JP3634683B2 - Electric motor control device - Google Patents

Electric motor control device Download PDF

Info

Publication number
JP3634683B2
JP3634683B2 JP23127399A JP23127399A JP3634683B2 JP 3634683 B2 JP3634683 B2 JP 3634683B2 JP 23127399 A JP23127399 A JP 23127399A JP 23127399 A JP23127399 A JP 23127399A JP 3634683 B2 JP3634683 B2 JP 3634683B2
Authority
JP
Japan
Prior art keywords
constant
output
motor
temperature
identifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23127399A
Other languages
Japanese (ja)
Other versions
JP2001057797A (en
Inventor
洋一 大森
俊人 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP23127399A priority Critical patent/JP3634683B2/en
Publication of JP2001057797A publication Critical patent/JP2001057797A/en
Application granted granted Critical
Publication of JP3634683B2 publication Critical patent/JP3634683B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電動機の出力トルクを高精度に制御する制御装置において、トルク制御に用いる電動機の電気的定数のうち電動機の温度によって変動する電気的定数を同定または推定する技術に関するものである。
【0002】
【従来の技術】
誘導電動機のトルク制御の場合を、従来技術の1例として説明する。
誘導電動機の二次抵抗値を用いてトルクを制御する方法においては、二次抵抗値は誘導電動機の回転子の温度に依存して変化するため、回転子の温度が変化すると、制御に用いる二次抵抗値と実際の二次抵抗値が異なるようになり、該誘導電動機の出力トルクが所望のトルクに制御できなくなる問題が生じる。
【0003】
その問題を解決するために、第1の解決策として図2に示すように二次抵抗値を同定する技術が開発されている。図2について以下に説明する。
第1瞬時無効電力演算器81は、誘導電動機の入力電圧vと入力電流iより誘導電動機の瞬時無効電力Q1を計算する。第2瞬時無効電力演算器82は、誘導電動機の入力電流iと回転速度Nと同定された二次抵抗値R2とを用いて誘導電動機の瞬時無効電力Q2を演算する。これら2つの瞬時無効電力Q1とQ2は同一であるため、一致するはずであるが、同定された二次抵抗値R2が実際値と異なればQ1とQ2は異なる値となる。よってR2調整器83によりQ1とQ2が一致するように二次抵抗値R2を修正する。こうしてR2調整器83の出力の二次抵抗値R2は実際の二次抵抗値と同じ値となる。
【0004】
また第2の解決策として、誘導電動機に温度検出器を装備して、その温度検出器の出力に応じて二次抵抗値を推定する方法がある。
【0005】
【発明が解決しようとする課題】
従来の方法で説明した第1の解決策は、瞬時無効電力を用いて二次抵抗値を同定しているが、瞬時無効電力は誘導電動機に印加される電圧の周波数に比例して小さな値となる。従って、周波数が低い領域では瞬時無効電力の値が小さくなって、二次抵抗値の同定が正確にできなくなる恐れがあった。
【0006】
また、従来の方法で説明した第2の解決策では、温度検出器を用いているが、温度検出器を二次抵抗の近くである回転子につけた場合には、二次抵抗の温度を正確に検出可能であるが、回転子は回転しているため検出された温度情報を制御装置に入力することが困難であり、スリップリング等が必要となる。一方、温度検出器を固定子に付けた場合には、前記スリップリング等は必要無いが、回転子と固定子間には大きな温度差が存在するために、検出された固定子の温度から回転子の温度を推定することが必要となり、その推定を誤ると正確な二次抵抗推定ができなくなる恐れがあった。
【0007】
【課題を解決するための手段】
上記課題を解決するために本発明では、
電力変換器より電力が供給される電動機の出力トルクを、トルク指令値に追従するように前記電力変換器を制御するトルク制御器をもつ電動機の制御装置において、前記電動機の速度及び温度をそれぞれ検出する検出器を具備し、前記トルク制御器で用いる電動機の電気的定数を、少なくとも前記電動機の入力電流及び電動機速度とを用いて演算で推定する定数同定器と、前記温度検出器の出力と変換係数とを用いて、前記定数同定器と同じ電気的定数を推定する温度による定数推定器と、電動機に印加される電圧の周波数または電動機の回転速度が所定の値より大きい場合には高速モード信号を、小さい場合には低速モード信号を出力するモード判定器と、このモード判定器の出力が高速モード信号の場合には、前記定数同定器の出力を選択し、低速モード信号の場合には、前記温度による定数推定器の出力を選択して前記トルク制御器に出力する選択器をもち、かつ、前記モード判定器出力と、定数同定器出力と、定数推定器出力とにより、定数同定器出力と定数推定器出力とを一致させる変換係数を、前記定数推定器へ出力する変換係数調整器とで構成する。
【0008】
また前記電動機が誘導電動機であって、前記定数同定器や前記温度による定数推定器で推定される電気的定数を前記誘導電動機の二次抵抗値とし、前記定数同定器によって、前記誘導電動機の入力電流と入力電圧とから求めた瞬時無効電力と、前記誘導電動機の入力電流と回転速度及び前記定数同定器出力の推定された二次抵抗値とを用いて求められた瞬時無効電力とが一致するように前記定数同定器出力の二次抵抗値を修正することで前記二次抵抗値を求める。
【0009】
また前記電動機が永久磁石形同期電動機であって、前記定数同定器や前記温度による定数推定器で推定される電気的定数を前記永久磁石形同期電動機の永久磁石の磁束量とする。
【0010】
【発明の実施の形態】
図1に本発明の1実施例を表すブロック線図を示し、図1に基づいて本発明の実施例を説明する。
電力変換器1は、トルク制御器7の出力の制御信号に基づいて電動機2に電力を供給する。トルク制御器7は電動機2の出力トルクが所定の値となるように電力変換器1を制御する制御信号Sを出力する。ここでトルク制御器7は電動機2の電気的定数Cを用いて前記制御信号Sを求める。定数同定器8は、電流検出器3の出力である電動機2の入力電流iと、電圧検出器4の出力である電動機2の入力電圧v及び速度検出器6の出力である電動機2の回転速度Nをそれぞれ入力して、前記電動機2の電気的定数を実際値と同じとなるように同定してC1として出力する。温度による定数推定器9は、温度検出器5の出力である電動機2の固定子の温度θと変換係数調整器の出力である変換係数Kとを入力とし、前記電動機2の電気的定数を推定してC2として出力する。モード判定器11は、速度検出器6の出力である電動機2の回転速度Nが所定の値より大きい場合には出力信号Mを高速モードとし、前記所定の値より小さい場合は出力信号Mを低速モードとする。選択器12は、モード判定器の出力Mが高速モードの場合はC1を選択し、Mが低速モードの場合はC2を選択してトルク制御器7に電気的定数Cとして出力する。変換係数調整器10は、モード判定器の出力Mが高速モードの場合に、C1とC2が一致するように温度による定数推定器9で用いる変換係数Kを調整する。
【0011】
電動機2が誘導電動機であり、電気的定数が誘導電動機の二次抵抗値の場合において、定数同定器8は、従来技術の第1の解決策と同様に図2で示された内容となり、図2のR2が定数同定器8の出力のC1となる。また温度による定数推定器9は従来技術の第2の解決策と同じであり、例えば
C2={234.5+K・(θ―θ0)+θ0}/(234.5+θ0)・R20
で二次抵抗値C2を推定できる。ここでθ0は規定温度であり、R20は回転子が規定温度θ0の時の二次抵抗値である。固定子と回転子の温度が同じであればこの式でK=1とすればC2は正確に二次抵抗値を表す。一般に回転子の温度のほうが固定子の温度より高いのでK>1とすることでK・(θ―θ0)の項で回転子の温度上昇を推定して二次抵抗値を推定できる。モード判定器11と選択器12により低速度では定数同定器8の出力を用いないので、従来技術の第1の解決策における問題点を回避できる。また変換係数調整器10により変換係数Kの値を的確に調整できるので、低速度で温度による定数推定器9を選択された場合における従来技術の第2の解決策における問題点は発生しない。
【0012】
電動機2が永久磁石形同期電動機の場合は、電動機の電気的定数Cは永久磁石同期電動機の永久磁石の磁束量φとなる。この場合定数同定器8では、
C1=(G1・Vq−N・G2・id+G3・iq)/N
で前記永久磁石の磁束量を求める。ここでG1、G2、G3は前記永久磁石形同期電動機に関する定数であり、Vq、iqはそれぞれ永久磁石と直交する方向の電圧成分と電流成分であり、idは永久磁石と平行な方向の電流成分である。またこの場合の温度による定数推定器9は
C2={1―K・(θ―θ0)}・φ0
により前記永久磁石の磁束量を推定する。ここでφ0は規定温度での前記永久磁石の磁束量である。
なお電圧検出器4は、直接電動機2の入力端子より電圧を検出する代わりに、電力変換器1の制御信号Sより電動機2の入力電圧を推定してもよい。
【0013】
【発明の効果】
定数同定器の出力と温度による定数推定器の出力を速度や周波数に応じて切り替えることにより、定数同定器の問題点を回避することができる。また定数同定器の出力によって温度による定数推定器に用いる変換係数を調整することにより、温度による定数推定器における問題点を抑制できる。よって本発明により、全速度範囲において電動機の電気的定数を正確に推定でき、高精度がトルク制御が可能となり実用上大いに有用である。
【図面の簡単な説明】
【図1】本発明の1実施例を表すブロック線図である。
【図2】電動機が誘導電動機の場合における定数同定器の1例を表した説明図である。
【符号の説明】
1・・・電力変換器
2・・・電動機
3・・・電流検出器
4・・・電圧検出器
5・・・温度検出器
6・・・速度検出器
7・・・トルク制御器
8・・・定数同定器
9・・・温度による定数推定器
10・・・変換係数調整器
11・・・モード判定器
12・・・選択器
81・・・第1瞬時無効電力演算器
82・・・第2瞬時無効電力演算器
83・・・R2調整器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for identifying or estimating an electric constant that varies depending on the temperature of an electric motor among electric constants of the electric motor used for torque control in a control device that controls the output torque of the electric motor with high accuracy.
[0002]
[Prior art]
The case of torque control of an induction motor will be described as an example of the prior art.
In the method of controlling the torque using the secondary resistance value of the induction motor, the secondary resistance value changes depending on the temperature of the rotor of the induction motor. The secondary resistance value becomes different from the actual secondary resistance value, which causes a problem that the output torque of the induction motor cannot be controlled to a desired torque.
[0003]
In order to solve the problem, as a first solution, a technique for identifying a secondary resistance value as shown in FIG. 2 has been developed. FIG. 2 is described below.
The first instantaneous reactive power calculator 81 calculates the instantaneous reactive power Q1 of the induction motor from the input voltage v and the input current i of the induction motor. The second instantaneous reactive power calculator 82 calculates the instantaneous reactive power Q2 of the induction motor using the input current i of the induction motor, the rotational speed N, and the identified secondary resistance value R2. Since these two instantaneous reactive powers Q1 and Q2 are the same, they should match, but if the identified secondary resistance value R2 is different from the actual value, Q1 and Q2 have different values. Therefore, the secondary resistance value R2 is corrected by the R2 regulator 83 so that Q1 and Q2 coincide. Thus, the secondary resistance value R2 of the output of the R2 regulator 83 becomes the same value as the actual secondary resistance value.
[0004]
As a second solution, there is a method in which the induction motor is equipped with a temperature detector and the secondary resistance value is estimated according to the output of the temperature detector.
[0005]
[Problems to be solved by the invention]
The first solution described in the conventional method uses the instantaneous reactive power to identify the secondary resistance value. However, the instantaneous reactive power has a small value proportional to the frequency of the voltage applied to the induction motor. Become. Therefore, in the region where the frequency is low, the instantaneous reactive power value becomes small, and there is a possibility that the secondary resistance value cannot be accurately identified.
[0006]
In the second solution explained in the conventional method, a temperature detector is used. However, when the temperature detector is attached to a rotor near the secondary resistance, the temperature of the secondary resistance is accurately set. However, since the rotor is rotating, it is difficult to input detected temperature information to the control device, and a slip ring or the like is required. On the other hand, when the temperature detector is attached to the stator, the slip ring or the like is not necessary, but since there is a large temperature difference between the rotor and the stator, the rotor rotates from the detected temperature of the stator. It is necessary to estimate the temperature of the child, and if the estimation is incorrect, there is a risk that accurate secondary resistance estimation cannot be performed.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, in the present invention,
In the motor control device having a torque controller that controls the power converter so that the output torque of the motor supplied with power from the power converter follows the torque command value, the speed and temperature of the motor are detected. A constant identifier for estimating an electric constant of an electric motor used in the torque controller by calculation using at least an input current and an electric motor speed of the electric motor, and an output and conversion of the temperature detector A constant estimator by temperature that estimates the same electrical constant as the constant identifier, and a high-speed mode signal when the frequency of the voltage applied to the motor or the rotational speed of the motor is greater than a predetermined value. If it is small, the mode discriminator that outputs a low-speed mode signal, and if the output of this mode discriminator is a high-speed mode signal, the output of the constant identifier is selected. In the case of the low-speed mode signal, a selector for selecting the output of the constant estimator based on the temperature and outputting the selected output to the torque controller is provided, and the mode determiner output, the constant identifier output, and the constant A conversion coefficient that matches the constant identifier output and the constant estimator output with the estimator output is constituted by a conversion coefficient adjuster that outputs the conversion coefficient to the constant estimator.
[0008]
Further, the motor is an induction motor, and an electrical constant estimated by the constant identifier or the constant estimator based on the temperature is set as a secondary resistance value of the induction motor, and the input of the induction motor is input by the constant identifier. The instantaneous reactive power obtained from the current and the input voltage coincides with the instantaneous reactive power obtained using the input current and rotational speed of the induction motor and the estimated secondary resistance value of the constant identifier output. Thus, the secondary resistance value is obtained by correcting the secondary resistance value of the constant identifier output.
[0009]
Further, the motor is a permanent magnet type synchronous motor, and an electric constant estimated by the constant identifier or the temperature constant estimator is set as the magnetic flux amount of the permanent magnet of the permanent magnet type synchronous motor.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a block diagram showing an embodiment of the present invention. The embodiment of the present invention will be described with reference to FIG.
The power converter 1 supplies power to the electric motor 2 based on a control signal output from the torque controller 7. The torque controller 7 outputs a control signal S for controlling the power converter 1 so that the output torque of the electric motor 2 becomes a predetermined value. Here, the torque controller 7 obtains the control signal S using the electrical constant C of the electric motor 2. The constant identifier 8 includes an input current i of the motor 2 that is an output of the current detector 3, an input voltage v of the motor 2 that is an output of the voltage detector 4, and a rotational speed of the motor 2 that is an output of the speed detector 6. N is input, and the electric constant of the electric motor 2 is identified to be the same as the actual value, and is output as C1. The temperature-based constant estimator 9 receives the temperature θ of the stator of the electric motor 2 that is the output of the temperature detector 5 and the conversion coefficient K that is the output of the conversion coefficient adjuster, and estimates the electric constant of the electric motor 2. And output as C2. The mode determiner 11 sets the output signal M to the high speed mode when the rotational speed N of the electric motor 2 that is the output of the speed detector 6 is larger than a predetermined value, and sets the output signal M to a low speed when the rotational speed N is smaller than the predetermined value. Mode. The selector 12 selects C1 when the output M of the mode determiner is in the high speed mode, and selects C2 when M is in the low speed mode, and outputs it to the torque controller 7 as an electrical constant C. The conversion coefficient adjuster 10 adjusts the conversion coefficient K used in the constant estimator 9 based on temperature so that C1 and C2 match when the output M of the mode determination unit is in the high speed mode.
[0011]
When the electric motor 2 is an induction motor and the electrical constant is the secondary resistance value of the induction motor, the constant identifier 8 has the contents shown in FIG. 2 as in the first solution of the prior art. R2 of 2 becomes C1 of the output of the constant identifier 8. The temperature-based constant estimator 9 is the same as the second solution of the prior art. For example, C2 = {234.5 + K · (θ−θ0) + θ0} / (234.5 + θ0) · R20.
Thus, the secondary resistance value C2 can be estimated. Here, θ0 is the specified temperature, and R20 is the secondary resistance value when the rotor is at the specified temperature θ0. If the temperature of the stator and the rotor is the same, C2 accurately represents the secondary resistance value if K = 1 in this equation. In general, since the rotor temperature is higher than the stator temperature, K> 1 makes it possible to estimate the secondary resistance value by estimating the temperature rise of the rotor in the term K · (θ−θ0). Since the mode discriminator 11 and the selector 12 do not use the output of the constant identifier 8 at a low speed, the problem in the first solution of the prior art can be avoided. In addition, since the value of the conversion coefficient K can be accurately adjusted by the conversion coefficient adjuster 10, there is no problem in the second prior art solution when the temperature constant estimator 9 is selected at a low speed.
[0012]
When the electric motor 2 is a permanent magnet synchronous motor, the electric constant C of the electric motor is the magnetic flux amount φ of the permanent magnet of the permanent magnet synchronous motor. In this case, the constant identifier 8
C1 = (G1 · Vq−N · G2 · id + G3 · iq) / N
To obtain the magnetic flux amount of the permanent magnet. Here, G1, G2, and G3 are constants related to the permanent magnet type synchronous motor, Vq and iq are a voltage component and a current component in a direction orthogonal to the permanent magnet, respectively, and id is a current component in a direction parallel to the permanent magnet. It is. In this case, the constant estimator 9 according to temperature is C2 = {1-K · (θ−θ0)} · φ0.
To estimate the amount of magnetic flux of the permanent magnet. Here, φ0 is the amount of magnetic flux of the permanent magnet at the specified temperature.
The voltage detector 4 may estimate the input voltage of the electric motor 2 from the control signal S of the power converter 1 instead of directly detecting the voltage from the input terminal of the electric motor 2.
[0013]
【The invention's effect】
By switching the output of the constant identifier and the output of the constant estimator depending on the temperature according to the speed and frequency, the problems of the constant identifier can be avoided. Moreover, the problem in the constant estimator by temperature can be suppressed by adjusting the conversion coefficient used for the constant estimator by temperature according to the output of the constant identifier. Therefore, according to the present invention, the electric constant of the electric motor can be accurately estimated in the entire speed range, and the torque can be controlled with high accuracy, which is very useful in practice.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment of the present invention.
FIG. 2 is an explanatory diagram showing an example of a constant identifier when the motor is an induction motor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Power converter 2 ... Electric motor 3 ... Current detector 4 ... Voltage detector 5 ... Temperature detector 6 ... Speed detector 7 ... Torque controller 8 ... Constant identifier 9 ... Constant estimator 10 by temperature ... Conversion coefficient adjuster 11 ... Mode determiner 12 ... Selector 81 ... First instantaneous reactive power calculator 82 ... First 2 instantaneous reactive power calculator 83 ... R2 regulator

Claims (4)

電力変換器より電力が供給される電動機の出力トルクを、トルク指令値に追従するように前記電力変換器を制御するトルク制御器をもつ電動機の制御装置において、
前記電動機の速度及び温度をそれぞれ検出する検出器を具備し、
前記トルク制御器で用いる電動機の電気的定数を、少なくとも前記電動機の入力電流及び電動機速度とを用いて演算で推定する定数同定器と、
前記温度検出器の出力と変換係数とを用いて、前記定数同定器と同じ電気的定数を推定する温度による定数推定器と、
電動機に印加される電圧の周波数または電動機の回転速度が所定の値より大きい場合には高速モード信号を、小さい場合には低速モード信号を出力するモード判定器と、
このモード判定器の出力が高速モード信号の場合には、前記定数同定器の出力を選択し、低速モード信号の場合には、前記温度による定数推定器の出力を選択して前記トルク制御器に出力する選択器をもち、かつ、前記モード判定器出力と、定数同定器出力と、温度による定数推定器出力とにより、定数同定器出力と温度による定数推定器出力とを一致させる変換係数を、前記温度による定数推定器へ出力する変換係数調整器とで構成されたことを特徴とする電動機の制御装置。
In the motor control device having a torque controller for controlling the power converter so that the output torque of the motor supplied with power from the power converter follows the torque command value,
Comprising a detector for detecting the speed and temperature of the electric motor,
A constant identifier for estimating an electric constant of the motor used in the torque controller by calculation using at least an input current and a motor speed of the motor;
A temperature-based constant estimator that estimates the same electrical constant as the constant identifier, using the output of the temperature detector and a conversion coefficient;
A mode determination unit that outputs a high-speed mode signal when the frequency of the voltage applied to the motor or the rotation speed of the motor is greater than a predetermined value, and a low-speed mode signal when the frequency is small;
When the output of the mode discriminator is a high speed mode signal, the output of the constant identifier is selected. When the output of the mode discriminator is a low speed mode signal, the output of the constant estimator based on the temperature is selected and the torque controller is selected. A conversion coefficient that has a selector to output and matches the constant identifier output and the constant estimator output by temperature by the mode determiner output, the constant identifier output, and the constant estimator output by temperature, A motor control apparatus comprising: a conversion coefficient adjuster that outputs to a constant estimator based on the temperature.
前記電動機が誘導電動機であって、前記定数同定器や前記温度による定数推定器で推定される電気的定数を前記誘導電動機の二次抵抗値とすることを特徴とする請求項1記載の電動機の制御装置。2. The electric motor according to claim 1, wherein the electric motor is an induction motor, and an electric constant estimated by the constant identifier and the constant estimator based on the temperature is set as a secondary resistance value of the induction motor. Control device. 請求項2記載の定数同定器において、前記誘導電動機の入力電流と入力電圧とから求めた瞬時無効電力と、前記誘導電動機の入力電流と回転速度及び前記定数同定器出力の推定された二次抵抗値とを用いて求められた瞬時無効電力とが一致するように前記定数同定器出力の二次抵抗値を修正することで前記二次抵抗値を求めることを特徴とする請求項1及び2記載の電動機の制御装置。3. The constant identifier according to claim 2, wherein an instantaneous reactive power obtained from an input current and an input voltage of the induction motor, an input current and a rotational speed of the induction motor, and an estimated secondary resistance of the constant identifier output. 3. The secondary resistance value is obtained by correcting the secondary resistance value of the constant identifier output so that the instantaneous reactive power obtained using the value matches the instantaneous reactive power. Electric motor control device. 前記電動機が永久磁石形同期電動機であって、前記定数同定器や前記温度による定数推定器で推定される電気的定数を前記永久磁石形同期電動機の永久磁石の磁束量とすることを特徴とする請求項1記載の電動機の制御装置。The motor is a permanent magnet type synchronous motor, and an electric constant estimated by the constant identifier or the constant estimator based on the temperature is set as a magnetic flux amount of the permanent magnet of the permanent magnet type synchronous motor. The motor control device according to claim 1.
JP23127399A 1999-08-18 1999-08-18 Electric motor control device Expired - Lifetime JP3634683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23127399A JP3634683B2 (en) 1999-08-18 1999-08-18 Electric motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23127399A JP3634683B2 (en) 1999-08-18 1999-08-18 Electric motor control device

Publications (2)

Publication Number Publication Date
JP2001057797A JP2001057797A (en) 2001-02-27
JP3634683B2 true JP3634683B2 (en) 2005-03-30

Family

ID=16921028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23127399A Expired - Lifetime JP3634683B2 (en) 1999-08-18 1999-08-18 Electric motor control device

Country Status (1)

Country Link
JP (1) JP3634683B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4737999B2 (en) * 2005-01-19 2011-08-03 三菱電機株式会社 Elevator control device
KR101302274B1 (en) * 2011-12-02 2013-09-02 주식회사 엘지씨엔에스 Method for controlling motor and device for processing medium thereof
JP5836793B2 (en) * 2011-12-26 2015-12-24 株式会社東芝 Electric vehicle control device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0530775A (en) * 1991-07-19 1993-02-05 Fuji Electric Co Ltd Controller for induction motor
JP2579119B2 (en) * 1993-03-15 1997-02-05 方正 彭 Vector controller for induction motor
JP3361885B2 (en) * 1994-06-28 2003-01-07 株式会社東芝 Induction motor control device
JP2816103B2 (en) * 1994-09-08 1998-10-27 敏彦 野口 Induction motor control device

Also Published As

Publication number Publication date
JP2001057797A (en) 2001-02-27

Similar Documents

Publication Publication Date Title
US7646164B2 (en) Method of adjusting parameters of a synchronous motor and variable speed drive using such a method
JP3860031B2 (en) Synchronous motor control device and control method of synchronous motor
US8106619B2 (en) Position sensorless controller for permanent magnet motor
KR100354775B1 (en) Speed control apparatus of a synchronous reluctance motor
EP2464002B1 (en) Estimation of actual torque in an electrical motor drive
WO1999065137A1 (en) Method of minimizing errors in rotor angle estimate in synchronous machine
KR100845110B1 (en) Estimating method of inertia moment for sensorless inverter
JPH11299297A (en) Controller for permanent magnet synchronous motor
JP4548886B2 (en) Control device for permanent magnet type synchronous motor
JPH08275599A (en) Control method for permanent magnet synchronous motor
JP2003219698A (en) Controller for synchronous machine
JP5050387B2 (en) Motor control device
JP3634683B2 (en) Electric motor control device
JPH11164580A (en) Brushless motor driving equipment
JP2009165281A (en) Speed-sensorless vector control device
JP3707659B2 (en) Constant identification method for synchronous motor
CN110235355B (en) Speed estimation method for induction motor and power conversion device using the same
JP4273775B2 (en) Magnetic pole position estimation method and control device for permanent magnet type synchronous motor
US11404982B2 (en) Method for estimating mechanical parameters of an electrical motor
JPH09191699A (en) Method for controlling induction motor
US7034510B2 (en) Method for coupling inverter to alternating voltage
JPH1023800A (en) Induction motor speed control
JP4434402B2 (en) Control device and control method for synchronous motor
JP2002010697A (en) Control unit for motor
JPH0866099A (en) Induction-motor control apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041224

R150 Certificate of patent or registration of utility model

Ref document number: 3634683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 9

EXPY Cancellation because of completion of term