JP3636035B2 - Digestion method of organic sludge - Google Patents

Digestion method of organic sludge Download PDF

Info

Publication number
JP3636035B2
JP3636035B2 JP2000157993A JP2000157993A JP3636035B2 JP 3636035 B2 JP3636035 B2 JP 3636035B2 JP 2000157993 A JP2000157993 A JP 2000157993A JP 2000157993 A JP2000157993 A JP 2000157993A JP 3636035 B2 JP3636035 B2 JP 3636035B2
Authority
JP
Japan
Prior art keywords
sludge
ozone
aerobic
anaerobic
digester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000157993A
Other languages
Japanese (ja)
Other versions
JP2001327998A (en
Inventor
哲朗 深瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2000157993A priority Critical patent/JP3636035B2/en
Publication of JP2001327998A publication Critical patent/JP2001327998A/en
Application granted granted Critical
Publication of JP3636035B2 publication Critical patent/JP3636035B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Sludge (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有機性汚泥の消化方法、特に難生物分解性の生物汚泥を含む有機性汚泥の生物消化方法に関する。
【0002】
【従来の技術】
有機性排水の好気性処理または嫌気性処理により発生する生物汚泥は、生物処理を経ているため生物学的に安定であって難生物分解性であり,その処理は困難である。このような生物汚泥を含む有機性汚泥の消化方法として、メタン発酵などの嫌気性消化を行う方法があり、通常汚泥の分解率は40%程度である。汚泥の分解率を向上させる目的で、オゾン処理、ボールミル処理、超音波処理、熱処理などの前処理する方法が提案されているが、これらの前処理を行う方法でも汚泥の分解率は50〜60%程度が限界であり、またコストが高いという問題点がある。
前処理する方法以外の方法として、嫌気性消化した汚泥を濃縮し、この濃縮汚泥を嫌気性消化槽に返送し、嫌気性消化槽内の汚泥濃度を増加させる方法も提案されている。しかし、この方法においても汚泥の分解率は60%程度が限界である。
【0003】
さらに別の方法として、特開平9−136100号には、嫌気性消化汚泥をオゾン処理し、このオゾン処理汚泥を好気性消化する方法が記載され、原汚泥重量の90%以上が減量化されることが記載されている。
しかし上記従来の方法では、嫌気性消化汚泥に含まれる多量の硫化水素によりオゾンが多量に消費されるため、コストが高いという問題点がある。
【0004】
【発明が解決しようとする課題】
本発明の課題は、生物汚泥を含む有機性汚泥を低コストで、しかも高分解率で消化することができる有機性汚泥の消化方法を提案することである。
【0005】
【課題を解決するための手段】
本発明は、浸漬型膜分離装置を備えた好気性消化槽に生物汚泥を含む有機性汚泥を導入し、好気的に生物処理する好気性消化工程と、
好気性消化工程で生物処理した好気性消化汚泥をオゾン処理するオゾン処理工程と、
オゾン処理工程でオゾン処理したオゾン処理汚泥を嫌気性消化槽において嫌気的に生物処理する嫌気性消化工程と、
嫌気性消化工程で生物処理した嫌気性消化汚泥を濃縮汚泥と分離液とに固液分離する固液分離工程と、
固液分離工程で分離した濃縮汚泥の一部を好気性消化槽に返送し、残部を嫌気性消化槽に返送する返送工程と
を含む有機性汚泥の消化方法である。
【0006】
本発明において処理の対象となる有機性汚泥は生物汚泥を含む有機性汚泥であり、生物汚泥を主要成分として含む汚泥が好ましく、生物汚泥のほかに他の有機物および/または無機物を含んでいてもよい。生物汚泥としては下水、し尿、産業排水等の有機性排水の生物処理によって生成する汚泥があげられ、活性汚泥、消化汚泥などがこれに含まれる。有機性汚泥はこのような生物汚泥を含む汚泥であり、生物汚泥のほかに下水等の沈澱汚泥などの他の有機または無機物を含む汚泥との混合汚泥でもよい。このような汚泥には水処理等によって発生するスラリー状の汚泥のほかに、これを脱水処理した脱水ケーキも含まれる。
【0007】
本発明の好気性消化工程は生物汚泥を含む有機性汚泥および後段の返送工程から返送される濃縮汚泥を好気性消化槽に導入して槽内の生物汚泥と混合し、曝気して好気的に生物処理する工程である。曝気方法としては、通常の空気による曝気法、酸素富化空気よる曝気法などが採用できる。
【0008】
好気性消化工程では、微生物細胞内の蓄積有機物、汚泥粘物質などが生物的に消化され、汚泥の可溶化、減量化が促進される。この反応は滞留時間が長いほどよいが、あまり長すぎると後段の嫌気性消化工程でのメタンガスの発生量が減少し、資源の回収率が低下するので、好気性消化工程の滞留時間は通常1時間以上、好ましくは6〜48時間とするのが望ましい。
【0009】
有機性汚泥は、通常運搬や貯留中に腐敗している場合が多く、このため硫化水素が含まれており、また嫌気性消化汚泥にも多量の硫化水素が含まれている。本発明では硫化水素を含むこれらの汚泥を好気性消化工程において好気的に処理することにより、汚泥中の硫化水素は生物的に硫酸に酸化される。硫化水素の酸化のために必要な滞留時間は通常1時間程度である。また好気性消化により、溶解性の生分解可能な有機物のほとんどが分解される。
【0010】
好気性消化槽には浸漬型膜分離装置が浸漬配置される。この浸漬型膜分離装置は分離膜を有し、この膜が槽内液に浸漬された状態で槽内液から水を濾過して汚泥と分離する装置である。この浸漬型膜分離装置は好気性消化槽内に設けられた散気装置により引き起こされる曝気による水流を分離膜面に当てることにより、膜面への懸濁物質の濃縮を防止しながら濾過を行うように構成されているのが好ましい。濾過はポンプ等の吸引手段などにより行うことができる。浸漬型膜分離装置で分離された水は処理水として系外へ排出される。好気性消化槽にはバッフル板等の隔壁を設けることができる。
【0011】
膜分離装置の膜の種類としては、限外濾過(UF)膜、精密濾過(MF)膜などが使用できる。膜の材質としては酢酸セルロース(CA)膜、ポリアミド(PA)膜、アラミド膜、ポリスルホン膜、親水性ポリエチレンなど任意の材質の膜が使用できる。また膜の形状としては平膜、スパイラル状膜、チューブラー膜、中空糸膜など任意の形状のものが使用できる。
【0012】
オゾン処理工程は、好気性消化工程で処理した好気性消化汚泥をオゾンと接触させてオゾン処理する工程である。通常好気性消化槽の槽内液をそのままオゾン処理槽に導入してオゾンと接触させることができる。接触方法としては、オゾン処理槽に好気性消化汚泥を導入してオゾンを吹き込む方法、機械攪拌による方法、充填層を利用する方法などが採用できる。オゾンとしてはオゾンガスの他、オゾン含有空気、オゾン化空気などが使用できる。オゾン処理により汚泥は易生物分解性の有機物に改質される。
【0013】
オゾン処理の条件は特に限定されないが、オゾン使用量を0.002〜0.05g−O3/g−VSS、好ましくは0.005〜0.03g−O3/g−VSSとして処理を行うのが望ましい。またpHが5以下であるのが好ましい。
【0014】
本発明では、オゾン処理の対象となる好気性消化汚泥中には硫化水素および溶解性の有機物がほとんど含まれていないので、このような好気性消化汚泥をオゾン処理しても硫化水素の酸化などにオゾンが無駄に消費されるということはない。また好気性消化汚泥は浸漬型膜分離装置により濾過されて水が除かれているので、処理する量が少なくなっている。従って、少ないオゾン量で低コストで効率よくオゾン処理することができる。
【0015】
嫌気性消化工程はオゾン処理工程でオゾン処理したオゾン処理汚泥を嫌気性消化槽において嫌気的に生物処理する工程である。嫌気性消化工程では、オゾン処理汚泥中の易生物分解性有機物およびその他の有機物が有機酸生成およびメタン生成の段階を経て分解され、メタンに変換される。嫌気性消化は有機酸生成とメタン生成を別々の反応槽で行う二相方式で行うこともできるし、1つの反応槽で行う一相方式で行うこともできる。
【0016】
嫌気性消化としては、通常の嫌気性消化法に用いられる浮遊法が一般に採用できるが、固定床法、流動床法、UASB法などの高負荷嫌気性生物処理などを採用することもできる。嫌気性消化の処理条件は特に制限されず、通常の嫌気処理の条件が採用できる。例えば、温度は30〜60℃とすることができる。30〜40℃では中温性のメタン発酵菌が作用し、45℃〜60℃では高温性のメタン発酵菌が作用する。滞留時間は5〜30日、好ましくは10〜20日、pHは6〜8.5、好ましくは7〜8とするのが望ましい。
【0017】
本発明における嫌気性消化では、前記好気性消化工程において浸漬型膜分離装置により水を濾過して分離しているので、嫌気性消化処理する汚泥の容量が少なくなっている。このため嫌気性消化槽を小さくすることができるほか、加温に使用する熱量も少なくなり、低コストで効率的な処理が可能である。
【0018】
固液分離工程では嫌気性消化汚泥を濃縮汚泥と分離液とに固液分離を行う。固液分離手段としては沈殿分離、加圧浮上、遠心分離、MF膜およびUF膜など、通常の固液分離手段が採用できる。沈殿分離または加圧浮上などを採用する場合、メタン発酵菌は酸素に弱いため、空気にできるだけ触れないようにするのが好ましい。また遠心分離などを採用する場合、分離液中のSS濃度を低減するため、高分子凝集剤を併用することが好ましい。
【0019】
固液分離工程で分離した分離液は処理水として系外へ排出し、濃縮汚泥は返送工程として、一部を好気性消化工程の好気性消化槽に返送し、残部を嫌気性消化工程の嫌気性消化槽に返送する。また一部を系外へ引き抜いて脱水などの他の処理を行ってもよい。
【0020】
濃縮汚泥の返送の割合は、嫌気性消化槽における汚泥濃度および滞留時間などにより変わるが、好気性消化槽に返送する量よりも嫌気性消化槽に返送する量を多くするのが好ましい。例えば、嫌気性消化槽における汚泥濃度1%、滞留時間20日の場合、濃縮汚泥の10〜30%程度を好気性消化槽に返送し、70〜90%を嫌気性消化槽に返送するのが望ましい。
【0021】
本発明の方法では好気性消化汚泥をオゾン処理しているので、オゾンが硫化水素の酸化に無駄に消費されることはなく、このためオゾンの使用量を少なくして低コストで処理することができる。
また本発明の方法では浸漬型膜分離装置により水を好気性消化槽から引き抜いているので、硫黄化合物が硫酸イオンの形で処理水として好気性消化槽から引き抜かれる。これに対して、好気性消化槽から処理水を引き抜かない場合は、硫黄化合物は再び嫌気性消化槽へ流入してS2-となり、鉄などの金属イオンと不溶性塩を形成して系内に蓄積してしまう。従って、好気性消化槽から浸漬型膜分離装置により水を引き抜くことにより、汚泥を高分解率で消化することができる。このため、嫌気性消化工程での汚泥の分解率が90%以上に向上し、汚泥を完全に消化することも可能である。
【0022】
【発明の効果】
以上の通り本発明によれば、生物汚泥を含む有機性汚泥を好気性消化したのちオゾン処理し、このオゾン処理汚泥を嫌気性消化したのち固液分離し、濃縮汚泥の一部を好気性消化、残部を嫌気性消化処理に返送しているので、有機性汚泥を低コストで、かつ高分解率で消化することができる。
【0023】
【発明の実施の形態】
以下、本発明の実施の形態を図面により説明する。
図1は実施形態の有機性汚泥の消化装置を示す系統図である。図1において、1は好気性消化槽であり、槽内に浸漬型膜分離装置2が浸漬配置されている。3はオゾン処理槽、4は嫌気性消化槽、5は固液分離槽である。
【0024】
図1の装置で生物汚泥を含む有機性汚泥を処理するには、汚泥導入路11から生物汚泥を含む有機性汚泥を好気性消化槽1に導入するとともに、返送汚泥路12から返送される濃縮汚泥を好気性消化槽1に導入して槽内の生物汚泥と混合し、酸素供給路13から供給される空気を散気装置14から散気し、好気的に生物処理する。このようにして汚泥を好気性消化するとともに、ポンプ15を駆動し、分離膜16を透過させて水を濾過する。濾過水は排水路17から系外へ排出する。
【0025】
好気性消化槽1の槽内液は好気性消化汚泥として連絡路21から取り出し、オゾン処理槽3に導入する。オゾン処理槽3ではオゾン発生器22で発生させたオゾンをオゾン供給路23から導入し、連絡路21から導入される好気性消化汚泥と接触させてオゾン処理する。オゾン排ガスはオゾン排ガス路24から排出する。オゾン処理汚泥は、連絡路25から嫌気性消化槽4に導入する。
【0026】
嫌気性消化槽4では連絡路25から導入されるオゾン処理汚泥および返送汚泥路26から返送される濃縮汚泥を導入し、槽内の生物汚泥と混合し、嫌気性を維持して嫌気性消化を行う。嫌気性消化を中温性のメタン発酵菌により行う場合は加熱手段(図示せず)により30〜40℃に加温し、高温性のメタン発酵菌により行う場合は45℃〜60℃に加温する。生成するメタンガスはメタンガス排出路27から排出する。
【0027】
嫌気性消化汚泥は連絡路28から固液分離槽5に導入し、分離汚泥と分離液とに固液分離する。分離汚泥は濃縮汚泥とし、その一部は返送汚泥路12から好気性消化槽1に返送し、残部は返送汚泥路26から嫌気性消化槽4に返送する。余剰汚泥が生じる場合は汚泥排出路29から排出する。分離液は排水路30から排出する。
【0028】
上記のような処理方法では、有機性汚泥および濃縮汚泥に含まれる硫化水素は好気性消化槽1で酸化されて硫酸に変換されるので、オゾン処理槽3に硫化水素が導入されることはなく、このためオゾンが硫化水素の酸化のために無駄に消費されることはなく、オゾンの使用量を少なくして低コストでオゾン処理することができる。また浸漬型膜分離装置2により水を濾過して好気性消化槽1から引き抜いているので、硫黄化合物が硫酸イオンの形で引き抜かれるとともに、嫌気性消化槽4で処理する汚泥の容量が少なくなっており、このため汚泥を高分解率で消化することができるとともに、嫌気性消化槽4を小さくすることができるほか、加温に使用する熱量も少なくなり、低コストで効率的な処理が可能である。
【0029】
図1では嫌気性消化槽4は1つの反応槽で行っているが、有機酸発酵とメタン発酵とを別々の反応槽で行うこともできる。
【0030】
【実施例】
比較例1
下水を処理している活性汚泥法の余剰汚泥と最初沈殿池汚泥とを1:1で混合した有機性汚泥を濃度1.5%に調整し、これを被処理汚泥(硫化水素濃度:12mg/L)とした。この被処理汚泥を0.5L/dayの流速で1 literの好気性消化槽に連続通水した。曝気量は2L/hrとした。この好気性消化汚泥(硫化水素濃度:検出限界以下)0.5 literを容積1 literの洗浄びんに取り、濃度25g/m3のオゾン含有ガスを10mL/minの割合で通気した。流入および排出ガス濃度を測定し、オゾン消費量が50g/kg−汚泥となった時点でオゾン処理を終了した。
【0031】
オゾン処理汚泥を取り出し、嫌気性消化槽に投入した。同量を嫌気性消化槽から引き抜き、これを嫌気性消化汚泥とした。また、その嫌気性消化汚泥の一部で汚泥濃度などの分析を行った。嫌気性消化槽は有効容積7.5 literで、種汚泥として下水嫌気性消化槽の汚泥を乾燥重量で75g投入した。この操作を一日一回、3か月継続した。なおオゾン処理、および嫌気性消化槽へのオゾン処理汚泥の投入は週に5回とした。
【0032】
また嫌気性消化汚泥を15000rpmで10分間遠心分離し、上澄みを捨てた。沈殿した汚泥を3等分し、1/3を好気性消化槽へ戻し、残部を嫌気性消化槽に戻した。
その結果、嫌気性消化槽の汚泥濃度は当初15.2g/Lであったが、3か月経過後には22.2g/Lとなり、3か月間で汚泥濃度は約1.5倍に上昇した。
【0033】
実施例1
比較例1と同じ被処理汚泥を0.5L/dayの流速で1 literの好気性消化槽に連続通水した。この好気性消化槽に三菱レーヨン社製の中空糸浸漬膜を浸漬して、250mL/dayの流速で処理水を引き抜いた。曝気量は5L/hrとした。好気性消化汚泥は比較例1と同じ方法でオゾン処理および嫌気性消化を行った。
その結果、嫌気性消化槽の汚泥濃度は当初15.2g/L、3か月経過した後も16.0g/Lであり、大きな上昇は認められなかった。
【図面の簡単な説明】
【図1】実施形態の有機性汚泥の消化装置を示す系統図である。
【符号の説明】
1 好気性消化槽
2 浸漬型膜分離装置
3 オゾン処理槽
4 嫌気性消化槽
5 固液分離槽
11 汚泥導入路
12、26 返送汚泥路
13 酸素供給路
14 散気装置
15 ポンプ
16 分離膜
17、30 排水路
21、25、28 連絡路
22 オゾン発生器
23 オゾン供給路
24 オゾン排ガス路
27 メタンガス排出路
29 汚泥排出路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for digesting organic sludge, and more particularly, to a method for biological digestion of organic sludge containing hardly biodegradable biological sludge.
[0002]
[Prior art]
Biological sludge generated by aerobic or anaerobic treatment of organic wastewater is biologically stable and hardly biodegradable because it has undergone biological treatment, and its treatment is difficult. As a method for digesting organic sludge containing such biological sludge, there is a method of performing anaerobic digestion such as methane fermentation, and the decomposition rate of sludge is usually about 40%. In order to improve the decomposition rate of sludge, pretreatment methods such as ozone treatment, ball mill treatment, ultrasonic treatment, heat treatment, etc. have been proposed, but even with these pretreatment methods, the sludge decomposition rate is 50-60. % Is the limit, and the cost is high.
As a method other than the pretreatment method, a method of concentrating the anaerobically digested sludge, returning the concentrated sludge to the anaerobic digester, and increasing the sludge concentration in the anaerobic digester has been proposed. However, even in this method, the decomposition rate of sludge is limited to about 60%.
[0003]
As another method, JP-A-9-136100 describes a method in which anaerobic digested sludge is treated with ozone, and this ozone treated sludge is digested aerobically, and 90% or more of the raw sludge weight is reduced. It is described.
However, the conventional method has a problem that the cost is high because a large amount of ozone is consumed by a large amount of hydrogen sulfide contained in the anaerobic digested sludge.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to propose a method for digesting organic sludge that can digest organic sludge containing biological sludge at a low cost and at a high decomposition rate.
[0005]
[Means for Solving the Problems]
The present invention introduces organic sludge containing biological sludge into an aerobic digester equipped with a submerged membrane separation device, and aerobic digestion step for aerobically biotreating,
An ozone treatment process for ozone treatment of aerobic digested sludge biologically treated in the aerobic digestion process;
An anaerobic digestion process for anaerobically digesting the ozone-treated sludge ozone-treated in the ozone treatment process in an anaerobic digestion tank;
A solid-liquid separation process for solid-liquid separation of the anaerobic digested sludge biologically treated in the anaerobic digestion process into a concentrated sludge and a separation liquid;
This is a method for digesting organic sludge, which includes a returning step in which part of the concentrated sludge separated in the solid-liquid separation step is returned to the aerobic digester and the remainder is returned to the anaerobic digester.
[0006]
The organic sludge to be treated in the present invention is organic sludge containing biological sludge, preferably sludge containing biological sludge as a main component, and may contain other organic substances and / or inorganic substances in addition to biological sludge. Good. Examples of biological sludge include sludge generated by biological treatment of organic wastewater such as sewage, human waste, and industrial wastewater, and include activated sludge and digested sludge. Organic sludge is sludge containing such biological sludge, and may be mixed sludge with other sludge containing organic or inorganic substances such as sediment sludge such as sewage in addition to biological sludge. Such sludge includes not only slurry-like sludge generated by water treatment or the like, but also dehydrated cake obtained by dehydrating the sludge.
[0007]
The aerobic digestion process of the present invention introduces organic sludge containing biological sludge and concentrated sludge returned from the subsequent return process into the aerobic digestion tank, mixes it with the biological sludge in the tank, aerated and aerobic This is a process of biological treatment. As an aeration method, an ordinary aeration method using air, an aeration method using oxygen-enriched air, or the like can be employed.
[0008]
In the aerobic digestion process, organic matter accumulated in microbial cells, sludge mucilage, and the like are biologically digested, and sludge solubilization and weight reduction are promoted. In this reaction, the longer the residence time, the better. However, if it is too long, the amount of methane gas generated in the subsequent anaerobic digestion process is reduced and the resource recovery rate is lowered. Therefore, the residence time in the aerobic digestion process is usually 1 It is desirable that the time is not less than 6 hours, preferably 6 to 48 hours.
[0009]
Organic sludge often rots during normal transportation and storage, and therefore contains hydrogen sulfide, and anaerobic digested sludge also contains a large amount of hydrogen sulfide. In the present invention, hydrogen sulfide in the sludge is biologically oxidized to sulfuric acid by aerobically treating these sludge containing hydrogen sulfide in the aerobic digestion step. The residence time required for the oxidation of hydrogen sulfide is usually about 1 hour. In addition, most of the soluble biodegradable organic matter is decomposed by aerobic digestion.
[0010]
In the aerobic digester, a submerged membrane separation device is immersed. This submerged membrane separation device has a separation membrane, and is a device that filters water from the liquid in the tank and separates it from sludge while the membrane is immersed in the liquid in the tank. This submerged membrane separation device performs filtration while preventing the concentration of suspended substances on the membrane surface by applying a water flow caused by aeration caused by the aeration device provided in the aerobic digestion tank to the separation membrane surface. It is preferable to be configured as described above. Filtration can be performed by suction means such as a pump. The water separated by the submerged membrane separator is discharged out of the system as treated water. An aerobic digester can be provided with a partition wall such as a baffle plate.
[0011]
As the type of the membrane of the membrane separator, an ultrafiltration (UF) membrane, a microfiltration (MF) membrane or the like can be used. As a material of the membrane, a membrane of any material such as cellulose acetate (CA) membrane, polyamide (PA) membrane, aramid membrane, polysulfone membrane, hydrophilic polyethylene can be used. The membrane can be of any shape such as a flat membrane, spiral membrane, tubular membrane, hollow fiber membrane.
[0012]
The ozone treatment process is a process in which the aerobic digested sludge treated in the aerobic digestion process is contacted with ozone to perform ozone treatment. Usually, the solution in the aerobic digestion tank can be directly introduced into the ozone treatment tank and brought into contact with ozone. As a contact method, a method in which aerobic digested sludge is introduced into an ozone treatment tank and ozone is blown in, a method by mechanical stirring, a method using a packed bed, or the like can be employed. As ozone, ozone gas, ozone-containing air, ozonized air, or the like can be used. The sludge is modified to easily biodegradable organic matter by ozone treatment.
[0013]
The conditions for the ozone treatment are not particularly limited, but the treatment is performed with the amount of ozone used being 0.002 to 0.05 g-O 3 / g-VSS, preferably 0.005 to 0.03 g-O 3 / g-VSS. Is desirable. Moreover, it is preferable that pH is 5 or less.
[0014]
In the present invention, the aerobic digested sludge to be subjected to the ozone treatment contains almost no hydrogen sulfide and soluble organic matter. Therefore, even if such aerobic digested sludge is treated with ozone, the oxidation of hydrogen sulfide, etc. In addition, ozone is not wasted. Further, since the aerobic digested sludge is filtered by a submerged membrane separator to remove water, the amount to be treated is reduced. Therefore, the ozone treatment can be efficiently performed at a low cost with a small amount of ozone.
[0015]
The anaerobic digestion step is a step of anaerobically biotreating the ozone-treated sludge ozone-treated in the ozone treatment step in an anaerobic digestion tank. In the anaerobic digestion process, readily biodegradable organic substances and other organic substances in the ozone-treated sludge are decomposed through the steps of organic acid generation and methane generation, and converted to methane. Anaerobic digestion can be performed in a two-phase system in which organic acid generation and methane generation are performed in separate reaction tanks, or in a single-phase system in one reaction tank.
[0016]
As the anaerobic digestion, a floating method used in a normal anaerobic digestion method can be generally employed, but a high-load anaerobic biological treatment such as a fixed bed method, a fluidized bed method, and a UASB method can also be employed. The anaerobic digestion treatment conditions are not particularly limited, and normal anaerobic treatment conditions can be employed. For example, the temperature can be 30-60 ° C. A mesophilic methane-fermenting bacterium acts at 30 to 40 ° C, and a high-temperature methane-fermenting bacterium acts at 45 to 60 ° C. The residence time is 5 to 30 days, preferably 10 to 20 days, and the pH is 6 to 8.5, preferably 7 to 8.
[0017]
In the anaerobic digestion according to the present invention, water is filtered and separated by the submerged membrane separator in the aerobic digestion step, so that the volume of sludge to be subjected to the anaerobic digestion process is reduced. For this reason, an anaerobic digester can be made small, the amount of heat used for heating is reduced, and efficient processing is possible at low cost.
[0018]
In the solid-liquid separation step, anaerobic digested sludge is subjected to solid-liquid separation into concentrated sludge and separated liquid. As the solid-liquid separation means, ordinary solid-liquid separation means such as precipitation separation, pressurized flotation, centrifugation, MF membrane and UF membrane can be employed. When employing precipitation separation or pressurized flotation, etc., it is preferable to avoid contact with air as much as possible because methane-fermenting bacteria are vulnerable to oxygen. Moreover, when employ | adopting centrifugation etc., in order to reduce SS density | concentration in a separation liquid, it is preferable to use a polymer flocculant together.
[0019]
The separated liquid separated in the solid-liquid separation process is discharged out of the system as treated water, the concentrated sludge is returned to the aerobic digestion tank in the aerobic digestion process, and the remainder is anaerobic in the anaerobic digestion process. Return to sex digester. Alternatively, a part of the system may be pulled out of the system and other treatments such as dehydration may be performed.
[0020]
The ratio of returning the concentrated sludge varies depending on the sludge concentration and residence time in the anaerobic digester, but it is preferable to return the amount returned to the anaerobic digester more than the amount returned to the aerobic digester. For example, if the sludge concentration in an anaerobic digester is 1% and the residence time is 20 days, about 10-30% of the concentrated sludge is returned to the aerobic digester, and 70-90% is returned to the anaerobic digester. desirable.
[0021]
Since the aerobic digested sludge is ozone-treated in the method of the present invention, ozone is not wasted in the oxidation of hydrogen sulfide, and therefore, the amount of ozone used can be reduced and treated at a low cost. it can.
In the method of the present invention, water is extracted from the aerobic digestion tank by the submerged membrane separation apparatus, so that the sulfur compound is extracted from the aerobic digestion tank as treated water in the form of sulfate ions. On the other hand, if the treated water is not withdrawn from the aerobic digester, the sulfur compound flows into the anaerobic digester again to become S 2- , and forms an insoluble salt with metal ions such as iron and enters the system. Accumulate. Therefore, the sludge can be digested at a high decomposition rate by extracting water from the aerobic digester using the submerged membrane separator. For this reason, the decomposition rate of sludge in an anaerobic digestion process improves to 90% or more, and it is also possible to digest sludge completely.
[0022]
【The invention's effect】
As described above, according to the present invention, organic sludge containing biological sludge is aerobically digested and then subjected to ozone treatment. The ozone-treated sludge is subjected to anaerobic digestion and then solid-liquid separation, and a part of the concentrated sludge is subjected to aerobic digestion. Since the remainder is returned to the anaerobic digestion treatment, the organic sludge can be digested at a low cost and at a high decomposition rate.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a system diagram showing an organic sludge digester according to an embodiment. In FIG. 1, reference numeral 1 denotes an aerobic digestion tank, in which a submerged membrane separation device 2 is disposed so as to be immersed in the tank. 3 is an ozone treatment tank, 4 is an anaerobic digestion tank, and 5 is a solid-liquid separation tank.
[0024]
In order to treat organic sludge containing biological sludge with the apparatus of FIG. 1, organic sludge containing biological sludge is introduced into the aerobic digestion tank 1 from the sludge introduction path 11 and concentrated returned from the return sludge path 12. The sludge is introduced into the aerobic digestion tank 1 and mixed with the biological sludge in the tank, and the air supplied from the oxygen supply path 13 is diffused from the aeration device 14 for aerobic biological treatment. In this way, the sludge is aerobically digested and the pump 15 is driven to permeate the separation membrane 16 and filter the water. The filtered water is discharged from the drainage channel 17 to the outside of the system.
[0025]
The solution in the aerobic digestion tank 1 is taken out from the communication path 21 as aerobic digestion sludge and introduced into the ozone treatment tank 3. In the ozone treatment tank 3, ozone generated by the ozone generator 22 is introduced from the ozone supply path 23, and contacted with the aerobic digested sludge introduced from the communication path 21 for ozone treatment. The ozone exhaust gas is discharged from the ozone exhaust gas passage 24. Ozone-treated sludge is introduced into the anaerobic digester 4 from the communication path 25.
[0026]
In the anaerobic digestion tank 4, the ozone treatment sludge introduced from the communication path 25 and the concentrated sludge returned from the return sludge path 26 are introduced and mixed with the biological sludge in the tank to maintain anaerobic and perform anaerobic digestion. Do. When anaerobic digestion is performed with mesophilic methane fermentation bacteria, it is heated to 30-40 ° C. by a heating means (not shown), and when it is performed with high temperature methane fermentation bacteria, it is heated to 45 ° C.-60 ° C. . The generated methane gas is discharged from the methane gas discharge path 27.
[0027]
Anaerobic digested sludge is introduced into the solid-liquid separation tank 5 from the communication path 28, and is separated into solid-liquid separation into separated sludge and separated liquid. The separated sludge is concentrated sludge, a part of which is returned from the return sludge passage 12 to the aerobic digester 1 and the remainder is returned from the return sludge passage 26 to the anaerobic digester 4. When excess sludge is generated, it is discharged from the sludge discharge passage 29. The separated liquid is discharged from the drainage channel 30.
[0028]
In the above treatment method, hydrogen sulfide contained in the organic sludge and concentrated sludge is oxidized in the aerobic digestion tank 1 and converted into sulfuric acid, so that hydrogen sulfide is not introduced into the ozone treatment tank 3. Therefore, ozone is not wasted due to the oxidation of hydrogen sulfide, and the ozone treatment can be performed at low cost by reducing the amount of ozone used. Moreover, since water is filtered by the submerged membrane separator 2 and extracted from the aerobic digester 1, the sulfur compound is extracted in the form of sulfate ions and the volume of sludge to be treated in the anaerobic digester 4 is reduced. Therefore, sludge can be digested at a high decomposition rate, the anaerobic digester 4 can be made smaller, and the amount of heat used for heating is reduced, enabling efficient treatment at low cost. It is.
[0029]
In FIG. 1, the anaerobic digestion tank 4 is performed in one reaction tank, but organic acid fermentation and methane fermentation can be performed in separate reaction tanks.
[0030]
【Example】
Comparative Example 1
Organic sludge mixed with surplus sludge from the activated sludge process treating the sewage and the first sedimentation basin sludge at 1: 1 was adjusted to a concentration of 1.5%, and this was treated sludge (hydrogen sulfide concentration: 12 mg / L). This treated sludge was continuously passed through a 1 liter aerobic digester at a flow rate of 0.5 L / day. The aeration amount was 2 L / hr. This aerobic digested sludge (hydrogen sulfide concentration: below detection limit) 0.5 liter was taken into a washing bottle with a volume of 1 liter, and ozone-containing gas with a concentration of 25 g / m 3 was aerated at a rate of 10 mL / min. The inflow and exhaust gas concentrations were measured, and the ozone treatment was terminated when the ozone consumption reached 50 g / kg-sludge.
[0031]
The ozone-treated sludge was taken out and put into an anaerobic digester. The same amount was withdrawn from the anaerobic digester and this was used as anaerobic digested sludge. In addition, a part of the anaerobic digested sludge was analyzed for sludge concentration. The anaerobic digester had an effective volume of 7.5 liters, and 75 g of sludge from the sewage anaerobic digester was added as seed sludge in terms of dry weight. This operation was continued once a day for 3 months. The ozone treatment and the ozone treatment sludge input to the anaerobic digester were performed 5 times a week.
[0032]
The anaerobic digested sludge was centrifuged at 15000 rpm for 10 minutes, and the supernatant was discarded. The precipitated sludge was divided into three equal parts, 1/3 was returned to the aerobic digester, and the remainder was returned to the anaerobic digester.
As a result, the sludge concentration in the anaerobic digester was initially 15.2 g / L, but after 3 months it became 22.2 g / L, and the sludge concentration increased about 1.5 times in 3 months. .
[0033]
Example 1
The same sludge to be treated as in Comparative Example 1 was continuously passed through a 1 liter aerobic digester at a flow rate of 0.5 L / day. A hollow fiber immersion membrane manufactured by Mitsubishi Rayon Co., Ltd. was immersed in this aerobic digestion tank, and treated water was drawn out at a flow rate of 250 mL / day. The aeration amount was 5 L / hr. The aerobic digested sludge was subjected to ozone treatment and anaerobic digestion in the same manner as in Comparative Example 1.
As a result, the sludge concentration in the anaerobic digester was 15.2 g / L at the beginning and 16.0 g / L after 3 months, and no significant increase was observed.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an organic sludge digester of an embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Aerobic digestion tank 2 Submerged membrane separation apparatus 3 Ozone treatment tank 4 Anaerobic digestion tank 5 Solid-liquid separation tank 11 Sludge introduction path 12, 26 Return sludge path 13 Oxygen supply path 14 Aeration apparatus 15 Pump 16 Separation membrane 17, 30 Drainage channels 21, 25, 28 Communication channel 22 Ozone generator 23 Ozone supply channel 24 Ozone exhaust gas channel 27 Methane gas discharge channel 29 Sludge discharge channel

Claims (1)

浸漬型膜分離装置を備えた好気性消化槽に生物汚泥を含む有機性汚泥を導入し、好気的に生物処理する好気性消化工程と、
好気性消化工程で生物処理した好気性消化汚泥をオゾン処理するオゾン処理工程と、
オゾン処理工程でオゾン処理したオゾン処理汚泥を嫌気性消化槽において嫌気的に生物処理する嫌気性消化工程と、
嫌気性消化工程で生物処理した嫌気性消化汚泥を濃縮汚泥と分離液とに固液分離する固液分離工程と、
固液分離工程で分離した濃縮汚泥の一部を好気性消化槽に返送し、残部を嫌気性消化槽に返送する返送工程と
を含む有機性汚泥の消化方法。
An aerobic digestion process in which organic sludge containing biological sludge is introduced into an aerobic digester equipped with a submerged membrane separation device, and aerobically biotreated;
An ozone treatment process for ozone treatment of aerobic digested sludge biologically treated in the aerobic digestion process;
An anaerobic digestion process for anaerobically digesting the ozone-treated sludge ozone-treated in the ozone treatment process in an anaerobic digestion tank;
A solid-liquid separation process for solid-liquid separation of the anaerobic digested sludge biologically treated in the anaerobic digestion process into concentrated sludge and separated liquid;
A method for digesting organic sludge comprising a returning step of returning a part of the concentrated sludge separated in the solid-liquid separation step to an aerobic digester and returning the remainder to the anaerobic digester.
JP2000157993A 2000-05-24 2000-05-24 Digestion method of organic sludge Expired - Fee Related JP3636035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000157993A JP3636035B2 (en) 2000-05-24 2000-05-24 Digestion method of organic sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000157993A JP3636035B2 (en) 2000-05-24 2000-05-24 Digestion method of organic sludge

Publications (2)

Publication Number Publication Date
JP2001327998A JP2001327998A (en) 2001-11-27
JP3636035B2 true JP3636035B2 (en) 2005-04-06

Family

ID=18662533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000157993A Expired - Fee Related JP3636035B2 (en) 2000-05-24 2000-05-24 Digestion method of organic sludge

Country Status (1)

Country Link
JP (1) JP3636035B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101367765B1 (en) * 2012-05-21 2014-02-27 서울과학기술대학교 산학협력단 Sludge treatment installation using hydrodynamic cavitation

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004216207A (en) * 2003-01-09 2004-08-05 Kuraray Co Ltd Wastewater treatment method
JP4501496B2 (en) * 2004-03-30 2010-07-14 栗田工業株式会社 Biological treatment method for organic wastewater
JP4665693B2 (en) * 2005-09-30 2011-04-06 栗田工業株式会社 Method and apparatus for treating organic waste
WO2009028481A1 (en) 2007-08-28 2009-03-05 Diamond Engineering Co., Ltd. Activated sludge material, reduction method of excess sludge amount in bioreactor, and maintenance method of bioreactor
KR100870425B1 (en) * 2008-04-11 2008-11-25 한밭대학교 산학협력단 The anaerobic combined process apparatus for treating organic wastes
CN105152506B (en) * 2014-02-26 2017-06-16 江苏理工学院 Organic sludge high-temperature micro-aerobic anaerobic digestion process
JP7379076B2 (en) * 2019-10-18 2023-11-14 ユニ・チャーム株式会社 Method for producing biogas using used sanitary products

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101367765B1 (en) * 2012-05-21 2014-02-27 서울과학기술대학교 산학협력단 Sludge treatment installation using hydrodynamic cavitation

Also Published As

Publication number Publication date
JP2001327998A (en) 2001-11-27

Similar Documents

Publication Publication Date Title
US7101482B2 (en) Method and facility for treatment of sludge derive from biological water purification facilities
US7713417B2 (en) Method for wastewater treatment with resource recovery and reduced residual solids generation
CA2807881C (en) Treatment of municipal wastewater with anaerobic digestion
US4824563A (en) Equipment for treating waste water
JP4632356B2 (en) Biological nitrogen removal method and system
WO2016117210A1 (en) Denitrification method and denitrification apparatus for nitrogen-containing waste water
JP3636035B2 (en) Digestion method of organic sludge
JP5873736B2 (en) Organic wastewater treatment method and treatment apparatus
JP2003033780A (en) Method for wastewater treatment
JP4006011B2 (en) Method and apparatus for treating organic waste
JP2007252968A (en) Method and apparatus for treating waste water
JP5801769B2 (en) Method and apparatus for anaerobic digestion treatment of organic wastewater
KR101023684B1 (en) Method for treating organic waste
JP3737288B2 (en) Wastewater treatment system
JP5194484B2 (en) Biological treatment apparatus and biological treatment method for water containing organic matter
JPH105789A (en) Treatment of methane fermentation treating liquid and treating facility
JP4200601B2 (en) Anaerobic digestion treatment method of organic sludge
JP3814855B2 (en) Anaerobic treatment method for organic drainage
JP2001025789A (en) Treatment of organic waste liquid and device therefor
WO2018021169A1 (en) Method and device for organic wastewater treatment
JP3198674B2 (en) Method and apparatus for treating wastewater containing organic nitrogen
JP4200600B2 (en) Anaerobic digestion treatment method of organic sludge
JP2006035094A (en) Method and apparatus for treating high concentration waste water
JPH09108672A (en) Parallel two-stage membrane separation type septic tank
CN220887191U (en) Water treatment device for removing organic matters and ammonia nitrogen

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees