JP3635999B2 - Magnetic shield noise barrier on train tracks - Google Patents

Magnetic shield noise barrier on train tracks Download PDF

Info

Publication number
JP3635999B2
JP3635999B2 JP26462299A JP26462299A JP3635999B2 JP 3635999 B2 JP3635999 B2 JP 3635999B2 JP 26462299 A JP26462299 A JP 26462299A JP 26462299 A JP26462299 A JP 26462299A JP 3635999 B2 JP3635999 B2 JP 3635999B2
Authority
JP
Japan
Prior art keywords
panel
soundproof wall
line
train
magnetic shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26462299A
Other languages
Japanese (ja)
Other versions
JP2001090031A (en
Inventor
英明 須藤
健 斉藤
伸樹 坂元
至武 沢内
史朗 草薙
達也 漆崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP26462299A priority Critical patent/JP3635999B2/en
Publication of JP2001090031A publication Critical patent/JP2001090031A/en
Application granted granted Critical
Publication of JP3635999B2 publication Critical patent/JP3635999B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Devices Affording Protection Of Roads Or Walls For Sound Insulation (AREA)

Description

【0001】
【産業上の利用分野】
本発明は電車線路の磁気シールド防音壁に関し、とくに電車線路の周囲に発生して電子ビーム利用機器等に影響するような磁界を抑制する装置に関する。
【0002】
【従来の技術】
図7及び図8を参照するに、電車線路1では、電源からの電流をトロリー線2及びき電線3経由で電車6のパンタグラフへ供給し、その電流を電車6の車輪からレール4、5を介して電源へ戻している。例えば大都市圏の直流電源方式の電車線路1では、これらトロリー線2、き電線3及びレール4、5(以下、これらを纏めて単に導線ということがある。)の各々に日中で約1,500〜2,000A、ラッシュ時には3,000〜4,000Aを超える大電流が流れる。このため電車線路1周囲の任意の点Pには、トロリー線2及びき電線3の往路電流による磁界の磁束密度Bf(ベクトル量)と、レール4、5上の復路電流による磁界の磁束密度Brとのベクトル和に相当する磁束密度B(B=Bf+Br)の磁界(以下、単に周囲磁界という。)が発生する。
【0003】
点Pが電車線路1から十分離れているときは、往路電流による磁界Bf及び復路電流による磁界Brは磁界の距離減衰特性により十分小さくなり、周囲磁界の磁束密度Bは実用上無視できるほど小さい。しかし、点Pが電車線路1に近いときは周囲磁界Bが無視できない値となり、点Pに例えばCRT等の電子ビーム利用機器8が存在すると、機器8内部の電子ビームがその周囲磁界Bによって不所望の偏向を受け、画像に歪や色ずれその他の乱れが生ずる等の磁気的干渉(以下、磁気障害という。)が経験されている。また、電車線路1の周囲に医療機関等がある場合は、MRI(Magnetic Resonance Imaging)、ペースメーカ等の医療機器の誤動作を招くおそれもある。
【0004】
従来、このような電車線路1の周囲磁界Bの磁気的干渉を抑制するため、電子ビーム利用機器8を磁気遮蔽材料で覆う方法が行なわれている。また本発明者は、き電線3の移設により電車線路1の周囲磁界Bを低減する給電線の周囲磁界抑制方法を開発し、特許第2974302号に開示した。
【0005】
図9を参照するに、上記特許の発明は、トロリー線2、き電線3及びレール4、5のような3本以上の平行導線を含む往復給電線の各導線電流を決定する手段30、往復給電線周囲の所定位置Pの磁束密度B(=Bf+Br)を低減する如く往復給電線中の一本の導線(例えば、き電線3)の位置を選択する手段31、任意配置の往復給電線上の被決定電流による磁束密度Bの分布を求める演算手段32、所定位置Pでの磁束密度Bの許容値を与える環境条件入力手段33、及び演算手段32で求めた所定位置Pの磁束密度Bが許容値以下であるか否か判定する手段34を備えてなるものである。判定手段34による判定が否の時に、選択手段31によるき電線3の位置の変更と演算手段32による磁束密度Bの分布の再演算と判定手段34による判定とを反復することにより、き電線3の位置を所定位置Pの磁束密度Bが許容値以下となる位置に決定する。
【0006】
【発明が解決しようとする課題】
しかし、従来の電子ビーム利用機器8を磁気遮蔽材料で覆う方法は、機器8の取扱が不便になり、機器8自体の商品的意匠が損われ、強い周囲磁界Bが存在する場合には大量の磁気遮蔽材料が必要となり重くなって移動に不便となる等の問題点がある。また前記き電線3の移設による周囲磁界抑制方法は、周囲磁界を抑制できるものの、更なる抑制が望まれる場合もある。限られた用地で電車線路1の複々線化、高架化や地下化等が進み電車線路1と家屋との距離が接近するにつれ、線路沿線における磁気障害に対する関心が高まり、電車線路1の周囲の磁束密度Bを低減できる磁気シールド技術の開発が望まれている。
【0007】
他方、従来から大都市圏の鉄道高架等では、地域生活環境に対する騒音対策として、高架橋の両外縁に沿って遮音壁又は吸音壁(以下、両者を纏めて防音壁という。)を設置することが多い。本発明者は、この防音壁に磁気シールド性能を付与すれば、電車線路1の磁気シールドが可能であることに注目した。ただし、磁気シールドの観点からはき電線、トロリー線等の架線をも囲うような高い壁が望ましいが、防音壁には線路沿線の日照の確保、耐風・地震対策、景観確保などの観点から高さの制約があり、従来の防音壁と同程度の高さを維持することが実用的である。
【0008】
そこで本発明の目的は、従来の防音壁と同程度の高さで線路沿線の磁束密度を低減できる電車線路の磁気シールド防音壁を提供するにある。
【0009】
【課題を解決するための手段】
図1及び図5の実施例を参照するに、本発明の電車線路の磁気シールド防音壁9は、往復給電線2、3、4、5を有する電車線路1から距離Dの外縁に沿って線路長さ方向に配置する高さTの防音パネル11、パネル11の全面に亘り設けた比透磁率μの強磁性体層18を備えてなり、距離Dと高さTと比透磁率μとの組み合わせにより往復給電線2、3、4、5の電流によるパネル10外側の所定位置の磁束密度B及びパネル 10 外側の電車騒音を低減してなるものである。
【0010】
好ましくは、図1に示すように、防音パネル11を強磁性体層18が全面に亘り設けられたプレキャストコンクリート製パネル板10の連結により形成し、隣接するパネル板10の強磁性体層18を相互に連結する結合部12を設ける。
【0011】
更に好ましくは、強磁性体層18をパーマロイ合金、けい素鋼板、アモルファス合金及び電磁軟鉄板からなる群から選択した1以上の材料製とする。強磁性体層18を単層又は複数層構造とし、強磁性体層18の厚さ及び/又は数と比透磁率μとパネル 11 の高さTと電車線路1からの距離Dとの組み合わせによりパネル10外側の所定位置の磁束密度Bを低減することができる。
【0012】
【発明の実施の形態】
図4は、電車線路1のトロリー線2、き電線3及びレール4、5を平行と仮定した上で、図9の演算手段32により求めた電車線路1周囲の磁束密度Bの分布図を示す。同図は、ラッシュ時間帯における各導線の直流電流の実測最大値(き電線電流値I3=2,440A、各レールの電流値I4、I5=2,300A、トロリー線電流値I2=2,300×2−2,440=2,160A)による電車線路1周囲の磁束密度分布図を表し、図中の数値は磁束密度Bの大きさ(単位μT)を示す。本発明者は、前記特許第2974302号に開示したように、電車線路1の各導線の幾何学的配置を選択し、各導線に流れる電流値を決定すれば、図9の演算手段32により線路周囲の磁束密度分布が高精度に予測・把握できることを実際の現場で確認した。
【0013】
図4の磁束密度Bの分布は、電車線路1の周囲が一様な空気である場合のビオ・サバールの法則(図9参照)に基づく演算結果であるが、周囲に磁性材料が存在する場合にも、図9の演算手段32に示すMaxwellの法則と有限要素法や境界要素法によって線路周囲の磁束密度分布を演算できる。
【0014】
図5は、電車線路1の線路長さ方向に沿って、比透磁率μの強磁性体層18が全面に亘り設けられた磁気シールド防音壁9を配置した場合に、図9の演算手段32で演算した線路周囲の磁束密度分布図を示す。同図から分かるように、線路長さ方向に沿って強磁性体層18を配置すると、線路1から発生する磁束が強磁性体層18に集中するので、線路周囲の磁束密度Bを一定程度低減できる。例えば図4及び5に示す家屋7の電子ビーム利用機器8の位置では、強磁性体層18がない図4の場合は磁束密度Bが約130μTであるのに対し、強磁性体層18を設けた図5の場合は磁束密度Bを約65μTと50%程度に低減できる。
【0015】
従って、図1に示すように、例えばコンクリート製の防音パネル11に全面に亘り強磁性体層18を設けた磁気シールド防音壁9を線路1の片側又は両側に線路長さ方向に沿って設ければ、防音壁9外側の電束密度の低減が図れる。これらコンクリート構造物は磁気をそのまま透過するが、強磁性体層18により磁束の周囲への広がりを一定程度遮断できるからである。
【0016】
図1は、強磁性体層18が全面に亘り設けられたプレキャストコンクリート製パネル板10の連結により防音パネル11を形成し、線路長さ方向に隣接するパネル板10、10の間に強磁性体層18と同等の磁気シールド性能が付与されたパネル支持柱15を結合部12として設けた磁気シールド防音壁9を示す。隣接するパネル板10の強磁性体層18をパネル支持柱15で相互に連結することにより、強磁性体層18の線路長さ方向の連続性を確保する。また上下方向に隣接するパネル板10、10の間に後述する凹凸嵌合部13、14(図2参照)による結合部12を設け、隣接するパネル板10の強磁性体層18を凹凸嵌合部で相互に連結することにより、強磁性体層18の上下長さ方向の連続性を確保する。
【0017】
但し防音壁9の構造は、全面に亘り強磁性体層18の連続性が確保できれば足り、図示例に限定されない。例えばパネル板10の線路長さ方向の突き合わせ部位に凹凸嵌合部13、14を設け、強磁性体層18の線路長さ方向の連続性を凹凸嵌合部により確保する構造としてもよい。また本発明はパネル板10による防音壁9に限定されず、電車線路1から距離Dの位置に高さTのコンクリート壁として、現場打ちすることも可能である。強磁性体層18の防錆対策として、防音壁9の表面に、塗装やコーティング処理により防錆層を適宜設けることが望ましい。
【0018】
磁気シールド防音壁9を設けた場合でも電車線路1の上方や下方からは線路周囲へ磁束が広がる。これに対し本発明者は、磁気シールド防音壁9の高さTと、強磁性体層18の材料(比透磁率μ)及び構造と、電車線路1から防音壁9までの距離Dとの選択により、防音壁9外側の磁束密度分布を調整できることを見出した。すなわち、防音壁9の高さT、強磁性体層18の材料・構造、線路1からの距離Dの組み合わせを適当に選択すれば、磁気シールド防音壁9の設置のみにより線路周囲の所定位置における磁束密度Bを低減することが可能である。
【0019】
図3の流れ図を参照して、本発明における防音壁9の高さT、強磁性体層18の材料及び構造、及び電車線路1からの距離Dの選択方法を説明する。先ずステップ301において、幾何学的配置が定められた電車線路1の各導線2、3、4、5に流れる電流値を、検討に必要な数だけ設定する。例えば設備建設前に、長時間継続して流れるベース負荷電流、短時間のみ流れるピーク電流、その中間電流等を決定する。または設備建設後に、各導線2、3、4、5に流れる電流値を測定して決定する。
【0020】
ステップ301と並行して、ステップ302において、防音壁9を設置する電車線路1沿線の磁気レベル(磁束密度)をどの程度まで低減する必要があるかを調査する。磁界の影響を受ける機器は種々あり、障害を与える磁界の強さは各機器の許容限度によって異なる。例えば医療機関等で使用されるMRIの設置環境基準値は3〜20×10-7T以下とされている(日本建築学会「環境磁場の計測技術」1998年7月15日、p19)。機器の種類と線路1に対する位置とに応じて、必要な磁束密度の低減レベルを定める。
【0021】
次にステップ303において、ステップ302で求めた低減レベルに応じて、強磁性体層18の材料・構造を選択する。例えば表1に示す各強磁性体材料を強磁性体層18として選択することができる。また、強磁性体層18の構造として、強磁性体層18を単層又は複数層構造として層の厚さ及び/又は数を選択することができる。磁気シールド効果は、適度の空間を設けながら強磁性体層18を多層にすると更に高くなることが報告されている(前掲「環境磁場の計測技術」、p11)。
【0022】
【表1】

Figure 0003635999
【0023】
更にステップ304において必要な低減レベルに応じて防音壁9の高さT、線路1から防音壁9までの距離Dを例えば図1のように選択し、ステップ305〜306において例えば図9に示す演算手段32により線路周囲の磁束密度Bの分布を演算する。演算結果は、例えば図5のように表される。図5のような磁束密度分布図に、例えば電子ビーム利用機器8の位置を書込めば、その機器8が置かれた環境の磁束密度Bを求め、磁束密度が低減できたか否かを判断できる。また図9に示すように、機器8が置かれた所定位置の磁束密度の許容値が与えられる場合は、その位置8における磁束密度Bと許容値とを比較することも可能である。
【0024】
ステップ301で設定した電流値ケースの全てについて上記ステップ305〜307を繰り返したのち、ステップ308〜309へ進み線路周囲の所定位置における磁束密度Bが低減できたか否かを判断する。所望の低減が得られない場合はステップ303へ戻り、例えば表1から他の強磁性体材料を選択し、強磁性体層18の厚さや積層数を変更し、又は防音壁9の高さTや線路1からの距離Dを変更する。
【0025】
その後、ステップ305〜307を繰り返すことにより、新たな選択に基づく磁束分布と所定位置における磁束密度を求めることができる。このサイクルを、所定位置における磁束密度が低減できるまで又は所望の許容値以下になるまで繰り返すことにより、線路周囲の磁束密度Bを確実に低減できる磁気シールド防音壁9の高さT、材質及び構造、線路1からの距離Dを定めることができる。
【0026】
電車線路1に設ける防音壁11の高さTには前述した制約があるが、本発明によれば、磁気シールド防音壁9の高さTを従来の防音壁と同程度の高さに維持しつつ、強磁性体層18の材質及び構造と線路1から防音壁9までの距離Dとを適当に組み合わせることにより、線路周囲の磁束密度を低減し又は許容値以下とすることができる。
【0027】
また図10に示すように、従来のプレキャストコンクリート製の防音壁11の設置位置は、音源Sから防音壁11頂端までの距離A、受音点Rから防音壁11頂端までの距離B及び音源Sから受音点Rまでの水平距離dから下記(1)式で定まる値δが大きくなるように選択される。本発明の磁気シールド防音壁9の高さT及び線路1からの距離Dを、下記(1)式のδの大きさを考慮して選択することにより、線路周囲の騒音障害と磁気障害の両者を同時に軽減できる最も適当な防音壁設置位置を定めることができる。
【0028】
【数1】
δ=A+B−d ……………………………………………………(1)
【0029】
こうして本発明の目的である「従来の防音壁と同程度の高さで線路沿線の磁束密度を低減できる電車線路の磁気シールド防音壁」が達成できる。
【0030】
以上、磁気シールド防音壁10のみによる線路沿線の磁束密度の低減について説明したが、例えば高架橋上の鉄道線路1では、図1に示すように、線路1の片側又は両側に磁気シールド防音壁9を設けると共に高架橋スラブ上面に強磁性体層28を敷設し、防音壁9の強磁性体層28と高架橋スラブ上面の強磁性体層28との連結により断面L字型又はU字型の強磁性体層を形成することが有効である。断面L字型又はU字型の強磁性体層によれば、線路下側からの磁束の広がりをも防止して線路周囲の磁束密度を更に低減できる。
【0031】
また、線路沿線の比較的高い位置の磁束密度を低減する場合は、本発明の磁気シールド防音壁9を設けるとともに、その低減対象位置近傍のき電線3を強磁性体製の管で被覆するか、又はき電線3の低減対象側に片側開放の管や樋状の板体を臨ませることも有効である。
【0032】
【実施例】
図2(A)及び(B)は、強磁性体層が全面に亘り設けられたプレキャストコンクリート製パネル板10の実施例の縦断面図を示す。同図(A)のパネル板10は、繊維補強コンクリート又は鉄筋コンクリート製板体11と強磁性体製板体19とのプレス整形により製造したものである。パネル板10の形状は、設置条件等に合わせて任意に選択可能であるが、例えば厚さ50mm、幅450〜500mm、長さ1,800〜2,000mm、重量は1枚あたり概ね40〜60kg程度とすることができる。また平板に加え、適度の湾曲を与えたカマボコ型あるいはヤツハシ(八ッ橋)型の形状とすることができる。
【0033】
図2(A)のパネル板10は、軽量化を図るために、コンクリート製板体11内に、板体11を線路長さ方向に貫通する空洞24を内部に設け、レンコン状の縦断面形状としている。また、コンクリートの骨材として普通骨材のほかに軽量骨材の使用、発泡材添加による多孔質コンクリート化、パネル板10製造時におけるポリスチレンフォームの埋め込み等により、パネル板10の更なる軽量化を図ることができる。パネル板10の軽量化により磁気シールド防音壁の施工の容易化が図れる。
【0034】
図2(A)は、一枚の強磁性体製板体19をプレス成形したパネル板10を示すが、前述した図3のステップ303の選択に応じて複数枚の強磁性体製板体19を組み込むことができる。更に、隣接する強磁性体板体19の間に石膏ボード層及び/又はゴムアスファルト層を設けることにより、パネル板10の更なる防音効果、可撓性、軽量化、磁気シールド性能の向上が期待できる。
【0035】
図2(B)は、長細い繊維状の強磁性体18を層状に詰めた型枠内へのセメントモルタル又はペーストの注入により造られたプレパックドコンクリート製のパネル板10を示す。例えば、細長い繊維状の強磁性体18の群を相互に接触する状態で板状に整形し、その空隙中へ軽量細骨材や発泡材を含むセメントモルタル又はペーストを注入して空隙を充填する、いわゆるプレパックドコンクリート製造の要領で同図のパネル板10を製造することができる。
【0036】
図2に示すパネル板10は、図1に示すように、電車線路1の線路長さ方向に沿って設けたパネル支柱15の間に立て込むことにより、磁気シールド防音壁9とすることができる。同図のパネル板10は一端及び他端に凹部13及び凸部14を有し、例えば凹部13及び凸部14をそれぞれ下側及び上側として積み重ねることにより、高い防音壁9とすることができる。
【0037】
パネル板10の凹部13及び凸部14にまで強磁性体層18を延在させることにより、凹凸嵌合部において隣接するパネル板10間の強磁性体層18の磁気的連続性を確保する。図1の例では上下2段のパネル板10で防音壁9を形成しているが、下側パネル板10の凸部14と上側パネル板10の凹部13とを嵌合させ、その嵌合部で上下パネル板10の強磁性体層18を連結することにより強磁性体層18の上下方向の磁気的連続性を確保している。また図1(C)に示すように、線路長さ方向に隣接するパネル板10を、パネル支持柱15内の強磁性体層18と同等の磁気シールド性能が付与された押えパネル16及びボルト17で相互に固定し、押えパネル16及びボルト17を介してパネル10の強磁性体層18の線路長さ方向の磁気的連続性を確保する。
【0038】
図1に示す防音壁9の施工作業は、従来の防音壁の施工作業と同様である。パネル板10は工場製作のコンクリート製品であり、施工後、特別な維持管理は不要である。好ましくは、パネル支柱15とパネル板10との接合部にゴム等の緩衝材を挟むなどして構造的に柔構造とすることにより、振動や温度収縮からの防音壁9の防護、防音壁9の耐震機能の向上を図ることができる。
【0039】
図6は、磁気シールド防音壁9のパネル板10に線路長さ方向の漏れ同軸ケーブルを取り付け、パネル支柱15等の結合部12により線路長さ方向に隣接するパネル板のケーブルを相互に連結する実施例を示す。漏れ同軸ケーブル(以下、LCX線という。)は、同軸ケーブルの外部導体に傾斜角をもったスロットを一定周期で配列したもので(電気学会「新版電気工学ハンドブック」昭和63年2月28日、p1416)、鉄道における移動体通信に用いられている。磁気シールド防音壁9にLCX線を取り付ければ、従来線路脇に布設されていたLCX線を省略できる。図中の符号27は、防音壁9にケーブルを取り付けるための部材を示す。
【0040】
また磁気シールド防音壁9をテレビやラジオの放送電波の受信状態改善手段として使用することにより、電車線路周辺の受信障害の解決に寄与することも考えられる。
【0041】
【発明の効果】
以上詳細に説明したように、本発明の電車線路の磁気シールド防音壁は、電車線路の線路長さ方向に沿って、全面に亘り強磁性体層が設けられた防音パネルを配置し、パネルの高さと強磁性体層の材料及び構造と電車線路からパネルまでの距離との選択により電車線路の電流によるパネル外側の磁束密度を低減するので、次の顕著な効果を奏する。
【0042】
(イ)電車線路沿線の騒音と磁界を同時に低減し、騒音障害、磁気障害の解決に寄与できる。
(ロ)従来の防音壁と同程度の高さを維持しつつ沿線の磁界を低減できるので、沿線の日照、景観等を損なわずに施工できる。
【0043】
(ハ)プレキャストコンクリート製の磁気シールド防音パネル板の利用により、従来の防音壁施工と同程度の作業で施工できる。
(ニ)線路下側にも強磁性体層を設けて断面L字型又はU字型の強磁性体層を形成することにより、沿線とくに高架橋構造における高架下の磁界を、更に効果的に低減することができる。
【0044】
(ホ)防音壁に漏れ同軸ケーブルを取り付けることにより、列車無線施設としての利用も可能である。
(ヘ)防音壁に放送電波の受信アンテナ及び伝送線を取り付けることにより、電車線路周辺の受信障害の解決に寄与するも期待できる。
【図面の簡単な説明】
【図1】は、本発明の磁気シールド防音壁の一実施例の説明図である。
【図2】は、本発明で用いるパネル板の説明図である。
【図3】は、本発明の防音壁設置作業の流れ図である。
【図4】は、本発明の防音壁設置前の磁界密度分布の試算結果の説明図である。
【図5】は、本発明の防音壁設置後の磁界密度分布の試算結果の説明図である。
【図6】は、本発明の磁気シールド防音壁の他の実施例の説明図である。
【図7】は、磁界密度分布の計算原理の図式的説明図である。
【図8】は、導線上の電流による磁界の図式的説明図である。
【図9】は、従来の給電線の周囲磁界抑制装置の説明図である。
【図10】は、従来の防音壁による減衰量算出の説明図である。
【符号の説明】
1…電車線路 2…トロリー線
3…き電線 4、5…レール
6…電車 7…家屋
8…電子ビーム利用機器 9…磁気シールド防音壁
10…磁気シールド防音パネル板
11…防音パネル 12…結合部
13…凹部 14…凸部
15…パネル支柱 16…押えプレート
17…ボルト 18…強磁性体層
19…強磁性体板 20…強磁性体の繊維
22…防錆層 24…空洞
26…漏れ同軸ケーブル 27…ケーブル取付部材
28…スラプ上面の強磁性体層
30…電流決定手段 31…選択手段
32…演算手段 33…環境条件設定手段
34…判定手段[0001]
[Industrial applications]
The present invention relates to a magnetic shield soundproof wall of a train line, and more particularly to an apparatus for suppressing a magnetic field generated around a train line and affecting an electron beam utilizing device or the like.
[0002]
[Prior art]
Referring to FIGS. 7 and 8, in the train line 1, the current from the power source is supplied to the pantograph of the train 6 via the trolley line 2 and the feeder 3, and the current is supplied from the wheels of the train 6 to the rails 4 and 5. To the power supply. For example, in a metropolitan area DC power train system 1, each of these trolley wire 2, feeder 3 and rails 4, 5 (hereinafter collectively referred to simply as a conductor) is approximately 1,500 in the daytime. A large current exceeding 2,000 A and 3,000 A to 4,000 A flows during rush hours. Therefore, at an arbitrary point P around the train line 1, the magnetic flux density Bf (vector quantity) of the magnetic field due to the forward current of the trolley wire 2 and feeder 3 and the magnetic flux density Br of the magnetic field due to the return current on the rails 4 and 5 A magnetic field having a magnetic flux density B (B = Bf + Br) corresponding to the vector sum of the above (hereinafter simply referred to as an ambient magnetic field) is generated.
[0003]
When the point P is sufficiently away from the train line 1, the magnetic field Bf due to the forward current and the magnetic field Br due to the return current are sufficiently small due to the distance attenuation characteristics of the magnetic field, and the magnetic flux density B of the surrounding magnetic field is small enough to be ignored in practice. However, when the point P is close to the train line 1, the ambient magnetic field B becomes a value that cannot be ignored. If an electron beam utilizing device 8 such as a CRT exists at the point P, the electron beam inside the device 8 is not affected by the ambient magnetic field B. Magnetic interference (hereinafter referred to as a magnetic failure) such as distortion, color misregistration, and other disturbances in the image due to the desired deflection has been experienced. Further, when there is a medical institution or the like around the train line 1, there is a risk of causing malfunction of medical equipment such as MRI (Magnetic Resonance Imaging) and pacemaker.
[0004]
Conventionally, in order to suppress the magnetic interference of the surrounding magnetic field B of the train line 1, a method of covering the electron beam utilization device 8 with a magnetic shielding material has been performed. The inventor has also developed a method for suppressing the surrounding magnetic field of the feeder line that reduces the surrounding magnetic field B of the train line 1 by moving the feeder 3, and disclosed in Japanese Patent No. 2974302.
[0005]
Referring to FIG. 9, the invention of the above-mentioned patent is a means 30 for determining each conductor current of a reciprocating feeder including three or more parallel conductors such as a trolley wire 2, a feeder 3 and rails 4 and 5; Means 31 for selecting the position of one conducting wire (for example, feeder 3) in the reciprocating power supply line so as to reduce the magnetic flux density B (= Bf + Br) at a predetermined position P around the power supply line; The calculation means 32 for obtaining the distribution of the magnetic flux density B by the determined current, the environmental condition input means 33 for giving the allowable value of the magnetic flux density B at the predetermined position P, and the magnetic flux density B at the predetermined position P calculated by the calculation means 32 are allowable. Means 34 for determining whether or not the value is equal to or less than the value is provided. When the judgment by the judging means 34 is negative, the feeder 3 is repeatedly operated by changing the position of the feeder 3 by the selecting means 31, recalculating the distribution of the magnetic flux density B by the computing means 32, and judging by the judging means 34. Is determined to be a position where the magnetic flux density B at the predetermined position P is equal to or less than an allowable value.
[0006]
[Problems to be solved by the invention]
However, the conventional method of covering the electron beam using device 8 with a magnetic shielding material makes the handling of the device 8 inconvenient, impairs the commercial design of the device 8 itself, and a large amount of magnetic field B exists when a strong ambient magnetic field B exists. There is a problem that a magnetic shielding material is required and becomes heavy and inconvenient to move. Moreover, although the surrounding magnetic field suppression method by moving the feeder 3 can suppress the surrounding magnetic field, further suppression may be desired. As the distance between the railway line 1 and the house increases as the number of the railway line 1 becomes double, elevated, underground, etc. at a limited site, interest in magnetic disturbance along the line increases, and the magnetic flux around the railway line 1 increases. Development of magnetic shield technology that can reduce the density B is desired.
[0007]
On the other hand, conventionally, in a railway overpass in a metropolitan area, as a noise countermeasure for a local living environment, a sound insulating wall or a sound absorbing wall (hereinafter collectively referred to as a sound insulating wall) is often installed along both outer edges of the viaduct. . The inventor of the present invention paid attention to the fact that the magnetic shielding of the train line 1 is possible if this soundproof wall is provided with a magnetic shielding performance. However, from the viewpoint of magnetic shielding, a high wall that surrounds overhead wires such as feeders and trolley wires is desirable, but the soundproof wall is high from the viewpoints of ensuring sunshine along the track, wind resistance / earthquake countermeasures, and securing the landscape. Therefore, it is practical to maintain the same height as the conventional soundproof wall.
[0008]
Accordingly, an object of the present invention is to provide a magnetic shield soundproof wall for a train track that can reduce the magnetic flux density along the track at the same height as a conventional soundproof wall.
[0009]
[Means for Solving the Problems]
Referring to the embodiment of FIGS. 1 and 5, the magnetic shield soundproof wall 9 of the train line according to the present invention is a track along the outer edge at a distance D from the train line 1 having the reciprocating feed lines 2, 3, 4, and 5. A soundproof panel 11 having a height T arranged in the length direction and a ferromagnetic layer 18 having a relative permeability μ provided over the entire surface of the panel 11 are provided, and a distance D, a height T, and a relative permeability μ are provided. In combination, the magnetic flux density B at a predetermined position outside the panel 10 and the train noise outside the panel 10 due to the currents of the reciprocating feed lines 2 , 3 , 4 , and 5 are reduced.
[0010]
Preferably, as shown in FIG. 1, the soundproof panel 11 is formed by connecting precast concrete panel plates 10 having a ferromagnetic layer 18 provided over the entire surface, and the ferromagnetic layers 18 of the adjacent panel plates 10 are formed. A coupling part 12 is provided for mutual connection.
[0011]
More preferably, the ferromagnetic layer 18 is made of one or more materials selected from the group consisting of a permalloy alloy, a silicon steel plate, an amorphous alloy, and an electromagnetic soft iron plate. Depending on the combination of the thickness and / or number of the ferromagnetic layers 18, the relative permeability μ, the height T of the panel 11 , and the distance D from the train line 1 , the ferromagnetic layer 18 has a single-layer or multiple-layer structure. The magnetic flux density B at a predetermined position outside the panel 10 can be reduced.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
4 shows a distribution diagram of the magnetic flux density B around the train line 1 obtained by the calculation means 32 of FIG. 9 on the assumption that the trolley wire 2, the feeder 3 and the rails 4 and 5 of the train line 1 are parallel. . The figure shows the measured maximum value of DC current of each conductor in the rush hour (wire current value I 3 = 2440 A, current values I 4 , I 5 = 2300 A of each rail, trolley wire current value I 2 = 2300 X2-2,440 = 2,160A) represents the magnetic flux density distribution around the train line 1, and the numerical values in the figure indicate the magnitude of magnetic flux density B (unit μT). As disclosed in the above-mentioned Japanese Patent No. 2974302, the present inventor selects the geometric arrangement of each conductor of the train line 1 and determines the value of the current flowing through each conductor. It was confirmed at the actual site that the surrounding magnetic flux density distribution can be predicted and grasped with high accuracy.
[0013]
The distribution of the magnetic flux density B in FIG. 4 is a calculation result based on Bio-Savart's law (see FIG. 9) when the periphery of the train line 1 is uniform air, but there is a magnetic material around it. In addition, the magnetic flux density distribution around the line can be calculated by Maxwell's law, the finite element method and the boundary element method shown in the calculation means 32 of FIG.
[0014]
FIG. 5 shows the calculation means 32 shown in FIG. 9 when the magnetic shielding soundproof wall 9 provided with the ferromagnetic layer 18 having a relative permeability μ is provided along the entire length of the train line 1. The magnetic flux density distribution figure around the track | line calculated by (2) is shown. As can be seen from the figure, when the ferromagnetic layer 18 is arranged along the line length direction, the magnetic flux generated from the line 1 is concentrated on the ferromagnetic layer 18, so that the magnetic flux density B around the line is reduced to some extent. it can. For example, at the position of the electron beam utilization device 8 of the house 7 shown in FIGS. 4 and 5, in the case of FIG. 4 without the ferromagnetic layer 18, the magnetic flux density B is about 130 μT, whereas the ferromagnetic layer 18 is provided. In the case of FIG. 5, the magnetic flux density B can be reduced to about 65 μT and about 50%.
[0015]
Therefore, as shown in FIG. 1, for example, a magnetic soundproof wall 9 provided with a ferromagnetic layer 18 over the entire surface of a soundproof panel 11 made of concrete is provided on one side or both sides of the line 1 along the length of the line. Thus, the electric flux density outside the soundproof wall 9 can be reduced. This is because these concrete structures transmit magnetism as they are, but the ferromagnetic layer 18 can block the spread of magnetic flux to a certain extent.
[0016]
In FIG. 1, a soundproof panel 11 is formed by connecting precast concrete panel plates 10 each having a ferromagnetic layer 18 provided over the entire surface, and a ferromagnetic material is provided between the panel plates 10 and 10 adjacent in the line length direction. The magnetic shielding soundproof wall 9 is shown in which a panel support column 15 provided with magnetic shielding performance equivalent to that of the layer 18 is provided as a coupling portion 12. By connecting the ferromagnetic layers 18 of the adjacent panel plates 10 to each other by the panel support pillars 15, the continuity in the line length direction of the ferromagnetic layers 18 is ensured. In addition, a coupling portion 12 is provided between the panel plates 10 and 10 adjacent in the vertical direction by the uneven fitting portions 13 and 14 (see FIG. 2) described later, and the ferromagnetic layer 18 of the adjacent panel plate 10 is unevenly fitted. By connecting the layers together, the continuity in the vertical direction of the ferromagnetic layer 18 is ensured.
[0017]
However, the structure of the soundproof wall 9 is not limited to the illustrated example, as long as the continuity of the ferromagnetic layer 18 can be ensured over the entire surface. For example, the concave / convex fitting portions 13 and 14 may be provided at the abutting portions of the panel plate 10 in the line length direction, and the continuity in the line length direction of the ferromagnetic layer 18 may be ensured by the concave / convex fitting portions. Further, the present invention is not limited to the soundproof wall 9 formed by the panel board 10, and can be hit in the field as a concrete wall having a height T at a distance D from the train track 1. As a rust preventive measure for the ferromagnetic layer 18, it is desirable to appropriately provide a rust preventive layer on the surface of the soundproof wall 9 by painting or coating treatment.
[0018]
Even when the magnetic shield soundproof wall 9 is provided, the magnetic flux spreads around the railroad track from above and below the train track 1. In contrast, the present inventor selects the height T of the magnetic shield soundproof wall 9, the material (relative magnetic permeability μ) and structure of the ferromagnetic layer 18, and the distance D from the train line 1 to the soundproof wall 9. Thus, it has been found that the magnetic flux density distribution outside the soundproof wall 9 can be adjusted. That is, if the combination of the height T of the sound barrier 9, the material / structure of the ferromagnetic layer 18, and the distance D from the line 1 is appropriately selected, the magnetic shield sound barrier 9 can be installed only at a predetermined position around the line. It is possible to reduce the magnetic flux density B.
[0019]
A method for selecting the height T of the sound barrier 9, the material and structure of the ferromagnetic layer 18, and the distance D from the train line 1 according to the present invention will be described with reference to the flowchart of FIG. First, in step 301, the number of currents flowing through the conductors 2, 3, 4, and 5 of the train line 1 having a determined geometric arrangement is set as many as necessary for the study. For example, before the construction of the equipment, the base load current that flows continuously for a long time, the peak current that flows only for a short time, the intermediate current thereof, and the like are determined. Alternatively, after the construction of the equipment, the current value flowing through each of the conducting wires 2, 3, 4, 5 is measured and determined.
[0020]
In parallel with step 301, in step 302, it is investigated to what extent it is necessary to reduce the magnetic level (magnetic flux density) along the train line 1 where the soundproof wall 9 is installed. There are various devices that are affected by a magnetic field, and the strength of the magnetic field that causes a failure varies depending on the allowable limit of each device. For example, the installation environment standard value of MRI used in medical institutions is 3 to 20 × 10 −7 T or less (Japanese Architectural Institute “Measurement technology of environmental magnetic field”, July 15, 1998, p19). The required magnetic flux density reduction level is determined according to the type of equipment and the position relative to the line 1.
[0021]
Next, in step 303, the material / structure of the ferromagnetic layer 18 is selected according to the reduction level obtained in step 302. For example, each ferromagnetic material shown in Table 1 can be selected as the ferromagnetic layer 18. Further, as the structure of the ferromagnetic layer 18, the thickness and / or the number of layers can be selected by making the ferromagnetic layer 18 a single layer or a plurality of layers. It has been reported that the magnetic shielding effect is further enhanced when the ferromagnetic material layer 18 is made multilayer while providing an appropriate space (the above-mentioned “Measurement technique of environmental magnetic field”, p11).
[0022]
[Table 1]
Figure 0003635999
[0023]
Further, in step 304, the height T of the soundproof wall 9 and the distance D from the line 1 to the soundproof wall 9 are selected as shown in FIG. 1, for example, as shown in FIG. The means 32 calculates the distribution of the magnetic flux density B around the line. The calculation result is expressed as shown in FIG. 5, for example. If the position of the electron beam utilization device 8 is written in the magnetic flux density distribution diagram as shown in FIG. 5, for example, the magnetic flux density B of the environment in which the device 8 is placed can be obtained to determine whether the magnetic flux density has been reduced. . Further, as shown in FIG. 9, when an allowable value of the magnetic flux density at a predetermined position where the device 8 is placed is given, it is possible to compare the magnetic flux density B at the position 8 with the allowable value.
[0024]
After repeating the above steps 305 to 307 for all the current value cases set in step 301, the process proceeds to steps 308 to 309 to determine whether or not the magnetic flux density B at a predetermined position around the line has been reduced. If the desired reduction cannot be obtained, the process returns to step 303, for example, selecting another ferromagnetic material from Table 1, changing the thickness of the ferromagnetic layer 18, the number of laminated layers, or the height T of the soundproof wall 9. And the distance D from the track 1 is changed.
[0025]
Thereafter, by repeating steps 305 to 307, the magnetic flux distribution based on the new selection and the magnetic flux density at a predetermined position can be obtained. By repeating this cycle until the magnetic flux density at a predetermined position can be reduced or falls below a desired allowable value, the magnetic shield soundproof wall 9 height T, material and structure can reliably reduce the magnetic flux density B around the line. The distance D from the line 1 can be determined.
[0026]
Although the height T of the sound barrier 11 provided on the train line 1 has the above-mentioned restrictions, according to the present invention, the height T of the magnetic shield sound barrier 9 is maintained at the same level as the conventional sound barrier. On the other hand, by appropriately combining the material and structure of the ferromagnetic layer 18 and the distance D from the line 1 to the soundproof wall 9, the magnetic flux density around the line can be reduced or reduced to an allowable value or less.
[0027]
As shown in FIG. 10, the installation position of the conventional soundproof wall 11 made of precast concrete is as follows: the distance A from the sound source S to the top edge of the soundproof wall 11; the distance B from the sound receiving point R to the top edge of the soundproof wall 11; The value δ determined by the following equation (1) is selected from the horizontal distance d from to the sound receiving point R. By selecting the height T of the magnetic shield soundproof wall 9 and the distance D from the line 1 in consideration of the magnitude of δ in the following equation (1), both noise disturbance and magnetic disturbance around the line are selected. It is possible to determine the most suitable soundproof wall installation position that can reduce the noise simultaneously.
[0028]
[Expression 1]
δ = A + B−d …………………………………………………… (1)
[0029]
Thus, the “magnetic shield sound barrier for train lines that can reduce the magnetic flux density along the line at the same height as the conventional sound barrier”, which is the object of the present invention, can be achieved.
[0030]
As described above, the reduction of the magnetic flux density along the line by only the magnetic shield sound barrier 10 has been described. For example, in the railway line 1 on the viaduct, as shown in FIG. 1, the magnetic shield sound barrier 9 is provided on one side or both sides of the line 1. And providing a ferromagnetic layer 28 on the upper surface of the viaduct slab and connecting the ferromagnetic layer 28 of the soundproof wall 9 and the ferromagnetic layer 28 on the upper surface of the viaduct slab to provide a L-shaped or U-shaped ferromagnetic material. It is effective to form a layer. According to the L-shaped or U-shaped ferromagnetic layer, the magnetic flux density around the line can be further reduced by preventing the spread of the magnetic flux from the lower side of the line.
[0031]
When reducing the magnetic flux density at a relatively high position along the line, the magnetic shield soundproof wall 9 of the present invention is provided, and the feeder 3 near the reduction target position is covered with a ferromagnetic pipe. Alternatively, it is also effective to have a pipe or a bowl-shaped plate open on one side facing the reduction target side of the feeder 3.
[0032]
【Example】
2A and 2B are longitudinal sectional views of an embodiment of the precast concrete panel plate 10 in which a ferromagnetic layer is provided over the entire surface. The panel plate 10 in FIG. 2A is manufactured by press shaping of a fiber reinforced concrete or reinforced concrete plate 11 and a ferromagnetic plate 19. The shape of the panel board 10 can be arbitrarily selected according to the installation conditions and the like. For example, the thickness is 50 mm, the width is 450 to 500 mm, the length is 1,800 to 2,000 mm, and the weight is approximately 40 to 60 kg per sheet. be able to. Further, in addition to a flat plate, it can be formed in a kamaboko type or a Yatsuhashi type with an appropriate curvature.
[0033]
In order to reduce the weight, the panel plate 10 in FIG. 2 (A) is provided with a cavity 24 penetrating the plate body 11 in the line length direction in the concrete plate body 11, and has a lotus-like longitudinal sectional shape. It is said. In addition, the use of lightweight aggregates in addition to ordinary aggregates as concrete aggregates, making porous concrete by adding foaming materials, and embedding polystyrene foam during the manufacture of panel boards 10 will further reduce the weight of panel boards 10. Can be planned. Construction of the magnetic shield soundproof wall can be facilitated by reducing the weight of the panel board 10.
[0034]
FIG. 2A shows a panel plate 10 obtained by press-molding a single ferromagnetic plate 19, and a plurality of ferromagnetic plates 19 depending on the selection of step 303 in FIG. 3 described above. Can be incorporated. Furthermore, by providing a gypsum board layer and / or rubber asphalt layer between adjacent ferromagnetic plates 19, further soundproofing effect, flexibility, weight reduction, and improvement of magnetic shielding performance of the panel plate 10 are expected. it can.
[0035]
FIG. 2 (B) shows a panel board 10 made of pre-packed concrete made by injecting cement mortar or paste into a formwork in which long and thin fibrous ferromagnets 18 are packed in layers. For example, a group of elongated fibrous ferromagnets 18 is shaped into a plate shape in contact with each other, and a cement mortar or paste containing a lightweight fine aggregate or foam is injected into the gap to fill the gap. The panel board 10 shown in the figure can be manufactured in the manner of manufacturing so-called prepacked concrete.
[0036]
As shown in FIG. 1, the panel board 10 shown in FIG. 2 can be used as the magnetic shield soundproof wall 9 by standing between the panel columns 15 provided along the length of the train line 1. . The panel plate 10 shown in the figure has a concave portion 13 and a convex portion 14 at one end and the other end. For example, by stacking the concave portion 13 and the convex portion 14 as a lower side and an upper side, respectively, a high soundproof wall 9 can be obtained.
[0037]
By extending the ferromagnetic layer 18 to the concave portion 13 and the convex portion 14 of the panel plate 10, the magnetic continuity of the ferromagnetic layer 18 between the adjacent panel plates 10 is ensured in the concave-convex fitting portion. In the example of FIG. 1, the sound barrier 9 is formed by the upper and lower panel plates 10, but the convex portion 14 of the lower panel plate 10 and the concave portion 13 of the upper panel plate 10 are fitted, and the fitting portion By connecting the ferromagnetic layers 18 of the upper and lower panel plates 10, the magnetic continuity in the vertical direction of the ferromagnetic layers 18 is ensured. Also, as shown in FIG. 1C, the panel plate 10 adjacent in the line length direction is provided with a press panel 16 and a bolt 17 to which a magnetic shielding performance equivalent to that of the ferromagnetic layer 18 in the panel support column 15 is given. To secure the magnetic continuity in the line length direction of the ferromagnetic layer 18 of the panel 10 via the presser panel 16 and the bolt 17.
[0038]
The construction work of the soundproof wall 9 shown in FIG. 1 is the same as the construction work of the conventional soundproof wall. The panel board 10 is a concrete product manufactured at the factory and does not require any special maintenance after construction. Preferably, the soundproof wall 9 is protected from vibration and temperature shrinkage by providing a soft structure by sandwiching a cushioning material such as rubber between the joints of the panel support 15 and the panel plate 10. It is possible to improve the seismic function.
[0039]
In FIG. 6, a leaky coaxial cable in the line length direction is attached to the panel plate 10 of the magnetic shield soundproof wall 9, and the cables of the panel plates adjacent to each other in the line length direction are connected to each other by the coupling portion 12 such as the panel column 15 or the like. An example is shown. Leaky coaxial cable (hereinafter referred to as LCX line) is a series of coaxial cable outer conductors with inclined slots arranged at regular intervals (The Institute of Electrical Engineers of Japan, "New Edition Electrical Engineering Handbook" February 28, 1988, p1416), used for mobile communications in railways. If an LCX line is attached to the magnetic shield soundproof wall 9, the LCX line that has been laid on the side of the track can be omitted. Reference numeral 27 in the figure denotes a member for attaching a cable to the soundproof wall 9.
[0040]
It is also conceivable that the magnetic shield sound barrier 9 can be used as a means for improving the reception state of broadcast waves of televisions and radios, thereby contributing to the solution of reception obstacles around the train track.
[0041]
【The invention's effect】
As described in detail above, the magnetic shield soundproof wall of the train line of the present invention is arranged with a soundproof panel provided with a ferromagnetic layer over the entire surface along the length direction of the train line. By selecting the height, the material and structure of the ferromagnetic layer, and the distance from the train track to the panel, the magnetic flux density outside the panel due to the current on the train track is reduced.
[0042]
(B) Simultaneously reducing noise and magnetic fields along train lines, contributing to solving noise and magnetic disturbances.
(B) Since the magnetic field along the railway line can be reduced while maintaining the same height as a conventional soundproof wall, construction can be performed without damaging the sunlight along the railway line, the scenery, and the like.
[0043]
(C) By using a magnetic shield soundproof panel made of precast concrete, it can be constructed in the same degree of work as conventional soundproof wall construction.
(D) By providing a ferromagnetic layer under the line to form a ferromagnetic layer with an L-shaped or U-shaped cross section, the magnetic field along the railway line, especially under the elevated bridge, can be reduced more effectively. can do.
[0044]
(E) By installing a leaky coaxial cable on the sound barrier, it can also be used as a train radio facility.
(F) It can be expected that a reception antenna for broadcast radio waves and a transmission line are attached to the soundproof wall, which contributes to the solution of reception obstacles around the train line.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an embodiment of a magnetic shield soundproof wall according to the present invention.
FIG. 2 is an explanatory diagram of a panel plate used in the present invention.
FIG. 3 is a flowchart of the soundproof wall installation work of the present invention.
FIG. 4 is an explanatory diagram of a trial calculation result of a magnetic field density distribution before installation of the soundproof wall according to the present invention.
FIG. 5 is an explanatory diagram of a trial calculation result of a magnetic field density distribution after installation of the soundproof wall according to the present invention.
FIG. 6 is an explanatory view of another embodiment of the magnetic shield soundproof wall of the present invention.
FIG. 7 is a schematic explanatory diagram of a calculation principle of a magnetic field density distribution.
FIG. 8 is a schematic explanatory view of a magnetic field caused by a current on a conducting wire.
FIG. 9 is an explanatory diagram of a surrounding magnetic field suppression device for a conventional feeder line.
FIG. 10 is an explanatory diagram of attenuation calculation by a conventional soundproof wall.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Train track 2 ... Trolley wire 3 ... Feed wire 4, 5 ... Rail 6 ... Train 7 ... House 8 ... Electron beam utilization equipment 9 ... Magnetic shield soundproof wall
10 ... Magnetic shield soundproof panel
11 ... Soundproof panel 12 ... Joint
13 ... concave 14 ... convex
15 ... Panel support 16 ... Presser plate
17 ... Bolt 18 ... Ferromagnetic layer
19 ... ferromagnetic plate 20 ... ferromagnetic fiber
22… Rust prevention layer 24… Cavity
26… Leakage coaxial cable 27… Cable mounting member
28 ... Ferromagnetic layer on top of slap
30 ... Current determination means 31 ... Selection means
32 ... Calculation means 33 ... Environmental condition setting means
34 ... Judgment means

Claims (13)

往復給電線を有する電車線路から距離Dの外縁に沿って線路長さ方向に配置する高さTの防音パネル、前記パネル全面に亘り設けた比透磁率μの強磁性体層を備えてなり、前記距離Dと高さ比透磁率μとの組み合わせにより前記給電線の電流によるパネル外側の所定位置の磁束密度及びパネル外側の電車騒音を低減してなる電車線路の磁気シールド防音壁。 A soundproof panel having a height T arranged in the length direction of the line along the outer edge of the distance D from the train line having the reciprocating power supply line, and a ferromagnetic layer having a relative permeability μ provided over the entire panel. A magnetic shield soundproof wall of a train line that reduces the magnetic flux density at a predetermined position outside the panel and the train noise outside the panel due to the current of the feeder line by a combination of the distance D, the height T, and the relative permeability μ. . 請求項1の防音壁において、前記強磁性体層をパーマロイ合金、けい素鋼板、アモルファス合金及び電磁軟鉄板からなる群から選択した1以上の材料製としてなる電車線路の磁気シールド防音壁。2. A noise barrier for a train line according to claim 1, wherein the ferromagnetic layer is made of one or more materials selected from the group consisting of a permalloy alloy, a silicon steel plate, an amorphous alloy, and an electromagnetic soft iron plate. 請求項1又は2の防音壁において、前記強磁性体層を単層又は複数層構造とし、前記層の厚さ及び/又は数と比透磁率μと前記パネルの高さTと電車線路からの距離Dとの組み合わせにより前記パネル外側の所定位置の磁束密度を低減してなる電車線路の磁気シールド防音壁。According to claim 1 or 2 soundproof walls, wherein the ferromagnetic layer is a single layer or a multilayer structure, the thickness of the layer and / or the number and the relative permeability μ of the height T and the railroad track of the panel A magnetic shield soundproof wall for a train track in which a magnetic flux density at a predetermined position outside the panel is reduced in combination with the distance D. 請求項1から3の何れかの防音壁において、前記パネルを前記強磁性体層が全面に亘り設けられたプレキャストコンクリート製パネル板の連結により形成し、隣接する前記パネル板の強磁性体層を相互に連結する結合部を設けてなる電車線路の磁気シールド防音壁。The soundproof wall according to any one of claims 1 to 3, wherein the panel is formed by connecting precast concrete panel plates provided with the ferromagnetic layer over the entire surface, and the ferromagnetic layers of the adjacent panel plates are formed. A magnetic shield soundproof wall for a train track, which is provided with a connecting portion that connects to each other. 請求項4の防音壁において、前記結合部を、前記各パネル板の隣接パネル板との突き合わせ部位に設けた凹凸嵌合部としてなる電車線路の磁気シールド防音壁。5. The magnetic shield noise barrier for a train line according to claim 4, wherein the coupling portion is a concave-convex fitting portion provided at a portion where each panel plate is abutted with an adjacent panel plate. 請求項4の防音壁において、前記結合部を、前記強磁性体層と同等の磁気シールド性能を有するパネル支持柱としてなる電車線路の磁気シールド防音壁。5. The soundproof wall according to claim 4, wherein the coupling portion is a panel support column having a magnetic shield performance equivalent to that of the ferromagnetic layer. 請求項4から6の何れかの防音壁において、前記パネル板を、繊維補強コンクリート又は鉄筋コンクリート製板体と前記強磁性体製板体とのプレス整形板としてなる電車線路の磁気シールド防音壁。7. The soundproof wall according to claim 4, wherein the panel plate is a press-shaped plate made of a fiber reinforced concrete or reinforced concrete plate and the ferromagnetic plate. 請求項7の防音壁において、前記コンクリート製板体に、当該コンクリート板を前記線路長さ方向に貫通する空洞を設けてなる電車線路の磁気シールド防音壁。8. The soundproof wall according to claim 7, wherein the concrete plate is provided with a cavity penetrating the concrete plate in the length direction of the track. 請求項4から6の何れかの防音壁において、前記パネル板を、長細い繊維状の前記強磁性体を層状に詰めた型枠内へのセメントモルタル又はペーストの注入により造られたプレパックドコンクリート板としてなる電車線路の磁気シールド防音壁。The soundproof wall according to any one of claims 4 to 6, wherein the panel plate is made by injecting cement mortar or paste into a mold in which the long and thin fibrous bodies are packed in layers. Magnetic shield soundproof wall of train track as a board. 請求項4から9の何れかの防音壁において、前記パネル板に複数層の強磁性体層を設け且つ前記強磁性体層の間に石膏ボード層及び/又はゴムアスファルト層を設けてなる電車線路の磁気シールド防音壁。10. A soundproof wall according to claim 4, wherein a plurality of ferromagnetic layers are provided on the panel plate, and a gypsum board layer and / or a rubber asphalt layer are provided between the ferromagnetic layers. Magnetic shield noise barrier. 請求項4から10の何れかの防音壁において、前記パネル板にポリスチレンフォームを埋め込んでなる電車線路の磁気シールド防音壁。11. The soundproof wall according to claim 4, wherein a polystyrene foam is embedded in the panel board. 請求項4から11の何れかの防音壁において、前記パネル板に前記線路長さ方向の漏れ同軸ケーブルを取り付け且つ前記結合部により前記線路長さ方向に隣接する前記パネル板のケーブルを相互に連結してなる電車線路の磁気シールド防音壁。The soundproof wall according to any one of claims 4 to 11, wherein a leaky coaxial cable in the line length direction is attached to the panel board, and the cables of the panel boards adjacent in the line length direction are connected to each other by the coupling portion. Magnetic shield sound barrier for train tracks. 請求項1から12の何れかの防音壁において、前記パネルの高さTと電車線路からの距離Dと強磁性体層の比透磁率μとを選択しながら前記給電線の電流によるパネル外側の磁束密度分布の演算を繰り返し且つ前記パネル外側の所定位置の磁束密度が許容値以下となるように前記高さTと距離Dと比透磁率μとを決定してなる電車線路の磁気シールド防音壁。The soundproof wall according to any one of claims 1 to 12, wherein the height T of the panel, the distance D from the train line, and the relative permeability μ of the ferromagnetic layer are selected and the outside of the panel by the current of the feeder line is selected. Magnetic shield soundproof wall of train line, wherein calculation of magnetic flux density distribution is repeated and the height T, distance D, and relative permeability μ are determined so that the magnetic flux density at a predetermined position outside the panel is below an allowable value. .
JP26462299A 1999-09-17 1999-09-17 Magnetic shield noise barrier on train tracks Expired - Lifetime JP3635999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26462299A JP3635999B2 (en) 1999-09-17 1999-09-17 Magnetic shield noise barrier on train tracks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26462299A JP3635999B2 (en) 1999-09-17 1999-09-17 Magnetic shield noise barrier on train tracks

Publications (2)

Publication Number Publication Date
JP2001090031A JP2001090031A (en) 2001-04-03
JP3635999B2 true JP3635999B2 (en) 2005-04-06

Family

ID=17405904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26462299A Expired - Lifetime JP3635999B2 (en) 1999-09-17 1999-09-17 Magnetic shield noise barrier on train tracks

Country Status (1)

Country Link
JP (1) JP3635999B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4787635B2 (en) * 2006-03-10 2011-10-05 東急建設株式会社 Magnetic shield structure
WO2007122788A1 (en) * 2006-03-24 2007-11-01 Kabushiki Kaisha Toshiba Power receiving device, electronic apparatus using same and non-contact charger
JP5231993B2 (en) 2006-03-24 2013-07-10 株式会社東芝 Power receiving device for non-contact charger
JP2011116247A (en) * 2009-12-03 2011-06-16 Railway Technical Research Institute Dc electric vehicle, and magnetic shielding method for dc electric vehicle
CN106515461B (en) * 2016-12-29 2023-09-22 中铁二院工程集团有限责任公司 Magnetic levitation train collector shoe and magnetic levitation train electromagnetic shielding method

Also Published As

Publication number Publication date
JP2001090031A (en) 2001-04-03

Similar Documents

Publication Publication Date Title
US9745703B2 (en) Pavement slab assembly and method of building a pavement slab assembly
JP2009046821A (en) Concrete structure for railroad and its reinforcing structure
TW201231321A (en) Transferring electric energy to a vehicle by induction
JP3635999B2 (en) Magnetic shield noise barrier on train tracks
US5593744A (en) Hollow reinforcing members and composites containing the same
KR101817142B1 (en) U-type girder of lower route bridge for decreasing noise, and construction method for the same
KR100284894B1 (en) Ondol floor structure using lightweight insulation panel
CN202324234U (en) Sound-insulated vibration-isolated floating structure
JP3705720B2 (en) Magnetic shield type railway viaduct
CN102936873A (en) Contact net line protection system for continuous beam construction of overpass electrified railway
CN101314985B (en) Ground shielding structure for shielding door sill area of factory building and construction method thereof
KR100724788B1 (en) A duplex floor for electric room
JP2003208929A (en) Earthing system of building
CN206570991U (en) The U-shaped noise reduction fire rated wall structure of main transformer
CN211296885U (en) Wireless communication facility installation system on cross-water-area railway bridge
CA1107945A (en) Method of constructing an electrical radiant heating system
US20240164074A1 (en) Emp protection for structures having coal combustion residual components
CN208571475U (en) A kind of bracket of temporary cable laying
CN104746846A (en) Shielding ground of extra-high-voltage electrical equipment testing hall and construction method thereof
JP4948143B2 (en) Magnetic shield structure
JP4787635B2 (en) Magnetic shield structure
CN109698483A (en) A kind of rail traffic comprehensive optical cable gantry and the method using gantry progress line arrangement
CN110439027A (en) It is a kind of to control the structure and its construction method that subway circulation vibrates and noise influences upper cover property
JP3711729B2 (en) Ground plane and open site
JPH1161704A (en) Magnetic shielding system of elevated railway

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041227

R150 Certificate of patent or registration of utility model

Ref document number: 3635999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term