JP3633213B2 - Energizer - Google Patents

Energizer Download PDF

Info

Publication number
JP3633213B2
JP3633213B2 JP18321797A JP18321797A JP3633213B2 JP 3633213 B2 JP3633213 B2 JP 3633213B2 JP 18321797 A JP18321797 A JP 18321797A JP 18321797 A JP18321797 A JP 18321797A JP 3633213 B2 JP3633213 B2 JP 3633213B2
Authority
JP
Japan
Prior art keywords
magnetic
pair
power supply
magnetic flux
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18321797A
Other languages
Japanese (ja)
Other versions
JPH1118323A (en
Inventor
和義 森
Original Assignee
神鋼電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 神鋼電機株式会社 filed Critical 神鋼電機株式会社
Priority to JP18321797A priority Critical patent/JP3633213B2/en
Publication of JPH1118323A publication Critical patent/JPH1118323A/en
Application granted granted Critical
Publication of JP3633213B2 publication Critical patent/JP3633213B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、病院等の建築物内で使用される走行台車等の移動する物体に対し、1次給電線に非接触で電力を供給する非接触給電装置を有する搬送装置を備えた非接触給電搬送システムに係り、特に防火扉部分等のように、1次給電線が断線する断線部分において、電力を適正に伝送する通電装置に関する。
【0002】
【従来の技術】
通電レール等と接触することにより走行台車等の搬送装置に電力を供給する給電装置を備えた搬送システムでは、通電レール等や給電装置の摩耗に対するメンテナンスが必要である。また、接触による塵の発生や、スパークが発生する問題があるため、この対策用に従来より非接触給電装置を有する搬送装置による非接触給電搬送システムが実用に供されている。
【0003】
この非接触給電搬送システムの搬送装置に搭載される非接触給電装置について、図3を用いて説明する。
図3は、上記非接触給電装置10の構成を示す縦断側面図である。同図に示されるように、非接触給電装置10は、1対の外部磁性体コア12a、12b及び内部磁性体コア13よりなる断面E字形状の磁性体コア11を有し、外部磁性体コア12a、12bと内部磁性体コア13の1対の空隙14a、14bには、夫々1次給電線15a、15bがレール側壁20に固定された1次給電線支持台16a、16bにより張設支持されている。
この構成において、1次給電線15a、15bに高周波電流を流すことにより、磁性体コア11内部に方向や強度が時間的に変化する磁場が発生し、磁性体コア11を介して磁気的に結合された2次巻線17に電圧が誘起され、2次巻線17により搬送装置(図示せず)に電力が供給され、この搬送装置が1次給電線15a、15bに沿って移動するようになっている。
【0004】
【発明が解決しようとする課題】
このような搬送装置の駆動方式として用いられるリニア搬送システム等の非接触給電搬送システムでは、上述のように地上に1次給電線を張設し、非接触給電装置を搭載した搬送装置に2次巻線等の電力ピックアップを設ける地上2次方式を採用している。
ところで、このような搬送システムが病院等に適用される場合、病院等の建築物には防火区画があり、防火扉等を設置しなければならないため、次のような問題が生じる。
即ち、これらの建物内部に、上述した非接触給電搬送システムを用いる場合、防火扉が開閉するスペースを確保するために、防火扉がある個所では1次給電線を一度断線させた上で、図4の斜視図に示すように、側壁21に貫通孔22を設けて防火扉5を迂回するように1次給電線15a、15bを敷設しなければならない。
しかし、病院等の建物では多数の防火扉が存在し、これらの多数の防火扉が設置された個所を含めて1次給電線を配設する場合、多数個所の迂回工事をしなければならないか、或いは建物の建設の際に予め側壁に迂回用の貫通孔を設けていなければならず、非接触給電搬送システムの敷設コスト等が膨大なものになる。本発明の通電装置は、上記課題(問題点)を解決し、防火扉の前後を通過する1次給電線のように、一定の距離の空隙を隔てても1次給電線の電力を伝送させることができる通電装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明の通電装置は、上記課題を解決するために、請求項1記載のものでは、1次給電線と、前記1次給電線に高周波電流を流すことにより発生する磁界により、磁性体コアを介して磁気的に結合された2次巻線に電圧が誘起され、1次給電線から2次巻線に非接触で電力を伝送する非接触給電装置を有する搬送装置とを備えた非接触給電搬送システムにおいて、1対の巻線と1対の磁性体コアからなる磁束発生器を備え、前記1対の巻線と1対の磁性体コアが空隙を介して対向するように、前記磁束発生器を1次給電線の断線部に取り付けることにより、磁束発生器で発生した磁束を介して非接触で電力を伝送すると共に、前記1次給電線の断線部において、該断線部を短絡して上記電力を直接伝送するか、或いは、該断線部を断線して該電力が直接伝送されないようにする切替機能を備えた構成とした。
この構成とすることで、1次給電線の断線部において、上記1対の磁性体コアが磁気的に結合することにより、対向する巻線に電圧が誘起され、1次給電線の断線部においても、空隙を隔てて非接触で電力を伝送させることができるようになると共に、1次給電線の断線部で、防火扉が閉の状態では、上記切替機能により1次給電線を断線させ、防火扉を隔てて磁性体コアを介して通電し、一方、防火扉が開の状態では、1次給電線を短絡させ、直接電力を供給できるようになるので、磁束発生器における電力の消費がなくなり、本発明の通電装置の通電効率を一層向上させることができる。
【0006】
請求項2に記載の本発明の通電装置では、1次給電線と、前記1次給電線に高周波電流を流すことにより発生する磁界により、磁性体コアを介して磁気的に結合された2次巻線に電圧が誘起され、1次給電線から2次巻線に非接触で電力を伝送する非接触給電装置を有する搬送装置とを備えた非接触給電搬送システムにおいて、1対の巻線と1対の磁性体コアからなる磁束発生器を備え、前記1対の巻線と1対の磁性体コアが空隙を介して対向するように、前記磁束発生器を1次給電線の断線部に取り付けることにより、磁束発生器で発生した磁束を介して非接触で電力を伝送すると共に、前記磁性体コアの空隙に防火扉が開閉自在に配置される構成とした。
このようにすると、防火扉が自在に開閉する空隙が確保される。
【0007】
請求項3に記載の本発明の通電装置では、上記磁性体コアとして、1対の断面略コ字状の磁性体コアを有する磁束発生器を備え、前記1対の磁性体コアの磁極が夫々空隙を介して対向するように、1次給電線の断線部に前記磁束発生器を取り付けた構成とした。
このことにより、高周波電流により前記1対の磁性体コアの内部に発生する磁束の漏れを少なくすることができるので、本発明の通電装置の電力の通電効率を向上させることができる。
【0008】
請求項4に記載の本発明の通電装置では、上記1対の磁性体コアの空隙の長さを調節できるように上記1対の磁性体コアを可動とする機能を備えた構成とした。
このようにすると、上記空隙の長さを変えることができるので、防火扉が閉の状態では、1次給電線の断線部で、防火扉を隔てて磁性体コアを介して通電し、一方、防火扉が開の状態では、上記1対の磁性体コアの磁極を夫々接触させることにより、磁性体コア内部に発生する磁束の漏れを極力小さく抑えることができるので、本発明の通電装置の通電効率を更に向上させることができる。
【0009】
請求項5に記載の通電装置では、上記磁性体コアの材料として透磁率の大きな材質の材料を用いた構成とした。
このようにすると、鉄製の防火扉を隔てて通電している場合でも、透磁率の小さな材料を用いた場合に比べて、防火扉により漏洩する磁束を相対的に少なくできるので、本発明の通電装置の通電効率の向上に寄与できる。
【0010】
【発明の実施の形態】
本発明の通電装置の一実施の形態を図1(A)、(B)及び図2(A)、(B)を用いて説明する。
図1(A)、(B)は、本発明の通電装置1の一実施の形態を示す側面図で、同図(A)は、防火扉5が閉の状態で、防火扉5及び防火扉5が開閉される通路に形成する空隙4を隔てて本発明の通電装置1により、図示しない電力供給装置の電力を伝送している状態を示し、同図(B)は、防火扉5が開の状態で、空隙4を隔てて電力を伝送している状態を示している。
図1(A)、(B)において、本発明の通電装置1は、磁束発生器2及び1次給電線と巻線を繋ぐ4つの接続部3a〜3dから構成され、また、磁束発生器2は、1対の巻線6a、6bと1対の断面略コ字状の磁性体コア7a、7bから構成される。
なお、1対の磁性体コア7a、7bは、高周波電流によって磁性体コア7a、7b内部に発生する磁束の漏洩を極力小さくするために、磁性体コアの磁極8aと磁極8c、磁極8bと磁極8dとが夫々空隙4を隔てて対向するように、1次給電線15Aa、15Ab、15Ba、15Bbの断線部9に対称に取り付けられている。
また、1次給電線15Aa、15Ab、15Ba、15Bbは、図3で示した1次給電線15a、15bと同一のものであるが、断線部9を有するため、説明の便宜のために電力供給装置が接続された電力供給側の1次給電線を15Aa、15Abとし、本発明の通電装置1により電力を伝送される側の1次給電線を15Ba、15Bbとして符号を付した。
なお、5a、5bは夫々防火壁で、防火壁5a、5bには、夫々防火扉5が出入りする切り欠き部5h1、5h2が形成されている。
【0011】
以上の構成において、1次給電線15Aa、15Abは、図示しない電力供給装置と接続されており、当該装置から高周波電流(例えば10kHz以上の単相交流)が供給されると、接続部3aを経て巻線6aに高周波電流が流れ、磁性体コア7a内部に、方向と強度が時間的に変化する磁場が発生する。
この磁場により、磁性体コア7aと空隙4を介して対向する磁性体コア7bの内部を周回する磁束が発生し、1対の磁性体コア7a、7bは磁気的に結合されることになる。
この磁束の強度及び方向は、時間的に変化するので、巻線6aに対向する巻線6bに誘導電流が発生し、結果的に、空隙4を隔てて電力供給装置の電力が、1次給電線15Aa、15Abから1次給電線15Ba、15Bbに伝送されることになる。
【0012】
この時発生する磁束について、図2(A)、(B)に模式的な流れを示してある。
同図(A)は、防火扉5が閉の状態で、防火扉5及び空隙4を挟んで本発明の通電装置1を構成する磁性体コア7a、7b内部に生じる磁束Mfを示す側面図で、同図(B)は、防火扉5が開の状態で、空隙4を隔てて磁性体コア7a、7b内部に生じる磁束Mfを示す側面図である。
磁性体コア7a、7bの形状を図2(A)、(B)に示すように、断面略コ字状とすることにより、磁極8a、8cと磁極8b、8dのギャップが小さくなり、また、磁束Mfの流れの向きが防火扉5にほぼ垂直となるので、防火扉5に誘引される磁束Mfを少なくし、磁束Mfの漏洩を極力抑えることができるので、結果として電力の通電効率を向上させることが可能となる。
なお、磁極8a〜8dの先端部周囲を斜めにカットする形状とすると、磁束Mfの漏れが更に少なくなり一層効果的である。
【0013】
従って、上述したように、本発明の通電装置1により、1次給電線15Aa〜15Bbに断線部9があっても、防火扉5が開閉するための空隙4を隔てて電力供給装置からの電力を伝送することができるので、従来のように、防火扉5を迂回するように側壁に貫通孔を設けて1次給電線15a、15bを敷設する必要がなくなり、非接触給電搬送システムを設ける際の迂回工事等の膨大な敷設コストを低減することができる。
【0014】
なお、本発明の通電装置は、上記実施の形態に限定されない。
例えば、上記実施の形態では、磁性体コアの形状を断面略コ字状のもので説明したが、磁束の外部への漏洩を更に少なくする形状への改良が考えられる。従って、磁性体コアや、或いは巻線の巻数及び形状により、本発明の通電装置が限定されるものではない。
また、本発明の通電装置による電力の損耗を抑え、電力の通電効率を向上させるには以下のような改良も考えられる。
例えば、1対の磁性体コアの空隙の長さを調節できるように、1対の磁性体コアを可動とする機能を備えた構成とすると、磁極間ギャップの長さを変えることができるので、防火扉が開の状態では、1対の磁性体コアの磁極同士を直結させることにより、磁束の漏れを極力小さく抑えることができるので、本発明の通電装置の通電効率を向上させることができる。
更に、上記1次給電線の断線部において、該断線部を短絡して上記電力を直接伝送するか、或いは、該断線部を断線して該電力が直接伝送されないようにする切替機能を備えた構成とすれば、防火扉が開の状態では、切替装置により1次給電線の断線部を短絡させ、巻線と1次給電線との接続部を断線すると、直接電力を供給できるようになり、本発明の通電装置を用いることによる電力の損耗がなくなる。一方、防火扉が閉の状態では本発明の通電装置を用いるというハイブリッド型の通電装置とすれば、通電効率を更に向上させることができる。
また、磁性体コアの材料として透磁率の大きな材質を用いた構成とすると、強磁性体である鉄製の防火扉を隔てて通電している場合でも、防火扉より漏洩する磁束を相対的に少なくできるので、本発明の通電装置の通電効率の向上に寄与できる。具体的には、例えば、けい素鋼を用いると磁気ヒステリシスによる鉄損も小さくできるので、より好都合である。
【0015】
【発明の効果】
本発明の通電装置は、上述のように構成したために以下のような優れた効果を有する。
(1)本発明の通電装置を1次給電線の断線部に取り付けることにより、磁束発生器で発生した磁束を介して非接触で1次給電線の電力を伝送できるので、空隙を介して非接触で電力を通電させることができるようになり、1次給電線の断線部でも電力を適正に伝送することができると共に、防火扉が開の状態では、切替装置により1次給電線の断線部を短絡させ、直接電力を供給できるようになり、本発明の通電装置を用いることによる電力の損耗がなくなる。一方、防火扉が閉の状態では本発明の通電装置を用いるというハイブリッド型の通電装置とすれば、通電効率を更に向上させることができる。
(2)空隙を介して非接触で1次給電線の断線部でも電力を伝送することができるので、防火扉を迂回するように1次給電線を敷設する必要がなくなり、迂回工事等の膨大な敷設コストを低減することができる。
(3)請求項2のようにすると、防火扉が自在に開閉する空隙が確保される。
(4)請求項3に記載の通電装置のように磁性体コアとして、断面略コ字状の磁性体コアを用いるようにすると、高周波電流により1対の磁性体コアの内部に発生する磁束の漏れを少なくすることができるので、本発明の通電装置の通電効率を向上させることができる。
(5)請求項4に記載の通電装置のように、1対の磁性体コアの空隙の長さを調節できるように上記1対の磁性体コアを可動とする機能を備えた構成とすると、磁極間ギャップの長さを変えることができ、防火扉が開の状態では、1対の磁性体コアの磁極同士を直結させることにより、磁束の漏れを極力小さく抑えることができるので、通電効率を向上させることができる。
(6)請求項5に記載の通電装置のように、磁性体コアの材料として透磁率の大きな材質を用いた構成とすると、強磁性体である鉄製の防火扉を隔てて通電している場合でも、防火扉より漏洩する磁束を相対的に少なくできるので、本発明の通電装置の通電効率の向上に寄与できる。
【図面の簡単な説明】
【図1】本発明の通電装置の一実施の形態を示す図で、同図(A)は、防火扉が閉の状態で、防火扉を隔てて本発明の通電装置により、1次給電線の電力を伝送している状態を示す側面図で、同図(B)は、防火扉が開の状態で、空隙を隔てて電力を伝送している状態を示す側面図である。
【図2】磁性体コア内部に発生する磁束について模式的に示した図で、同図(A)は、防火扉が閉の状態で、防火扉を挟んで本発明の通電装置の磁性体コア内部に生じる磁束を示す側面図で、同図(B)は、防火扉が開の状態で、空隙を隔てて磁性体コア内部に生じる磁束を示す側面図である。
【図3】非接触給電搬送システムに用いる非接触給電装置の構成を示す縦断側面図である。
【図4】従来の非接触給電搬送システムにおいて、1次給電線を側壁に貫通孔を設けて防火扉を迂回させた状態を示す斜視図である。
【符号の説明】
1:本発明の通電装置
2:磁束発生器
4:空隙
6a、6b:巻線
7a、7b:磁性体コア
8a〜8d:磁性体コアの磁極
9:断線部
10:非接触給電装置
15Aa〜15Bb:1次給電線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-contact power supply including a transfer device having a non-contact power supply device that supplies power to a primary power supply line in a non-contact manner for a moving object such as a traveling carriage used in a building such as a hospital. The present invention relates to a transport system, and more particularly, to an energization device that appropriately transmits power in a disconnected portion where a primary power supply line is disconnected, such as a fire door portion.
[0002]
[Prior art]
In a transport system including a power feeding device that supplies power to a transport device such as a traveling carriage by contacting the power rail or the like, maintenance is required for wear of the power rail or the power feeding device. In addition, since there is a problem of generation of dust due to contact and occurrence of sparks, a non-contact power feeding conveyance system using a conveyance device having a non-contact power feeding device has been put to practical use for the countermeasure.
[0003]
A non-contact power feeding device mounted on the transport device of this non-contact power feeding and conveying system will be described with reference to FIG.
FIG. 3 is a longitudinal side view showing the configuration of the non-contact power feeding apparatus 10. As shown in the figure, the non-contact power feeding device 10 includes a magnetic core 11 having an E-shaped cross section composed of a pair of external magnetic cores 12a and 12b and an internal magnetic core 13, and the external magnetic core Primary power supply lines 15 a and 15 b are stretched and supported by a pair of primary power supply line support bases 16 a and 16 b fixed to the rail side wall 20 in a pair of gaps 14 a and 14 b between 12 a and 12 b and the internal magnetic core 13. ing.
In this configuration, when a high-frequency current is passed through the primary power supply lines 15 a and 15 b, a magnetic field whose direction and intensity change with time is generated inside the magnetic core 11 and is magnetically coupled via the magnetic core 11. A voltage is induced in the secondary winding 17 and power is supplied to the transport device (not shown) by the secondary winding 17 so that the transport device moves along the primary power supply lines 15a and 15b. It has become.
[0004]
[Problems to be solved by the invention]
In a non-contact power feeding transport system such as a linear transport system used as a driving method of such a transport device, a primary power feed line is stretched on the ground as described above, and the secondary power supply is mounted on the transport device equipped with the non-contact power feeding device. Adopts a ground secondary system with power pickups such as windings.
By the way, when such a conveyance system is applied to a hospital or the like, a building such as a hospital has a fire prevention section, and a fire door or the like must be installed.
That is, when the above-described contactless power transfer system is used in these buildings, the primary power supply line is disconnected once at the place where the fire door is provided in order to secure a space for the fire door to open and close. As shown in the perspective view of FIG. 4, the primary power supply lines 15 a and 15 b must be laid so as to bypass the fire door 5 by providing a through hole 22 in the side wall 21.
However, in buildings such as hospitals, there are many fire doors, and if the primary power supply line is installed including the places where these fire doors are installed, do you have to detour many places? Alternatively, when the building is constructed, a bypass through hole must be provided in advance on the side wall, and the installation cost of the non-contact power feeding and conveying system becomes enormous. The energization device of the present invention solves the above-mentioned problem (problem), and transmits the power of the primary power supply line even if a gap of a certain distance is separated like the primary power supply line passing through the front and rear of the fire door. An object of the present invention is to provide an energization device that can perform the above-described operation.
[0005]
[Means for Solving the Problems]
In order to solve the above-described problem, an energizing apparatus according to the present invention includes a primary power supply line and a magnetic core generated by a magnetic field generated by flowing a high-frequency current through the primary power supply line. Non-contact power feeding provided with a transport device having a non-contact power feeding device in which a voltage is induced in a secondary winding magnetically coupled via a primary feed line to the secondary winding in a non-contact manner The transfer system includes a magnetic flux generator including a pair of windings and a pair of magnetic cores, and the magnetic flux generation is performed such that the pair of windings and the pair of magnetic cores face each other with a gap therebetween. By attaching the device to the disconnection part of the primary power supply line, power is transmitted in a non-contact manner via the magnetic flux generated by the magnetic flux generator, and the disconnection part is short-circuited at the disconnection part of the primary power supply line. Directly transmit the power, or disconnect the disconnected portion and Force is configured to include a switching function to prevent transmitted directly.
With this configuration, when the pair of magnetic cores are magnetically coupled at the disconnection portion of the primary power supply line, a voltage is induced in the opposing windings, and at the disconnection portion of the primary power supply line. also, both becomes to be able to transmit power in a non-contact manner at a gap, by the disconnection of the primary feed line, the fire doors are closed state, to break the primary feed line by the switching function, While energizing through the magnetic core across the fire door, while the fire door is open, the primary feeder can be short-circuited to supply power directly. Thus, the energization efficiency of the energization device of the present invention can be further improved.
[0006]
In the energization device according to the second aspect of the present invention, the primary power supply line and the secondary magnetically coupled via the magnetic core by a magnetic field generated by flowing a high-frequency current through the primary power supply line. In a non-contact power feeding and conveying system including a non-contact feeding device having a non-contact power feeding device in which voltage is induced in the winding and non-contact power is transmitted from the primary feeding line to the secondary winding. A magnetic flux generator comprising a pair of magnetic cores is provided, and the magnetic flux generator is connected to the disconnection portion of the primary power supply line so that the pair of windings and the pair of magnetic cores face each other with a gap. By mounting, the power is transmitted in a non-contact manner via the magnetic flux generated by the magnetic flux generator, and the fire door is arranged to be openable and closable in the gap of the magnetic core.
If it does in this way, the space | gap which a fire door can open and close freely is ensured.
[0007]
According to a third aspect of the present invention, a magnetic flux generator having a pair of substantially U-shaped magnetic cores is provided as the magnetic core, and the magnetic poles of the pair of magnetic cores are respectively provided. It was set as the structure which attached the said magnetic flux generator to the disconnection part of the primary feeder so that it might oppose through a space | gap.
Thus, leakage of magnetic flux generated inside the pair of magnetic cores due to the high frequency current can be reduced, so that the power supply efficiency of the power supply device of the present invention can be improved.
[0008]
According to a fourth aspect of the present invention, the energizing device of the present invention is configured to have a function of moving the pair of magnetic cores so that the length of the gap between the pair of magnetic cores can be adjusted.
In this way, since the length of the gap can be changed, in the closed state of the fire door, electricity is passed through the magnetic core across the fire door at the disconnection portion of the primary power supply line, When the fire door is open, the magnetic flux leakage generated inside the magnetic core can be minimized by bringing the magnetic poles of the pair of magnetic cores into contact with each other. Efficiency can be further improved.
[0009]
In the energization device according to claim 5, a material having a high magnetic permeability is used as the material of the magnetic core.
In this case, even when the iron fire door is energized, the magnetic flux leaked by the fire door can be relatively reduced as compared with the case of using a material having a low magnetic permeability. It can contribute to the improvement of the power supply efficiency of the device.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of an energization device of the present invention will be described with reference to FIGS. 1 (A), 1 (B) and FIGS. 2 (A), 2 (B).
FIGS. 1A and 1B are side views showing an embodiment of the energization device 1 of the present invention. FIG. 1A shows the fire door 5 and the fire door with the fire door 5 closed. 5 shows a state in which the electric power of the power supply device (not shown) is transmitted by the energizing device 1 of the present invention across the gap 4 formed in the passage where 5 is opened and closed. FIG. In this state, power is transmitted through the gap 4.
1 (A) and 1 (B), the energizing device 1 of the present invention is composed of a magnetic flux generator 2 and four connecting portions 3a to 3d that connect the primary power supply line and the winding. Is composed of a pair of windings 6a and 6b and a pair of magnetic cores 7a and 7b having a substantially U-shaped cross section.
In addition, the pair of magnetic cores 7a and 7b has a magnetic core 8a and magnetic pole 8c, and a magnetic pole 8b and a magnetic pole in order to minimize leakage of magnetic flux generated inside the magnetic cores 7a and 7b due to high-frequency current. 8d is symmetrically attached to the disconnected portion 9 of the primary power supply lines 15Aa, 15Ab, 15Ba, and 15Bb so as to face each other with the gap 4 therebetween.
Further, the primary power supply lines 15Aa, 15Ab, 15Ba, and 15Bb are the same as the primary power supply lines 15a and 15b shown in FIG. 3, but the power supply is provided for convenience of explanation because of the disconnection portion 9. The primary feed lines on the power supply side to which the apparatus is connected are denoted as 15Aa and 15Ab, and the primary feed lines on the side where power is transmitted by the energization device 1 of the present invention are denoted as 15Ba and 15Bb.
Reference numerals 5a and 5b denote fire walls, and the fire walls 5a and 5b are provided with cutout portions 5h1 and 5h2, respectively, through which the fire door 5 enters and exits.
[0011]
In the above configuration, the primary power supply lines 15Aa and 15Ab are connected to a power supply device (not shown). When a high-frequency current (for example, a single-phase alternating current of 10 kHz or more) is supplied from the device, the primary power supply wires 15Aa and 15Ab are connected via the connection portion 3a. A high-frequency current flows through the winding 6a, and a magnetic field whose direction and intensity change with time is generated inside the magnetic core 7a.
This magnetic field generates a magnetic flux that circulates inside the magnetic core 7 b that faces the magnetic core 7 a via the gap 4, and the pair of magnetic cores 7 a and 7 b are magnetically coupled.
Since the intensity and direction of the magnetic flux change with time, an induced current is generated in the winding 6b facing the winding 6a. As a result, the power of the power supply device is supplied to the primary supply across the gap 4. The electric wires 15Aa and 15Ab are transmitted to the primary power supply lines 15Ba and 15Bb.
[0012]
A schematic flow of the magnetic flux generated at this time is shown in FIGS.
FIG. 2A is a side view showing a magnetic flux Mf generated inside the magnetic cores 7a and 7b constituting the current-carrying device 1 of the present invention with the fire door 5 closed and the fire door 5 and the gap 4 interposed therebetween. FIG. 5B is a side view showing the magnetic flux Mf generated inside the magnetic cores 7a and 7b with the air gap 4 therebetween with the fire door 5 opened.
As shown in FIGS. 2A and 2B, the magnetic cores 7a and 7b have a substantially U-shaped cross section, thereby reducing the gap between the magnetic poles 8a and 8c and the magnetic poles 8b and 8d. Since the flow direction of the magnetic flux Mf is substantially perpendicular to the fire door 5, the magnetic flux Mf attracted by the fire door 5 can be reduced and leakage of the magnetic flux Mf can be suppressed as much as possible. As a result, the power supply efficiency is improved. It becomes possible to make it.
In addition, if it is made the shape which cuts the front-end | tip part periphery of the magnetic poles 8a-8d diagonally, the leakage of the magnetic flux Mf will decrease further and it will be more effective.
[0013]
Therefore, as described above, even when the primary power supply lines 15Aa to 15Bb have the disconnection portion 9, the power from the power supply apparatus is separated by the gap 4 for opening and closing the fire door 5 by the energization apparatus 1 of the present invention. Therefore, it is not necessary to provide a through hole in the side wall so as to bypass the fire door 5 and lay the primary power supply lines 15a and 15b as in the prior art. It is possible to reduce enormous installation costs such as detour construction.
[0014]
The energization device of the present invention is not limited to the above embodiment.
For example, in the above-described embodiment, the shape of the magnetic core has been described as having a substantially U-shaped cross section, but an improvement to a shape that further reduces leakage of magnetic flux to the outside can be considered. Therefore, the energization device of the present invention is not limited by the magnetic core or the number and shape of the windings.
The following improvements are also conceivable in order to suppress power consumption by the power supply device of the present invention and improve power supply efficiency.
For example, the length of the gap between the magnetic poles can be changed by adopting a configuration having a function of making the pair of magnetic cores movable so that the length of the gap between the pair of magnetic cores can be adjusted. In the state where the fire door is open, the magnetic flux leakage can be suppressed as small as possible by directly connecting the magnetic poles of the pair of magnetic cores, so that the energization efficiency of the energization device of the present invention can be improved.
Furthermore, in the disconnection part of the primary power supply line, the disconnection part is short-circuited and the power is directly transmitted, or the disconnection part is disconnected and the power is not directly transmitted . With this configuration, when the fire door is open, the switching device short-circuits the disconnection portion of the primary power supply line and disconnects the connection portion between the winding and the primary power supply line so that power can be supplied directly. The power consumption due to the use of the energizing device of the present invention is eliminated. On the other hand, if the hybrid energizing device is used in which the energizing device of the present invention is used when the fire door is closed, the energizing efficiency can be further improved.
In addition, when the magnetic core material is made of a material having a high magnetic permeability, the magnetic flux leaking from the fire door is relatively small even when the iron fire door, which is a ferromagnetic material, is energized. Since it can do, it can contribute to the improvement of the electricity supply efficiency of the electricity supply apparatus of this invention. Specifically, for example, when silicon steel is used, iron loss due to magnetic hysteresis can be reduced, which is more convenient.
[0015]
【The invention's effect】
Since the energizing device of the present invention is configured as described above, it has the following excellent effects.
(1) By attaching the current-carrying device of the present invention to the disconnection part of the primary power supply line, the power of the primary power supply line can be transmitted in a non-contact manner through the magnetic flux generated by the magnetic flux generator. The power can be energized by contact, and the power can be properly transmitted even in the disconnected portion of the primary power supply line. When the fire door is open, the switching device disconnects the primary power supply line. Can be short-circuited to supply power directly, and power consumption due to the use of the current-carrying device of the present invention is eliminated. On the other hand, if the hybrid energizing device is used in which the energizing device of the present invention is used when the fire door is closed, the energizing efficiency can be further improved.
(2) Since electric power can be transmitted without contact through the air gap even in the disconnected portion of the primary power supply line, there is no need to lay the primary power supply line so as to bypass the fire door, and a huge amount of detour work, etc. Laying costs can be reduced.
(3) According to the second aspect, a space for freely opening and closing the fire door is secured.
(4) When a magnetic core having a substantially U-shaped cross section is used as the magnetic core as in the energization device according to claim 3, the magnetic flux generated in the pair of magnetic cores by the high frequency current Since leakage can be reduced, the energization efficiency of the energization device of the present invention can be improved.
(5) As in the energization device according to claim 4, when configured to have a function of moving the pair of magnetic cores so that the length of the gap between the pair of magnetic cores can be adjusted, The length of the gap between the magnetic poles can be changed. When the fire door is open, the magnetic flux leakage can be minimized by connecting the magnetic poles of the pair of magnetic cores directly. Can be improved.
(6) When a structure using a material having a high magnetic permeability as the material of the magnetic core as in the energization device according to claim 5 is energized across an iron fire door which is a ferromagnetic body However, since the magnetic flux leaking from the fire door can be relatively reduced, it can contribute to the improvement of the energization efficiency of the energization device of the present invention.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of an energizing device of the present invention. FIG. 1 (A) shows a primary power supply line by an energizing device of the present invention with a fire door closed and a fire door closed. FIG. 5B is a side view showing a state in which power is transmitted across a gap with the fire door open.
FIG. 2 is a diagram schematically showing the magnetic flux generated inside the magnetic core. FIG. 2 (A) shows the magnetic core of the current-carrying device of the present invention with the fire door closed, with the fire door closed. FIG. 5B is a side view showing the magnetic flux generated inside the magnetic core with a gap in the open state with the fire door open.
FIG. 3 is a longitudinal side view showing a configuration of a non-contact power feeding device used in the non-contact power feeding and conveying system.
FIG. 4 is a perspective view showing a state in which a primary power supply line is provided with a through hole in a side wall to bypass a fire door in a conventional non-contact power supply conveyance system.
[Explanation of symbols]
1: Current-carrying device 2 of the present invention: Magnetic flux generator 4: Gap 6a, 6b: Windings 7a, 7b: Magnetic cores 8a-8d: Magnetic pole 9 of magnetic core: Disconnected portion 10: Non-contact power feeding devices 15Aa-15Bb : Primary feed line

Claims (5)

1次給電線と、前記1次給電線に高周波電流を流すことにより発生する磁界により、磁性体コアを介して磁気的に結合された2次巻線に電圧が誘起され、1次給電線から2次巻線に非接触で電力を伝送する非接触給電装置を有する搬送装置とを備えた非接触給電搬送システムにおいて、
1対の巻線と1対の磁性体コアからなる磁束発生器を備え、前記1対の巻線と1対の磁性体コアが空隙を介して対向するように、前記磁束発生器を1次給電線の断線部に取り付けることにより、磁束発生器で発生した磁束を介して非接触で電力を伝送すると共に、前記1次給電線の断線部において、該断線部を短絡して上記電力を直接伝送するか、或いは、該断線部を断線して該電力が直接伝送されないようにする切替機能を備えたことを特徴とする通電装置。
A voltage is induced in the secondary power supply magnetically coupled via the magnetic core by the primary power supply line and a magnetic field generated by flowing a high-frequency current through the primary power supply line. In a non-contact power feeding and conveying system including a conveying device having a non-contact power feeding device that transmits power to the secondary winding in a non-contact manner,
A magnetic flux generator comprising a pair of windings and a pair of magnetic cores is provided, and the magnetic flux generator is arranged in a primary manner so that the pair of windings and the pair of magnetic cores face each other with a gap. By attaching to the disconnection part of the feeder line, power is transmitted in a non-contact manner via the magnetic flux generated by the magnetic flux generator, and at the disconnection part of the primary feeder line, the disconnection part is short-circuited to directly supply the power. An energization device comprising a switching function for transmitting or disconnecting the disconnection portion so that the power is not directly transmitted .
1次給電線と、前記1次給電線に高周波電流を流すことにより発生する磁界により、磁性体コアを介して磁気的に結合された2次巻線に電圧が誘起され、1次給電線から2次巻線に非接触で電力を伝送する非接触給電装置を有する搬送装置とを備えた非接触給電搬送システムにおいて、
1対の巻線と1対の磁性体コアからなる磁束発生器を備え、前記1対の巻線と1対の磁性体コアが空隙を介して対向するように、前記磁束発生器を1次給電線の断線部に取り付けることにより、磁束発生器で発生した磁束を介して非接触で電力を伝送すると共に、前記磁性体コアの空隙に防火扉が開閉自在に配置されることを特徴とする通電装置。
A voltage is induced in the secondary power supply magnetically coupled via the magnetic core by the primary power supply line and a magnetic field generated by flowing a high-frequency current through the primary power supply line. In a non-contact power feeding and conveying system including a conveying device having a non-contact power feeding device that transmits power to the secondary winding in a non-contact manner,
A magnetic flux generator comprising a pair of windings and a pair of magnetic cores is provided, and the magnetic flux generator is arranged in a primary manner so that the pair of windings and the pair of magnetic cores face each other with a gap. By attaching to the disconnection part of the feeder line, electric power is transmitted in a non-contact manner through the magnetic flux generated by the magnetic flux generator, and a fire door is disposed in the gap of the magnetic core so as to be freely opened and closed. Energizing device.
上記磁性体コアとして、1対の断面略コ字状の磁性体コアを有する磁束発生器を備え、前記1対の磁性体コアの磁極が夫々空隙を介して対向するように、1次給電線の断線部に前記磁束発生器を取り付けたことを特徴とする請求項1又は2に記載の通電装置。 The magnetic core includes a magnetic flux generator having a pair of magnetic cores having a substantially U-shaped cross section, and the primary power supply line so that the magnetic poles of the pair of magnetic cores are opposed to each other via a gap. The current-carrying device according to claim 1 or 2 , wherein the magnetic flux generator is attached to the disconnection portion . 上記1対の磁性体コアの対向する磁極間の空隙の長さを調節できるように、上記1対の磁性体コアを可動とする機能を備えたことを特徴とする請求項1乃至3のいずれかに記載の通電装置。 4. The function of making the pair of magnetic cores movable so that the length of the gap between the opposing magnetic poles of the pair of magnetic cores can be adjusted. The energization apparatus of crab. 上記磁性体コアの材料として透磁率の大きな材質の材料を用いたことを特徴とする請求項1乃至4のいずれかに記載の通電装置。The energization device according to any one of claims 1 to 4, wherein a material having a high magnetic permeability is used as the material of the magnetic core.
JP18321797A 1997-06-25 1997-06-25 Energizer Expired - Fee Related JP3633213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18321797A JP3633213B2 (en) 1997-06-25 1997-06-25 Energizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18321797A JP3633213B2 (en) 1997-06-25 1997-06-25 Energizer

Publications (2)

Publication Number Publication Date
JPH1118323A JPH1118323A (en) 1999-01-22
JP3633213B2 true JP3633213B2 (en) 2005-03-30

Family

ID=16131842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18321797A Expired - Fee Related JP3633213B2 (en) 1997-06-25 1997-06-25 Energizer

Country Status (1)

Country Link
JP (1) JP3633213B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10039707A1 (en) 2000-08-14 2002-03-07 Alstom Power Conversion Gmbh Power supply unit for the transmission of auxiliary energy for an electrical arrangement

Also Published As

Publication number Publication date
JPH1118323A (en) 1999-01-22

Similar Documents

Publication Publication Date Title
JP3920358B2 (en) Magnetic levitation vehicle travel system
US5341280A (en) Contactless coaxial winding transformer power transfer system
US6005304A (en) Arrangement for contactless inductive transmission of electrical power
KR940005452A (en) Maglev Transfer Device
JP2008539584A (en) Inductively coupled power transfer system
KR20050010031A (en) Device for inductively transmitting electric power
Abel et al. Contactless power transfer--An exercise in topology
SK108396A3 (en) Electric vehicle feeder line and transmitting system using its
JP2002137659A (en) Non-contact feeder
JP3633213B2 (en) Energizer
KR20050027005A (en) Non-contact poer supp1y apparatus
JPH07322535A (en) Noncontact power supply for direct motion mechanism
JP3114360B2 (en) Contactless power supply equipment for mobile objects
WO2001029318A1 (en) Line switch part snow melting device
KR100208206B1 (en) Noncontact power distribution system
JPH0654403A (en) Contactless power supply conveying facility
JP3261427B2 (en) Feed line holding device
JP3263421B2 (en) Pickup unit for non-contact power supply equipment for moving object and moving object provided with this pickup unit
US4244419A (en) Electromagnetic stirring apparatus
JP2003244924A (en) Linear actuator
JP3837834B2 (en) Non-contact power feeding device
JP2602810B2 (en) Floating transfer device
JPH06296304A (en) Linear conveying truck
CN220421471U (en) Circuit protection device, battery pack and electric equipment
JP3380886B2 (en) Contactless power supply system for mobile objects

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041104

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees