting surface, and therefore, it is possible to eliminate a protrusion due to an extra cutting margin that occurs when using a diamond blade. That is, it is possible to obtain a laser diode chip having a flat reflecting surface that does not cause interference of reflected light caused by the protruding portion. Further, by setting the groove 12 in the cleavage direction, cleavage can be facilitated and smooth division can be performed with an optimum chip size.
[0020]
In the above example, since YAG laser light having a relatively low light absorption to the GaAs substrate is used, a light absorption material is introduced into the groove 12 to improve the light absorption, but the light absorption to the GaAs substrate is increased. If a good Ar laser beam (for example, wavelength 0.49 μm) or a He—Ne laser beam (for example, wavelength 0.63 μm) is used, it may be made to directly enter the groove 12 without using such a light absorbing material. In that case, the laser beam incident on the bottom of the groove 12 is absorbed by the substrate itself, and volumetric thermal expansion is generated in the vicinity of the substrate, so that split cracks can be generated as in the above example.
[0021]
FIG. 2 shows an example of cutting a sapphire (Al 2 O 3 ) substrate for manufacturing a blue laser diode. The substrate 1 is single crystal sapphire excellent in light transmittance, and an epitaxial layer 2 as a laser diode element forming region is provided on the surface thereof. The epitaxial layer 2 has a multilayer structure composed of GaN, InGaN, AlGaN, and GaN, and has a total thickness of about 4 μm. The thickness D of the substrate 1 is about 80 μm including the epitaxial layer 2.
[0022]
After the laser diode elements are formed on the substrate 1 (the element forming process is omitted), the dividing process of separating and dividing the individual laser diode chips is performed in the same manner as in FIG. Also in this case, the division grooves 3 corresponding to a predetermined chip division pattern are formed on the surface of the substrate 1 by using a dry etching technique. In this example, the width W of the grooves 3 is 4 μm and the depth S is 8 μm. Next, the light absorbing material 4 is put into the groove 3. The light absorbing material 4 uses an ink solution containing the pigment as described above. Then, the laser beam 5 is irradiated from the back surface of the substrate 1, and the laser beam 5 is condensed on the light absorbing material 4 by the optical lens system 6. As a result, the light absorbing material 4 and the surrounding substrate 1 site absorb the laser beam 5 transmitted through the substrate 1, and as shown in FIG. Since it expands, the crack 7 grows along the back surface direction A of the substrate 1, and the substrate can be divided along the formation direction of the groove 3. Also in this case, a metal reflective film 8 similar to that of the example of FIG. 1 is formed on the back surface side of the substrate 1, and a part thereof is removed to provide an opening 9 facing the groove 3. Laser light 5 is introduced through the opening 9. The extra light component 51 which is not necessary for the light absorbing material 4 is reflected by the reflective film 8 around the opening 9 and does not enter the substrate 1 side, and the element region can be prevented from being damaged by irradiation light.
[0023]
Next, FIG. 3 shows an application example of the present invention to manufacture of a GaN LED chip using a sapphire substrate. In the figure, a plurality of light emitting element portions 21 each comprising a PN junction region 22 are formed on the surface side of the substrate 20 in accordance with a normal LED element forming step (not shown). One electrode 23 is formed on the top of the light emitting element portion 21, and a substrate portion adjacent to the light emitting element portion 21 is removed by etching to form a stepped portion. The other electrode 24 is formed on the surface of the stepped portion. Yes. The light emitting element portion 21 including the electrode 24 constitutes a unit light emitting element region. A reflective film 25 is formed on the back surface of the substrate 20. The reflective film 25 is formed by vapor deposition or sputtering in the same manner as in the above examples using aluminum, gold, or the like of about 2000 angstroms. Next, on the back surface side of the substrate 20, a part of the reflective film 25 and the substrate 20 is removed to form a groove 29 at a position separated from the end of the stepped portion of the electrode 24 by a distance t. The groove 29 is formed by a scribing process using a diamond blade or a dry etching process. In this example, the width of the opening due to the removal of the groove 29 and the reflective film 25 is substantially the same. However, when the groove 29 is wider than the opening of the reflective film 25, a masking material is used for the reflective film 25. Then, the etching in the substrate 20 may be advanced. For example, a groove pattern is preliminarily formed vertically and horizontally so as to partition each light emitting element portion 21, and the light absorbing material 28 is injected into each groove bottom, and then YAG laser light is grooved from the reflective film 25 side using the lens system 26. 29 is irradiated. At this time, the light L21 irradiated to the periphery of the groove 29 is reflected by the reflective film 25 around the opening, so that extra light enters the groove 29 through the substrate 20 and is blocked. The light L20 that has entered the groove 29 is absorbed by the light absorbing material 28, and a crack 27 is generated along the groove 29 by the thermal expansion action as described above. By forming the groove 28 in the cleavage direction of the substrate 20, the division along the cleavage direction can be easily performed, and the position of the groove 29 can be set freely, so that the end of the electrode 24 that was difficult with the scribing of the diamond blade is difficult. Scribing can be performed in the immediate vicinity of the chip, and the chip size can be reduced. And since excess light L21 is reflected and eliminated, the light emitting element portion 21 and the electrodes 23 and 24 are not deteriorated by irradiation with external laser light. In addition, since the reflective film 25 remains on each chip even after being divided for each LED chip, the light emitted from the LED element is reflected to the front side without leaking to the back side of the substrate 20, so that the amount of emitted light can be effectively used. it can. In this example, since YAG laser light transmitted through the sapphire substrate is used as a light source, the light absorbing material 28 is injected into the groove 29 and the light absorbing property is used. However, the light absorbing property to the sapphire substrate is improved. If a rich CO2 laser beam is used, it is not necessary to inject a light absorbing material.
[0024]
FIG. 4 shows an example in which the present invention is applied to the manufacture of LED elements.
In the figure, a plurality of light emitting element portions 31 are formed on the surface side of a GaAs or GaP substrate 30 in accordance with a normal LED element forming step (not shown). Each light emitting element portion 31 is formed separately through an etching groove 32. An upper electrode 33 is formed on each element, and an alloy such as Au-Ti-AuZnNi (or AuBeNi) is used as the electrode material. On the other hand, a lower electrode 34 for connecting the substrate 30 and the ohmic contact is formed on the back side of the substrate 30. For the lower electrode 34, an alloy having good ohmic contact with a substrate such as Au-Ge-Ni is used. In addition, since the reflection efficiency at the ohmic contact portion with the lower electrode 34 generally decreases, electrode formation on the entire surface is avoided in order to increase LED light emission efficiency. For example, a mesh-like or polka-dot electrode pattern is used. To do. Next, a metal reflective film 35 is formed on the back surface of the substrate 30 so as to cover the lower electrode 34. The reflective film 35 is formed by vapor deposition or sputtering in the same manner as in the above examples using a metal such as gold or aluminum having a thickness of about 1000 angstroms. A groove 36 is formed by removing a part of the reflective film 35 and the substrate 30 by a scribing process or a dry etching process at a position on the back side of the substrate corresponding to an intermediate part of the etching groove 32. The grooves 36 are formed vertically and horizontally so as to be divided into rectangular LED chip units. Thereafter, the substrate is attached to the expanded tape 37 on the upper electrode 33 side as shown in the drawing, and the chip dividing step is performed in the same manner as in the above example. That is, after injecting the light absorbing material 38 to the bottom of each groove and then irradiating the YAG laser light or the like from the reflective film 35 side toward the groove 36 using the lens system 40, the light irradiated to the periphery of the groove Since L31 is reflected by the metal film around the opening of the reflective film 35, it does not pass through the substrate 30 and does not cause the light emitting element portion 31 and the upper electrode 33 to be deteriorated by light irradiation. The laser beam L30 incident on the groove 36 is absorbed by the light absorbing material 38 to generate a crack 39 along the formation direction of the groove 38 and can be divided into LED chips. Also in this example, as in the dividing step in the LED manufacturing of FIG. 3 described above, by leaving the divided reflecting film 35, the light emitted from the LED element is reflected to the surface side, so that the amount of emitted light can be effectively used. In particular, in the case of an LED element that requires the lower electrode 34, the light reflection at the ohmic contact portion with the lower electrode 34 is weakened as described above, so that the reflective film 35 contributes to the reinforcement of the amount of reflected light. The LED light emission utilization efficiency can be improved. Furthermore, when the expanded tape 37 is used, if the irradiated laser light passes through the substrate 30 and irradiates the portion where the tape is applied, the adhesive force is reduced and the LED chip may fall from the tape. In the present embodiment, the light irradiation can be restricted to the range of the groove 38, so that it does not affect the tape adhesion.
[0025]
In the example of FIG. 3 and FIG. 4 described above, a part of the substrate is removed together with the reflective film (25, 35) from the back side of the substrate to form the groove (29, 36). The alignment accuracy of formation can be increased.
The light absorbing material in the above embodiments may be a photoresist material that has been used in the semiconductor manufacturing process. That is, after the groove is formed, it is applied by a spin coating method, then subjected to an ashing process so as to remain only at the bottom of the groove, and further, a carbide generated by carbonizing the residual resist by heat treatment in a nitrogen gas atmosphere. May be used as a light absorbing material. Further, the above substrate dividing method is applied to a silicon substrate or a GaAs substrate whose main surface is the {100} plane as shown in the dividing groove pattern 71 in FIG. be able to.
[0026]
Furthermore, the present invention can be applied to a substrate having a {111} -plane wafer main surface as shown in FIG. That is, in the case of FIG. 6, the cleavage direction is <110>, and rectangular division in a right angle direction is suitable, but in the case of FIG. 5, the cleavage direction is inclined in the direction of 60 degrees compared to FIG. Is suitable. For this purpose, the honeycomb-shaped divided groove pattern 70 shown in FIG. 5 along the cleavage direction is formed in advance, so that hexagonal chip division in plan view is performed in accordance with the division procedure of the embodiment shown in FIGS. It can be carried out. Of course, if the groove is formed with a triangular repeating pattern other than the hexagonal shape, a triangular chip in plan view can be manufactured. In addition to such a honeycomb shape different from the grid pattern, even a more complicated groove pattern can be arbitrarily formed by using an etching technique, whereby a chip having a desired planar shape can be divided.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an example of division of a laser diode substrate according to an embodiment of the present invention.
FIG. 2 is a schematic cross-sectional view showing an example of division of a sapphire substrate that is an embodiment of the present invention.
FIG. 3 is a schematic cross-sectional view showing a chip dividing step of the LED element of the present invention.
FIG. 4 is a schematic cross-sectional view showing a chip dividing step of another LED element of the present invention.
FIG. 5 is a wafer plan view showing an example of honeycomb division of the present invention.
FIG. 6 is a wafer plan view showing an example of rectangular division according to the present invention.
FIG. 7 is a cross-sectional view of a wafer showing an example of division of a conventional laser diode substrate.
FIG. 8 is a schematic cross-sectional view showing an example of division of a conventional sapphire substrate.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Substrate 2 Epitaxial layer 3 Groove 4 Light absorbing material 5 Laser light 8 Reflecting film 9 Opening 12 Groove 15 Light absorbing material 16 Laser light 18 Reflecting film 19 Opening

Claims (3)

基板の一方の面に複数の素子領域を形成し、その一方の面と反対側の面に反射膜を形成し、前記一方の面と前記反対側の面のいずれかで、かつ前記複数の素子領域の各素子領域の間に溝を形成し、また前記溝に臨む開口部を前記反射膜に設け、ついで前記反対側の面から前記開口部に向け光を照射して前記溝の底部より吸収させ、その底部近傍の体積熱膨張によって前記基板を前記溝にそって分割することを特徴とする基板分割方法。  A plurality of element regions are formed on one surface of the substrate, a reflective film is formed on a surface opposite to the one surface, and the plurality of elements are formed on either the one surface or the opposite surface. A groove is formed between each element region of the region, an opening facing the groove is provided in the reflective film, and then light is irradiated from the opposite surface to the opening to be absorbed from the bottom of the groove And dividing the substrate along the groove by volumetric thermal expansion near the bottom thereof. 所定波長の光を吸収する光学特性を有した光吸収材を前記溝の底部に入れ、前記反対側の面から前記開口部に向け前記光を照射して前記溝の底部の前記光吸収材に吸収させ、そのときの前記光吸収材およびその底部近傍の体積熱膨張によって前記基板を前記溝にそって分割することを特徴とする請求項1記載の基板分割方法。  A light absorbing material having optical characteristics for absorbing light of a predetermined wavelength is placed in the bottom of the groove, and the light is irradiated from the opposite surface toward the opening to the light absorbing material at the bottom of the groove. The substrate dividing method according to claim 1, wherein the substrate is divided along the groove by volume thermal expansion in the vicinity of the light absorbing material and the bottom thereof. 前記基板の一方の面に複数の発光素子領域を形成するとともに前記複数の発光素子領域のそれぞれの領域上に一方の電極を形成し、また前記反対側の面に他方の電極を形成し、かつ前記他方の電極を覆うように前記反射膜を形成し、さらに前記反射膜及び前記基板の一部を除去して前記開口部及び前記溝を前記反対側に形成することを特徴とする、請求項1または請求項2記載の基板分割方法を用いた発光素子製造方法。  Forming a plurality of light emitting element regions on one surface of the substrate and forming one electrode on each of the plurality of light emitting element regions, and forming the other electrode on the opposite surface; and The reflective film is formed so as to cover the other electrode, and the reflective film and a part of the substrate are removed to form the opening and the groove on the opposite side. A light emitting device manufacturing method using the substrate dividing method according to claim 1.
JP20864096A 1996-08-07 1996-08-07 Substrate dividing method and light emitting element manufacturing method using the substrate dividing method Expired - Fee Related JP3636835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20864096A JP3636835B2 (en) 1996-08-07 1996-08-07 Substrate dividing method and light emitting element manufacturing method using the substrate dividing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20864096A JP3636835B2 (en) 1996-08-07 1996-08-07 Substrate dividing method and light emitting element manufacturing method using the substrate dividing method

Publications (2)

Publication Number Publication Date
JPH1044139A JPH1044139A (en) 1998-02-17
JP3636835B2 true JP3636835B2 (en) 2005-04-06

Family

ID=16559595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20864096A Expired - Fee Related JP3636835B2 (en) 1996-08-07 1996-08-07 Substrate dividing method and light emitting element manufacturing method using the substrate dividing method

Country Status (1)

Country Link
JP (1) JP3636835B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9627259B2 (en) 2014-11-14 2017-04-18 Kabushiki Kaisha Toshiba Device manufacturing method and device
US9633903B2 (en) 2015-01-28 2017-04-25 Kabushiki Kaisha Toshiba Device manufacturing method of processing cut portions of semiconductor substrate using carbon dioxide particles
US9947571B2 (en) 2014-11-14 2018-04-17 Kabushiki Kaisha Toshiba Processing apparatus, nozzle, and dicing apparatus
US10332759B2 (en) 2015-04-10 2019-06-25 Kabushiki Kaisha Toshiba Processing apparatus
EP2697835B1 (en) * 2011-04-14 2019-09-04 OSRAM Opto Semiconductors GmbH Method for producing a semiconductor body

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7067849B2 (en) 2001-07-17 2006-06-27 Lg Electronics Inc. Diode having high brightness and method thereof
US6949395B2 (en) 2001-10-22 2005-09-27 Oriol, Inc. Method of making diode having reflective layer
US7148520B2 (en) 2001-10-26 2006-12-12 Lg Electronics Inc. Diode having vertical structure and method of manufacturing the same
US6818532B2 (en) * 2002-04-09 2004-11-16 Oriol, Inc. Method of etching substrates
CN101001729B (en) * 2004-07-30 2011-03-23 三星钻石工业股份有限公司 Vertical crack forming method and vertical crack forming device in substrate
JP2006203251A (en) * 2004-10-07 2006-08-03 Showa Denko Kk Production method for semiconductor device
JP4995722B2 (en) 2004-12-22 2012-08-08 パナソニック株式会社 Semiconductor light emitting device, lighting module, and lighting device
EP1739210B1 (en) 2005-07-01 2012-03-07 Freiberger Compound Materials GmbH Method for production of doped semiconductor single crystal, and III-V semiconductor single crystal
JP5196097B2 (en) * 2006-08-29 2013-05-15 日亜化学工業株式会社 Semiconductor light emitting device manufacturing method, semiconductor light emitting device, and light emitting device using the same
JP5109363B2 (en) * 2006-12-15 2012-12-26 日亜化学工業株式会社 Semiconductor light emitting device manufacturing method, semiconductor light emitting device, and light emitting device
JP4924554B2 (en) * 2008-07-08 2012-04-25 株式会社デンソー Substrate manufacturing method
DE102008032628A1 (en) * 2008-07-11 2010-01-28 Freiberger Compound Materials Gmbh Preparation of doped gallium arsenide single crystal, useful to produce gallium arsenide substrate wafer, comprises melting gallium arsenide starting material and subsequently making the gallium arsenide melts
US8329295B2 (en) 2008-07-11 2012-12-11 Freiberger Compound Materials Gmbh Process for producing doped gallium arsenide substrate wafers having low optical absorption coefficient
CN102142397A (en) * 2010-01-28 2011-08-03 晶元光电股份有限公司 Light-emitting diode (LED) and method for manufacturing same
CN105720009A (en) * 2010-01-28 2016-06-29 晶元光电股份有限公司 Light-emitting diode and manufacturing method thereof
JP5528904B2 (en) * 2010-05-20 2014-06-25 株式会社ディスコ Method for dividing sapphire wafer
JP2011243875A (en) * 2010-05-20 2011-12-01 Disco Abrasive Syst Ltd Dividing method of sapphire wafer
JP5981094B2 (en) 2010-06-24 2016-08-31 東芝機械株式会社 Dicing method
JP2013042119A (en) * 2011-07-21 2013-02-28 Hamamatsu Photonics Kk Light-emitting element manufacturing method
JP5140198B1 (en) 2011-07-27 2013-02-06 東芝機械株式会社 Laser dicing method
JP5472242B2 (en) * 2011-09-20 2014-04-16 日亜化学工業株式会社 Method of manufacturing nitride semiconductor device
CN102500933A (en) * 2011-11-07 2012-06-20 苏州德龙激光有限公司 Laser machining method for matching with light-emitting diode (LED) inner cutting process
EP2856586B1 (en) * 2012-05-30 2020-10-21 IPG Photonics Corporation Laser ablation process for manufacturing submounts for laser diode and laser diode units
JP5918044B2 (en) * 2012-06-25 2016-05-18 株式会社ディスコ Processing method and processing apparatus
JP2014011358A (en) 2012-06-29 2014-01-20 Toshiba Mach Co Ltd Laser dicing method
CN105378948B (en) * 2013-07-18 2020-08-28 亮锐控股有限公司 Dicing a wafer of light emitting devices
CN103358032A (en) * 2013-07-31 2013-10-23 江阴长电先进封装有限公司 Wafer level scribing method for CIS (Cmos image sensor) product
CN111083871A (en) * 2018-10-18 2020-04-28 北大方正集团有限公司 Method for manufacturing printed circuit board and printed circuit board

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2697835B1 (en) * 2011-04-14 2019-09-04 OSRAM Opto Semiconductors GmbH Method for producing a semiconductor body
US9627259B2 (en) 2014-11-14 2017-04-18 Kabushiki Kaisha Toshiba Device manufacturing method and device
US9947571B2 (en) 2014-11-14 2018-04-17 Kabushiki Kaisha Toshiba Processing apparatus, nozzle, and dicing apparatus
US9633903B2 (en) 2015-01-28 2017-04-25 Kabushiki Kaisha Toshiba Device manufacturing method of processing cut portions of semiconductor substrate using carbon dioxide particles
US10332759B2 (en) 2015-04-10 2019-06-25 Kabushiki Kaisha Toshiba Processing apparatus

Also Published As

Publication number Publication date
JPH1044139A (en) 1998-02-17

Similar Documents

Publication Publication Date Title
JP3636835B2 (en) Substrate dividing method and light emitting element manufacturing method using the substrate dividing method
US7008861B2 (en) Semiconductor substrate assemblies and methods for preparing and dicing the same
JP3904585B2 (en) Manufacturing method of semiconductor device
USRE43605E1 (en) Laser segmented cutting, multi-step cutting, or both
KR100854986B1 (en) Production method of compound semiconductor device wafer
JP3604550B2 (en) Method for manufacturing nitride semiconductor device
JP3449201B2 (en) Method for manufacturing nitride semiconductor device
US7183136B2 (en) Semiconductor element and method for producing the same
US8163582B2 (en) Method for fabricating a light emitting diode chip including etching by a laser beam
JP4385746B2 (en) Nitride semiconductor device manufacturing method
JP4346598B2 (en) Compound semiconductor device and manufacturing method thereof
US10639747B2 (en) Method of manufacturing light emitting element
JP4540514B2 (en) Compound semiconductor light emitting device and manufacturing method thereof
JP2001501778A (en) Method of separating two material layers from each other and electronic component manufactured by this method
KR100906722B1 (en) Semiconductor light-emitting device, image display, illuminator, and its manufacturing method
JP3816147B2 (en) Substrate division method
JPH11224866A (en) Laser dividing and cutting method
JP6455166B2 (en) Manufacturing method of semiconductor wafer and semiconductor chip
JP2009135512A (en) Method of manufacturing nitride-based semiconductor element
KR102069724B1 (en) Laser ablation process for manufacturing submounts for laser diode and laser diode units
JP2004228290A (en) Semiconductor light emitting element and its fabricating process
JP2006203251A (en) Production method for semiconductor device
JP4244618B2 (en) Method of manufacturing nitride semiconductor device
KR100674486B1 (en) Nitride semiconductor light-emitting device and method for fabrication thereof
JP7089204B2 (en) Manufacturing method of light emitting device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees