JP3633148B2 - Granule coating method - Google Patents

Granule coating method Download PDF

Info

Publication number
JP3633148B2
JP3633148B2 JP29449496A JP29449496A JP3633148B2 JP 3633148 B2 JP3633148 B2 JP 3633148B2 JP 29449496 A JP29449496 A JP 29449496A JP 29449496 A JP29449496 A JP 29449496A JP 3633148 B2 JP3633148 B2 JP 3633148B2
Authority
JP
Japan
Prior art keywords
coating
tank
throttle
granular material
jet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29449496A
Other languages
Japanese (ja)
Other versions
JPH10118557A (en
Inventor
忠夫 佐藤
武彦 高橋
進 田村
通之 芦原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP29449496A priority Critical patent/JP3633148B2/en
Publication of JPH10118557A publication Critical patent/JPH10118557A/en
Application granted granted Critical
Publication of JP3633148B2 publication Critical patent/JP3633148B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Fertilizers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Glanulating (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は粒体の被覆方法に関する。更に詳しくは槽内にガイド管を有する噴流被覆装置を用いた被覆方法に関する。
【0002】
【従来の技術とその問題点】
噴流方式を用いた被覆法は、例えば特公昭38−13896号に記載のように、円筒状の槽で下部を逆円錐形とし、その先端を水平方向に切断して気体噴出用の絞りとなし、該オリフィスより高速な気流体を該槽内に垂直方向に噴出せしめて、槽内の被覆すべき粒体を吹き上げ、同時に被覆液を吹き付ける被覆法である。
また、特公昭38−2294号では、粒体を中央噴流部に設けた案内管を通して粒体を吹き上げ、該管内に設けた噴霧ノズルより被覆液を加える方法を開示している。これらの被覆法は何れも医薬品の被覆を対象としたもので、小規模且つ丁寧に被覆する場合には好ましい方法であるが、例えば肥料の様に安価且つ大量の被覆を行う場合には適切な方法とは言い難い。
大量の粒体を被覆するには径の大きな噴流塔を用いる必要があるが、噴流塔の径が大きくなると粒体全体が流動状態となり噴流が形成できなかった。この問題点に対し特公平2−31039号においては、噴流装置内に粒体が通過するガイド管を、オリフィス上方に垂直に設けた被覆装置であって、オリフィスから装置内に不活性気体を送入するに際し、オリフィスにおける気体の流速を20m/secから70m/secとし、ガイド管内の流速を20m/sec以下に調節して被覆を行う方法であれば、噴流塔が大型化しても噴流状態が得られることを開示している。
一方、近頃では特開平6−9303号、特開平6−9304号、特開平6−72805号、特開平6−80514号、特公平5−29634号、特開平4−202078号、特開平4−202079号、特開平6−87684号に開示されたような、施用後一定期間は活性成分を溶出させないか若しくは溶出が極度に抑制された期間(この期間を以後初期溶出抑制期間と称する)と、一定期間経過後速やかな溶出を行なう期間(この期間を以後溶出期間と称する)とを有するいわゆる時限溶出型溶出パターンの被膜を肥料粒体の表面に被覆した被覆粒状肥料が開示されている。
これら新しい被膜組成の開発は、特開平7−147819号に示された様な、育苗箱による全量基肥施肥法と云った極度に集約された施肥・栽培法をもたらしつつある。
この栽培法は栽培期間中に必要な肥料の全量若しくはその大部分を、育苗開始時に上記時限溶出型の被服肥料の形態で育苗箱に施用するものである。該肥料の溶出は育苗期間中においては極度に抑制され、育苗期間終了後(本圃に移植後)に溶出を開始するので、育苗期間中に濃度障害を起こすことなく本圃において必要な肥料分を一度に施肥することが出来る。
更に、種籾から発根した根は成長と共に該肥料と接触し、ついには根で該肥料を抱えるような状態になり、生長した苗を本田に移植する際にはそのままの状態で移植される。このため根が接触している該肥料から肥料分を直接吸収することが可能となり、施肥肥料の吸収利用効率を大幅に向上させ得る可能性が出てきた。
但し、この様な施肥法の実現のためには、作物の初期生育期間(育苗期間)中に肥料による濃度障害を起こさせないために初期溶出抑制期間の溶出を極力低く抑える必要があり、施肥直後から一定の溶出速度で溶出を開始するいわゆるリニアタイプのものに比べ、非常に厳密な溶出制御機能が求められている。
しかしながら、これら従来の時限溶出型の被服肥料を大量に被覆すべく前述の噴流方式によって被覆を行った場合には、時限溶出型の溶出を示す被膜組成であっても施肥直後から相当な溶出速度で溶出を開始し、充分な溶出抑制機能が得られないと云った問題点を有していた。中にはその被膜組成によって得られる時限溶出型被覆肥料の初期溶出抑制期間内の溶出が一定ではなく、施用直後からある一定の溶出率まで急激に溶出するものも多く、前述の噴流方式で該施肥法の使用に耐える溶出機能を得ることは極めて困難であった。
【0003】
【発明が解決しようとする課題】
一般に時限溶出型肥料からの肥効成分の溶出パターンは、被膜内に水蒸気若しくは水分を通さない機能の層若しくは樹脂と、僅かに通過してきた水蒸気若しくは水分と反応し、膨潤による内部応力や、溶解によって被膜を破損させる材料(内部の活性物質粒体自身の場合もある)によって構成されている。よって初期溶出抑制期間の溶出を抑えるには、被膜をより緻密な膜にすることによって水蒸気若しくは水分の通過を抑える必要があった。
本発明者らは公知の被膜組成で使用に耐える時限溶出被膜を得るべく、噴流法での粒体の被覆方法について鋭意研究を重ねたところ、驚くべきことに、槽の最下部に槽内に気体を噴出させるための絞りを設け、該絞りの上方に垂直方向にガイド管を設け、該絞りの中心付近に噴霧ノズルを設けた噴流被覆装置を用い、熱可塑性樹脂を溶剤に溶解させた樹脂溶液を該ノズルから噴霧させつつ粒体に被膜を形成させる被覆方法において、槽内であってガイド管の外側である環状部に不活性気体を噴出させつつ被覆を行う粒体の被覆方法に、初期溶出抑制期間中の溶出を抑える顕著な効果があることを知見して本発明を完成させた。
以上の記述からも明らかなように、本発明の目的は樹脂溶液を用いて粒体を被覆する場合おいて、初期溶出の厳密な制御を可能ならしめる被覆方法を提供することにある。
【0004】
【課題を解決するための手段】
本発明は以下に記載の(1)から(7)の構成からなる。
(1)直立筒状槽の最下部に該槽内に気体を噴出させるための絞りを設け、該絞りの上方に垂直方向にガイド管を設け、該絞りの中心付近に噴霧ノズルを設けた噴流被覆装置を用い、熱可塑性樹脂を溶剤に溶解させた樹脂溶液を該ノズルから噴霧させつつ該槽内で噴流状態にある粒体の表面に被膜を形成させる被覆方法において、該槽内であって前記ガイド管の外側である環状部に不活性気体を噴出させつつ被覆を行なうことを特徴とする粒体の被覆方法。
【0005】
(2)不活性気体を槽内側壁から噴出させつつ被覆を行なうことを特徴とする前記(1)に記載の粒体の被覆方法。
【0006】
(3)不活性気体をガイド管外壁から噴出させつつ被覆を行なうことを特徴とする前記(1)に記載の粒体の被覆方法。
【0007】
(4)不活性気体の噴出口を槽内側壁とガイド管外壁の間の空間から噴出させつつ被覆を行なうことを特徴とする前記(1)に記載の粒体の被覆方法。
【0008】
(5)不活性気体の噴出速度が用いた粒体の粒径、比重における最小流動化速度の1から70%の範囲であることを特徴とする前記(1)から(4)のいずれかに記載の粒体の被覆方法。
【0009】
(6)不活性気体の噴出速度が用いた粒体の粒径、比重における最小流動化速度の5から50%の範囲であることを特徴とする前記(1)から(4)のいずれかに記載の粒体の被覆方法。
【0010】
(7)熱可塑性樹脂が溶剤に対し熱時には溶解し冷時には析出してゼリー状となる性質を有するものである前記(1)から(6)のいずれかに記載の粒体の被覆方法。
【0011】
本発明の構成を以下に詳述する。
本発明で使用する直立筒状槽は中心軸が垂直の槽である。本発明の被覆装置はこの槽の下端部に気体を噴出させるための絞りを設け、該絞りに噴流用気体送入管を接続したものであり、更に該絞りの上方に垂直方向にガイド管を設け、該絞りの中心付近に中心付近に噴霧ノズルを設けたものである。
該槽の形状は特に限定するものではなく、断面の形状が円形であっても多角形のものであっても構わない。また該槽の下端は平面であっても良く、逆錐状であっても良い。しかしながら、該槽の下端が平面の場合には粒体を噴流状体にした場合、下端の一部分で粒体の循環が悪くなることから逆錐状であることが好ましく、更に粒体の循環の均一性の面から云えば、該槽の断面の形状は円形であることが望ましい。
また、該槽下端の絞りには別途種々のオリフィス板やベンチュリを挿入できるようにしたものであっても良い。
【0012】
前記ガイド管の形状としては、パイプ、パイプに穿孔したもの或いは金網を筒状にしたもの等が挙げられる。本発明においては形状や材質は特に限定するものではないが、被覆時の被膜の損傷を最小限に抑えたい場合には、孔や突起物のない平滑なパイプを用いることが好ましい。しかしながら噴流気体の流速調節や特定の目的のために孔や突起のあるガイド管であっても、本発明の効果は認められる。この際ガイド管は該絞り上方に垂直方向に固定若しくは懸垂される。
噴霧ノズルは該絞りの中心軸となる位置であれば良く、該絞りよりも高い位置であっても、低い位置であっても良い。ノズルの位置、形状は噴霧液体の性状、運転条件等によって適宜決定すればよい。
【0013】
絞り部風速は噴出気体量と絞り口径で決められるが、ガイド管内の風速も同じ手法で換算することが出来る。ガイド管と絞り部の間隔は粒体の循環を妨げない範囲で選定することが好ましい。ガイド管の口径は絞り口径の1.2から4.0倍、好ましくは1.5から3.0倍とするのがよい。本発明においては絞り部における気体の流速、及びガイド管内における気体の流速は特に限定するものではないが、品質の安定のためには絞りから装置内に不活性気体を送入する際の、絞り部における気体の流速を20m/secから70m/secとし、ガイド管内の流速を20m/sec以下に調節して被覆を行う方法が推奨される。
【0014】
本発明に用いる気体は粒体及び溶剤の性質に際し不活性のものであれば良く、特に限定されるものではない。
本発明においては被覆液として熱可塑性樹脂を溶剤に溶解させた樹脂溶液を用いる。熱可塑性樹脂としては、ポリオレフィン及びその共重合体とポリ塩化ビニリデン及びその共重合体が挙げられる。好ましいポリオレフィン及びその共重合体としてはポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、エチレン・酢酸ビニル共重合体、エチレン・一酸化炭素共重合体、エチレン・酢酸ビニル・一酸化炭素共重合体、エチレン・アクリレート共重合体、エチレン・メタクリル酸共重合体、ゴム系樹脂、ポリスチレン、ポリメチルメタアクリレート等が挙げられ、好ましいポリ塩化ビニリデン及びその共重合体としては、ポリ塩化ビニリデン、塩化ビニリデン・塩化ビニル共重合体等が挙げられる。更に、ポリ−2−ハイドロキシ−2−アルキル酢酸、ポリ−3−ハイドロキシ−3−アルキルプロピオン酸等に代表される生分解性ポリエステルも挙げることが出来る。
【0015】
これらの被覆材は有機溶剤に溶解させた状態で、噴流状態にある粒体に噴霧し被覆を行う。本発明の効果は上記樹脂の貧溶媒液を用い、瞬間乾燥によって被膜を形成する製膜法において特に有効である。上記樹脂の貧溶媒を用いて瞬間乾燥する場合には、樹脂と有機溶剤との組み合わせにおいて、熱時には良く溶け、冷時には樹脂が析出してゼリー状となる性質を有するものがよく、この方法による被膜は特に好ましい。
上記以外の被覆材としてはタルクに代表される無機フィラーや、界面活性剤等を用いることもできる。これら被覆材は溶剤に溶解・分散され、噴霧用ノズルに送られ被覆に共される。
【0016】
本発明の被覆方法は樹脂溶液を用いて粒体を被覆する場合において、特に時限溶出型の溶出パターンを示す被覆粒状肥料において、その初期溶出の厳密な制御を可能にした。本発明者等はその理由を、推測の域を脱しないものの以下のように考えている。
同一の被膜組成、被覆率でより初期溶出を抑制した溶出パターンを得るには、被膜の緻密性を向上させる必要がある。被膜緻密化の要因は複雑多岐にわたると考えられ一義的に特定できるわけではないが、樹脂溶液を用い溶剤の乾燥により被膜を形成させる被覆法においては、粒体に付着した樹脂溶液からの溶剤の飛散、乾燥が大きく影響すると考えられる。従来の大型噴流塔を用いた被覆方法においては、溶剤の単位時間当たりの乾燥が不充分ではなかったかと考えられる。
そこで本発明者らは乾燥時間の短縮のため、前述の噴流被覆装置に槽内であってガイド管の外側である環状部に不活性気体を噴出させつつ被覆を行う粒体の被覆方法を開発した。この方法であれば時限溶出型の溶出パターンにおける初期溶出抑制期間中の溶出を極僅かなものにすることが可能である。
溶剤乾燥の実体においても、更に乾燥の効率化、被膜の緻密化と云う観点から見た場合であっても、不活性気体の噴出口は固定相最上部よりも下であって、固定相の比較的上部にあることが望ましい。また、逆錐部を含む槽底部からの噴出は、噴流塔への粒体の仕込量、粒径、噴出口径等によって最小流動化速度が異なるものの、槽内側壁やガイド管外壁、槽内側壁とガイド管外壁との間の空間からの噴出に比べ固定相の流動化を生じやすく、流動状態が生じると噴流の維持が困難になる。
特に樹脂溶液の粘度が高く、固定相に落下時の残留溶剤が多い場合には、固定相への不活性気体の必要噴出量が大きくなることから、粘度の高い樹脂溶液を用いる場合には、槽内側壁、ガイド管外壁、槽内側壁とガイド管外壁との間の空間の少なくとも1ケ所以上から不活性気体を噴出させることが望ましい。
【0017】
噴出気体の移送は槽内側壁やガイド管外壁、槽底部等においてはジャケットを用いても良く、通気管で行っても良い。槽内側壁とガイド管外壁との間の場合には通気管を用いる。但し、槽内に通気管を設置する際には、通気管が固定相における粒体の降下を妨げない様にすべきである。
該環状部における不活性気体の風速、温度、噴出口数などの条件は特に限定するものではない。風速は槽内に投入する粒体の比重、粒径、被覆液粘度(濃度)、溶剤の蒸発潜熱、被覆液供給量等によって決定され、実施者が適宜選択すべきものであるが、一般的には用いる粒体のその粒径、比重に於ける最小流動化速度の70%以下であることが好ましい。不活性気体の噴出口の位置にもよるが、特に槽底部のような比較的低い位置に噴出口がある場合には固定相が流動化しやすく、流動化しないまでも固定相内における粒体の下降が困難になり、粒体の循環が不充分となり品質のばらつきが大きくなるため、不活性気体の噴出速度は最小流動化速度の50%以下であることが望ましい。
また、不活性気体の風速が小さすぎても初期溶出抑制期間中の溶出抑制効果、及び溶出のばらつきが悪化する傾向が見られる。この点から不活性気体の風速は最小流動化速度の1%以上であることが好ましく、更に好ましくは5%以上である。また、該気体の温度は噴流部の温度同様、樹脂や粒体の物性や形状の変化をもたらさない程度の温度に留めることが望ましい。更に、噴出口数は固定相における乾燥の均一化の観点から多い方が望ましい。
【0018】
通常、非常に薄い樹脂溶液で被覆すれば噴流と同時に瞬時に乾燥し、良好な溶出特性の被膜が得られるものの、生産効率は低く経済的ではない。濃くすれば生産効率は向上するが溶剤が蒸発しにくくなり、十分な機能の被膜が得られなかった。本発明においては比較的濃度の高い樹脂溶液であっても実用上十分な初期溶出抑制機能が得られる。本発明の被覆方法は樹脂溶液の粘度が5c.p.以上となるような濃度の場合に優れた効果を認めることが出来る。更に樹脂溶液の粘度が7c.p.以上となるような場合には顕著である。
しかしながら、樹脂溶液の粘度が40c.p.を越えるような濃度の場合においては、本発明の被覆方法を用いても固定相における乾燥は十分とは云えなくなるため、樹脂溶液の濃度は粘度が40c.p.以下、更に好ましくは35c.p.以下となる範囲であることが望ましい。但し、本発明で規定する粘度は噴流状態の粒体に噴霧する直前の状態の樹脂溶液温度において、B型粘度計により測定して求めた値である。
【0019】
本発明において槽内であってガイド管の外側である環状部であれば、特に不活性気体の噴出口の設置場所を限定するものではないが、設置場所を例示すれば槽内側壁、槽底部(逆錐部も含む)、ガイド管外壁、槽内側壁とガイド管外壁との間の空間に設定することが出来る。
【0020】
本発明の被覆装置において用いる粒体は特に限定されるものではないが、本発明の被覆装置による被覆は、粒体に含まれる活性成分が溶出速度を調節する必要性のあるものに対して特に有効である。
活性成分とは具体的には、尿素、硫安、塩安、硝安、塩化加里、硫酸加里、硝酸加里、硝酸ソーダ、燐酸アンモニア、燐酸加里、燐酸石灰、キレート鉄、酸化鉄、塩化鉄、ホウ酸、ホウ砂、硫酸マンガン、塩化マンガン、硫酸亜鉛、硫酸銅、モリブデン酸ナトリウム、モリブデン酸アンモニウム、OMUP(クロチリデンジウレア)、IBDU(イソブチリデンジウレア)やオキザマイド等の肥料、殺虫剤、殺菌剤、除草剤等の農薬等が挙げられるが、これらに限定するものではない。
粒体は活性成分の1種以上の粒状物であっても良く、更には活性成分の1種以上とベントナイト、ゼオライト、タルク、クレー、ケイソウ土等の不活性担体からなる粒状物であっても良い。更には前述の活性成分粒体を樹脂や無機物で被覆したものであっても構わない。
【0021】
【発明の効果】
本発明は槽の最下部に、槽内に気体を噴出させるための絞りを設け、該絞りの上方に垂直方向にガイド管を設け、該絞りの中心付近に噴霧ノズルを設けた噴流被覆装置を用い、熱可塑性樹脂を溶剤に溶解させた樹脂溶液を該ノズルから噴霧させつつ粒体に被膜を形成させる被覆方法において、槽内であってガイド管の外側である環状部に不活性気体を噴出させつつ被覆を行う粒体の被覆方法である。本発明は樹脂溶液を用いて粒体を被覆する場合において、被覆された粒体について初期溶出の厳密な制御を可能ならしめる効果を有する。特に時限溶出型の溶出パターンにおける初期溶出抑制期間の溶出抑制に顕著である。
【0022】
【実施例】
1.被覆装置
本発明の比較例であり、実施例の基本構造たる被覆装置を図1に示した。図1において1は噴流塔、2は被覆される粒体の投入口、3は粒体投入口バルブ、4は噴流空気噴出用のオリフィス、5は噴霧ノズル、6は被覆粒体の抜き出し口、7は噴流及び乾燥に用いた空気の排出管、8は空気加熱器、9は流量計、10はブロアー、11は被覆液調整槽、12は蒸気加熱用ジャケット、13は被覆液供給ポンプ、14はガイド管である。塔径は450mm、ガイド管径は120mmである。
図2から図7に本発明に使用される被覆装置を例示した。これらの図において15は乾燥用の不活性気体送入管であり、16は不活性気体噴出口である。図2、3及び4A、5Aは被覆装置の絞り部及びガイド管周辺のみを記載した。その周辺部は図1と同様である。図4Bは図4Aの水平断面図であり、図5Bは図5Aの水平断面図であり、図6、7は図2、3、4A、4B、5A、5Bとは別個の噴流塔の粒体投入入口下部の水平断面図である。
図2は槽内側壁に噴出口を設けたものであり、図3は槽底部の逆錐部に噴出口を設けたものである。図4A及び4Bはガイド管を中空構造とし、その外壁に噴出口を設けたものである。図5A及び5Bは槽内側壁とガイド管外壁との間に環状の通気管を設けたものである。図においては上下に2本、水平方向に1本であるが、この本数や位置関係は噴出量や能力との関係で適宜選択できる。但し、通気管の存在が固定相粒体の移動を妨げるものであってはならない。
図6はガイド管を中空構造とし、更に該ガイド管から外方向に放射状に噴出管を延ばしたものであり、本発明に用いる被覆装置はこのような構造のものであっても良い。更に、本発明においては図5Bにおいて示した装置と、図6において示した装置とを合わせた図7の様な構造の噴出管を有するものであっても構わない。
本発明の実施例には図5A、5Bに示した被覆装置を用いた。
【0023】
2.本発明の実施例及び比較例サンプルの試作
被覆操作はブロアー10より所定の風量と温度に保持した空気を噴流塔に送りながら所定量の粒体を投入する。次いで塔内の粒体が所定の温度に達したら、被覆液供給ポンプより樹脂溶液(被覆液)を所定の速度で所定時間送り、所定の被覆率とした後ブロアー10を止めて被覆粒体抜き出し口6より被覆粒体を抜き出す。
但し、実施例においては75±2℃に加温された空気を表1に示した流量を維持しつつ、運転開始から終了時まで乾燥用不活性気体送入管15を通して不活性気体噴出口16より噴出させ続けた。
被膜組成は下記の通りである。溶液の濃度は表1に表示の粘度になるようにB型粘度計を用い調整した。但し粘度は下記被膜組成を下記供試溶剤に100±2℃にて溶解時の粘度を測定した。

Figure 0003633148
【0024】
本製造例では下記の基本条件を維持しつつ所定の被覆率が10wt%に達するまで被覆を行なった。尚、被覆の操作を20回反復し溶出のばらつきの確認に供した。
一流体ノズル:開口0.8mmフルコン型
熱風量 :450Nm /h
熱風温度 :100±2℃
樹脂溶液温度:100±2℃
肥料 :尿素(粒状)
粒径及び比重:2.7mm、1.3g/cc
肥料投入量 :40kg
供試溶剤 :トルエン
噴流部の粒体温度:70±3℃
*被覆液はポンプ5より送られてノズルに至るが、80℃以下に温度が低下しないように配管を二重管にして蒸気を流しておく。
【0025】
3.試作被覆肥料サンプルの溶出試験
試作した本発明の被覆肥料サンプルそれぞれ10gを200ml水中に浸漬して25℃に静置する。所定期間後肥料と水に分け、水中に溶出した尿素を定量分析により求める。肥料には新水を200ml入れて再び25℃に静置、所定期間後同様な分析を行なう。この様な操作を反復して水中に溶出した尿素の溶出累計と日数の関係をグラフ化して溶出速度曲線を作成し、80%溶出率に至る日数を知ることが出来る。表1に溶出試験の結果を示す。浸漬開始から10%溶出に至るまでの日数を初期溶出抑制期間とし、表1において「D1」と表記した。それ以降80%溶出に至るまでの日数を溶出期間とし「D2」と表記した。更に、初期溶出期間中の溶出抑制能力の比較のため、初期溶出抑制期間の中間に当たる時点での溶出率を「1/2・D1」と表記した。「D1」「D2」「1/2・D1」はそれぞれ20回反復して作成したサンプルにつき溶出試験を行い、その平均値(χ)と変動係数(σ/χ)を記載した。
【0026】
比較例の試験区においては樹脂溶液の粘度が高くなるに従い、溶出期間(D1、D2)が短くなり、初期溶出抑制期間中の溶出抑制能力の指標である1/2・D1が大きくなる傾向にあった。これは樹脂溶液の粘度アップに伴い被膜の緻密性が低下していることによると考えられる。これに対し本発明の実施例区においては比較例区に比べ溶出期間(D1、D2)が長くなる傾向にあり、特に1/2・D1が小さくなっていることから、本発明の被覆方法によれば高度の初期溶出抑制機能を有する被膜の被覆が可能であることは明らかである。
但し、実施例1の試験区においては、不活性気体の風速が最小流動化速度(本実施例に用いた尿素粒体の場合1.06m/s)とほぼ同じ風速であったため、その溶出結果においてばらつきが大きかった。不活性気体の風速はばらつきを小さくすると云う観点からは、実施例2の試験区の結果からも明らかなように最小流動化速度の70%以下であることが望ましい。また、不活性気体の風速が小さすぎても初期溶出抑制期間中の溶出抑制効果、及び溶出のばらつきが悪化する傾向が見られることから、不活性気体の風速は最小流動化速度の1%以上、更には5%以上であることが好ましい。
樹脂溶液粘度が40c.p.の実施例10においては溶出期間(D1、D2)が短くなる傾向にあるものの、比較例に比べれば初期溶出抑制期間中の溶出抑制能力(1/2・D1)は改善されている。しかしながら実施例10は特に溶出機能がその他の実施例区に比べ劣ることから、本発明の粒体の被覆方法において用いる樹脂溶液の粘度は、40c.p.以下であることが望ましい。
この溶出試験の結果からも、本発明の被覆方法を用いて粒体の被覆を行なうことにより、初期溶出の厳密な制御が可能であることが明らかになった。
本発明の被覆方法により製造された時限溶出型の被覆粒状肥料においては、初期溶出抑制期間の溶出も極めて良好な抑制レベルが達成されており、特開平7−147819号の開示の育苗箱による全量基肥施肥法に該肥料を用いた場合の、初期生育期間における肥料による濃度障害発生の可能性が大幅に軽減された。
【0027】
【表1】
Figure 0003633148

【図面の簡単な説明】
【図1】本発明の方法に使用する被覆装置の工程説明図である。
【図2】本発明の方法に使用する被覆装置の絞り部の説明図である。
【図3】本発明の方法に使用する被覆装置の絞り部の説明図である。
【図4】A 本発明の方法に使用する被覆装置の絞り部の説明図である。
B 図4Aの水平断面図である。
【図5】A 本発明の方法に使用する被覆装置の絞り部の説明図である。
B 図5Aの水平断面図である。
【図6】本発明の方法に使用する被覆装置の絞り部の説明図である。(ガイド管中空構造)
【図7】本発明の方法に使用する被覆装置の絞り部の説明図である。(特定の噴出管構造)
【符号の説明】
1 噴流塔
2 粒体投入口
3 粒体投入口バルブ
4 空気噴出用オリフィス
5 噴霧ノズル
6 被覆粒体抜き出し口
7 空気排出管
8 空気加熱器
9 流量計
10 ブロアー
11 被覆液調整槽
12 蒸気加熱用ジャケット
13 被覆液供給ポンプ
14 ガイド管
15 不活性気体送入管
16 不活性気体噴出口[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for coating granules. More specifically, the present invention relates to a coating method using a jet coating apparatus having a guide tube in a tank.
[0002]
[Prior art and its problems]
The coating method using the jet method is, for example, as described in Japanese Examined Patent Publication No. 38-13896, a cylindrical tank having a lower conical shape at the lower part, and its tip cut in a horizontal direction to provide a throttle for gas ejection. This is a coating method in which a gas-fluid faster than the orifice is ejected in the vertical direction into the tank to blow up the particles to be coated in the tank and simultaneously spray the coating liquid.
Japanese Examined Patent Publication No. 38-2294 discloses a method in which a granule is blown up through a guide tube provided in a central jet part, and a coating liquid is added from a spray nozzle provided in the tube. All of these coating methods are intended for the coating of pharmaceuticals, and are preferable methods for small-scale and careful coating, but are suitable for low-cost and large-scale coatings such as fertilizers. It's hard to say how.
In order to cover a large amount of particles, it is necessary to use a jet tower having a large diameter. However, when the diameter of the jet tower is increased, the entire particle is in a fluid state and a jet cannot be formed. In order to solve this problem, Japanese Patent Publication No. 2-31039 is a coating apparatus in which a guide pipe through which particles pass in a jet apparatus is provided vertically above an orifice, and an inert gas is sent from the orifice into the apparatus. When entering, if the gas flow rate in the orifice is set to 20 m / sec to 70 m / sec and the flow rate in the guide tube is adjusted to 20 m / sec or less to perform coating, the jet state is maintained even if the spout tower is enlarged. It is disclosed that it is obtained.
On the other hand, recently, JP-A-6-9303, JP-A-6-9304, JP-A-6-72805, JP-A-6-80514, JP-B-5-29634, JP-A-4-202078, JP-A-4-4-283 202079, as disclosed in JP-A-6-87684, a period during which the active ingredient is not eluted for a certain period after application or the elution is extremely suppressed (this period is hereinafter referred to as an initial elution suppression period), There is disclosed a coated granular fertilizer in which a surface of a fertilizer granule is coated with a coating of a so-called timed elution type elution pattern having a period of rapid elution after a certain period of time (this period is hereinafter referred to as an elution period).
The development of these new coating compositions is bringing about an extremely concentrated fertilization / cultivation method such as a whole-basis fertilization method using a seedling box as shown in JP-A-7-147819.
In this cultivation method, the entire amount or most of the fertilizer necessary during the cultivation period is applied to the seedling box in the form of the time-dissolved clothing fertilizer at the start of raising the seedling. The elution of the fertilizer is extremely suppressed during the seedling period and starts elution after the end of the seedling period (after transplanting to the main field). Can be fertilized.
Furthermore, the roots rooted from the seed pods come into contact with the fertilizer as they grow, and finally become in a state of holding the fertilizer with the roots, and when the grown seedlings are transplanted into Honda, they are transplanted as they are. For this reason, it became possible to absorb a fertilizer directly from this fertilizer which the root is contacting, and the possibility that the absorption utilization efficiency of a fertilizer fertilizer could be improved significantly came out.
However, in order to realize such a fertilization method, it is necessary to keep the elution during the initial elution suppression period as low as possible so as not to cause concentration disturbances due to fertilizers during the initial growth period (seedling period) of the crop. Therefore, a very strict elution control function is required compared to the so-called linear type that starts elution at a constant elution rate.
However, when the above-mentioned jet method is used to coat a large amount of these conventional time-dissolved fertilizers, even if the coating composition shows a time-dissolved elution, a considerable dissolution rate immediately after fertilization In this case, elution was started, and a sufficient elution suppression function could not be obtained. Some of the time-dissolved coated fertilizers obtained by the coating composition are not dissolved within the initial dissolution suppression period, and many of them dissolve immediately after application until a certain dissolution rate. It was extremely difficult to obtain an elution function that can withstand the use of fertilization methods.
[0003]
[Problems to be solved by the invention]
In general, the dissolution pattern of fertilizers from time-dissolved fertilizers is a layer or resin that does not allow water vapor or moisture to pass through the coating and reacts slightly with water vapor or moisture, causing internal stress or dissolution due to swelling. It is comprised by the material (it may be an internal active substance granule itself) which damages a film by. Therefore, in order to suppress the elution in the initial elution suppression period, it is necessary to suppress the passage of water vapor or moisture by making the film a denser film.
In order to obtain a time-dissolved coating that can be used with a known coating composition, the present inventors have conducted extensive research on the method of coating particles by the jet method. A resin in which a thermoplastic resin is dissolved in a solvent using a jet coating apparatus in which a throttle for ejecting gas is provided, a guide pipe is provided vertically above the throttle, and a spray nozzle is provided near the center of the throttle. In the coating method of forming a film on the granule while spraying the solution from the nozzle, the method of coating the granule for coating while injecting an inert gas into the annular portion inside the tank and outside the guide tube, The present invention was completed by discovering that there was a remarkable effect of suppressing elution during the initial elution suppression period.
As is clear from the above description, an object of the present invention is to provide a coating method that enables precise control of initial elution when a granular material is coated with a resin solution.
[0004]
[Means for Solving the Problems]
The present invention comprises the following configurations (1) to (7).
(1) A jet provided with a throttle for jetting gas into the tank at the bottom of an upright cylindrical tank, a guide pipe vertically provided above the throttle, and a spray nozzle provided near the center of the throttle In a coating method in which a coating film is formed on the surface of particles in a jet state in the tank while a resin solution in which a thermoplastic resin is dissolved in a solvent is sprayed from the nozzle using a coating apparatus, A method for coating a granular material, wherein coating is performed while injecting an inert gas onto an annular portion which is outside the guide tube.
[0005]
(2) The method for coating particles according to (1), wherein the coating is performed while injecting an inert gas from the inner wall of the tank.
[0006]
(3) The method for coating particles according to (1), wherein the coating is performed while injecting an inert gas from the outer wall of the guide tube.
[0007]
(4) The method for coating particles as described in (1) above, wherein coating is performed while ejecting an inert gas ejection port from the space between the inner wall of the tank and the outer wall of the guide tube.
[0008]
(5) In any one of the above (1) to (4), the ejection speed of the inert gas is in the range of 1 to 70% of the minimum fluidization speed in the particle size and specific gravity of the granules used The method for coating a granule according to the description.
[0009]
(6) In any one of the above (1) to (4), the ejection speed of the inert gas is in the range of 5 to 50% of the minimum fluidization speed in the particle size and specific gravity of the granules used The method for coating a granule according to the description.
[0010]
(7) The method for coating granules according to any one of (1) to (6) above, wherein the thermoplastic resin has a property of dissolving in a solvent when heated and precipitating when cooled to form a jelly.
[0011]
The configuration of the present invention will be described in detail below.
The upright cylindrical tank used in the present invention is a tank having a vertical central axis. The coating apparatus of the present invention is provided with a throttle for jetting gas at the lower end of this tank, and a jet gas inlet pipe is connected to the throttle, and a guide pipe is vertically installed above the throttle. A spray nozzle is provided near the center of the aperture.
The shape of the tank is not particularly limited, and the cross-sectional shape may be circular or polygonal. Further, the lower end of the tank may be a flat surface or an inverted cone shape. However, if the lower end of the cistern is that the granules in the case of plane jet-like body, is preferably a reverse cone shape from the circulation of granules is deteriorated in a portion of the lower end, further circulation of granules From the viewpoint of uniformity, the shape of the cross section of the tank is preferably circular.
In addition, various orifice plates and venturis may be inserted into the throttle at the bottom of the tank.
[0012]
Examples of the shape of the guide pipe include a pipe, a pipe perforated in the pipe, or a pipe made of a wire mesh. In the present invention, the shape and material are not particularly limited, but when it is desired to minimize damage to the coating film during coating, it is preferable to use a smooth pipe having no holes or protrusions. However, the effect of the present invention can be recognized even in a guide tube having holes and protrusions for adjusting the flow velocity of the jet gas and for a specific purpose. At this time, the guide tube is fixed or suspended vertically above the diaphragm.
The spray nozzle may be at a position that becomes the central axis of the diaphragm, and may be at a position higher or lower than the diaphragm. The position and shape of the nozzle may be appropriately determined depending on the properties of the spray liquid, operating conditions, and the like.
[0013]
The throttle part wind speed is determined by the amount of jetted gas and the throttle aperture, but the wind speed in the guide tube can also be converted by the same method. The distance between the guide tube and the narrowed portion is preferably selected within a range that does not hinder the circulation of the particles. The diameter of the guide tube should be 1.2 to 4.0 times, preferably 1.5 to 3.0 times the throttle diameter. In the present invention, the gas flow rate in the throttle unit and the gas flow rate in the guide tube are not particularly limited, but in order to stabilize the quality, the throttle when the inert gas is fed from the throttle into the apparatus. A method is recommended in which the coating is performed by adjusting the flow velocity of the gas in the section from 20 m / sec to 70 m / sec and adjusting the flow velocity in the guide tube to 20 m / sec or less.
[0014]
The gas used in the present invention is not particularly limited as long as it is inert in the nature of the particles and the solvent.
In the present invention, a resin solution in which a thermoplastic resin is dissolved in a solvent is used as the coating liquid. Examples of the thermoplastic resin include polyolefin and a copolymer thereof, and polyvinylidene chloride and a copolymer thereof. Preferred polyolefins and copolymers thereof include polyethylene, polypropylene, ethylene / propylene copolymer, ethylene / vinyl acetate copolymer, ethylene / carbon monoxide copolymer, ethylene / vinyl acetate / carbon monoxide copolymer, ethylene Acrylate copolymers, ethylene / methacrylic acid copolymers, rubber resins, polystyrene, polymethyl methacrylate, etc. are preferable. Preferred polyvinylidene chloride and copolymers thereof include polyvinylidene chloride, vinylidene chloride / vinyl chloride. A copolymer etc. are mentioned. Furthermore, biodegradable polyesters represented by poly-2-hydroxy-2-alkylacetic acid, poly-3-hydroxy-3-alkylpropionic acid, and the like can also be mentioned.
[0015]
These coating materials are sprayed onto the particles in a jet state in a state of being dissolved in an organic solvent to perform coating. The effect of the present invention is particularly effective in a film forming method in which a film is formed by instantaneous drying using a poor solvent solution of the above resin. In the case of instantaneous drying using the poor solvent of the resin, the combination of the resin and the organic solvent is preferably one that has a property that it melts well when heated and precipitates in a jelly state when cooled. A coating is particularly preferred.
As a covering material other than the above, an inorganic filler typified by talc, a surfactant, and the like can be used. These coating materials are dissolved and dispersed in a solvent, sent to a spray nozzle, and used for coating.
[0016]
The coating method of the present invention makes it possible to strictly control the initial elution when a granular material is coated with a resin solution, particularly in a coated granular fertilizer exhibiting a timed elution type elution pattern. The present inventors consider the reason as follows, although it does not deviate from the range of estimation.
In order to obtain an elution pattern in which initial elution is further suppressed with the same film composition and coverage, it is necessary to improve the denseness of the film. The factors of film densification are thought to be complex and diverse, and cannot be uniquely identified. However, in the coating method in which a film is formed by drying a solvent using a resin solution, the solvent from the resin solution adhering to the granules is removed. It is thought that scattering and drying greatly affect. In the conventional coating method using a large jet tower, it is considered that the drying of the solvent per unit time was insufficient.
In order to shorten the drying time, the present inventors have developed a method for coating a granular material in which the above-described jet coating apparatus is coated while injecting an inert gas into the annular portion inside the tank and outside the guide tube. did. With this method, elution during the initial elution suppression period in the timed elution type elution pattern can be minimized.
Even in the case of solvent drying, the inert gas jet outlet is below the top of the stationary phase, even when viewed from the viewpoint of further drying efficiency and densification of the coating. It is desirable that it be relatively upper. In addition, jetting from the bottom of the tank including the inverted conical part is different in the minimum fluidization speed depending on the amount of particles charged into the jet tower, the particle diameter, the diameter of the jet outlet, etc. As compared with the ejection from the space between the guide tube and the outer wall of the guide tube, fluidization of the stationary phase is likely to occur, and when the fluidized state occurs, it becomes difficult to maintain the jet flow.
Especially when the viscosity of the resin solution is high and there is a lot of residual solvent at the time of dropping in the stationary phase, the required amount of inert gas to be ejected to the stationary phase increases, so when using a resin solution with a high viscosity, It is desirable that the inert gas be ejected from at least one of the inner wall of the tank, the outer wall of the guide pipe, and the space between the inner wall of the tank and the outer wall of the guide pipe.
[0017]
The jet gas may be transferred to the inner wall of the tank, the outer wall of the guide pipe, the bottom of the tank, etc. using a jacket or a vent pipe. In the case between the inner wall of the tank and the outer wall of the guide pipe, a vent pipe is used. However, when installing a vent pipe in the tank, it should be ensured that the vent pipe does not hinder the fall of the granules in the stationary phase.
Conditions such as the wind speed, temperature, and number of jets of the inert gas in the annular portion are not particularly limited. The wind speed is determined by the specific gravity, particle size, coating solution viscosity (concentration), latent heat of evaporation of the solvent, coating solution supply amount, etc., and should be appropriately selected by the practitioner. Is preferably 70% or less of the minimum fluidization speed in terms of the particle size and specific gravity of the granules to be used. Depending on the position of the spout of the inert gas, in particular the stationary phase is easily fluidized when there is ejection port at a relatively low position such as Sosoko portion, of granules in even the stationary phase until no fluidize Since the descent becomes difficult, the circulation of the particles is insufficient, and the quality variation becomes large, it is desirable that the ejection speed of the inert gas is 50% or less of the minimum fluidization speed.
Moreover, even if the wind speed of an inert gas is too small, the elution suppression effect in the initial elution suppression period and the tendency for the dispersion | variation in elution to deteriorate are seen. From this point, the wind speed of the inert gas is preferably 1% or more of the minimum fluidization speed, and more preferably 5% or more. Further, it is desirable that the temperature of the gas be kept at a temperature that does not cause a change in the physical properties and shape of the resin and the particles, similarly to the temperature of the jet portion. Furthermore, it is desirable that the number of jet outlets is large from the viewpoint of uniform drying in the stationary phase.
[0018]
Usually, if it coats with a very thin resin solution, it dries instantly at the same time as the jet, and a film with good elution characteristics can be obtained, but the production efficiency is low and it is not economical. If the concentration is increased, the production efficiency is improved, but the solvent is difficult to evaporate, and a film having a sufficient function cannot be obtained. In the present invention, a practically sufficient initial elution suppression function can be obtained even with a resin solution having a relatively high concentration. In the coating method of the present invention, the viscosity of the resin solution is 5 c. p. An excellent effect can be recognized in the case of the concentration as described above. Furthermore, the viscosity of the resin solution is 7c. p. This is remarkable in such cases.
However, the viscosity of the resin solution is 40 c. p. In the case of a concentration exceeding 25 ° C., even if the coating method of the present invention is used, drying in the stationary phase is not sufficient, so the concentration of the resin solution has a viscosity of 40 c. p. Hereinafter, more preferably 35c. p. It is desirable that the range is as follows. However, the viscosity defined in the present invention is a value obtained by measuring with a B-type viscometer at the resin solution temperature just before spraying on the jetted particles .
[0019]
In the present invention, as long as it is an annular portion inside the tank and outside the guide tube, the installation location of the inert gas jet port is not particularly limited. (Including the inverted cone portion), the outer wall of the guide tube, and the space between the inner wall of the tank and the outer wall of the guide tube.
[0020]
The granules used in the coating apparatus of the present invention are not particularly limited. However, the coating by the coating apparatus of the present invention is particularly effective for the active ingredients contained in the granules that need to adjust the elution rate. It is valid.
Specific examples of active ingredients include urea, ammonium sulfate, ammonium sulfate, ammonium nitrate, potassium chloride, potassium sulfate, potassium nitrate, sodium nitrate, ammonium phosphate, potassium phosphate, lime phosphate, chelated iron, iron oxide, iron chloride, and boric acid. , Fertilizers such as borax, manganese sulfate, manganese chloride, zinc sulfate, copper sulfate, sodium molybdate, ammonium molybdate, OMUP (isobutylidene diurea), IBDU (isobutylidene diurea) and oxamide, insecticides, fungicides, Examples include, but are not limited to, agrochemicals such as herbicides.
The granules may be one or more granules of the active ingredient, even 1 or more and bentonite active ingredient, zeolite, talc, clay, even granules comprising an inert carrier such as diatomaceous earth good. Furthermore, you may coat | cover the above-mentioned active ingredient granule with resin or an inorganic substance.
[0021]
【The invention's effect】
The present invention provides a jet coating apparatus in which a throttle for ejecting gas into a tank is provided at the bottom of the tank, a guide pipe is provided vertically above the throttle, and a spray nozzle is provided near the center of the throttle. In a coating method in which a resin solution in which a thermoplastic resin is dissolved in a solvent is sprayed from the nozzle and a film is formed on the granules, an inert gas is ejected to the annular part inside the tank and outside the guide tube It is the coating method of the granule which coat | covers making it carry out. The present invention has an effect of making it possible to strictly control the initial dissolution of coated particles when the particles are coated with a resin solution. In particular, it is remarkable for suppression of elution in the initial elution suppression period in a timed elution type elution pattern.
[0022]
【Example】
1. Coating device FIG. 1 shows a coating device which is a comparative example of the present invention and which is the basic structure of the embodiment. In FIG. 1, 1 is a jet tower, 2 is an inlet for granules to be coated, 3 is a granule inlet valve, 4 is an orifice for jetting jet air, 5 is a spray nozzle, 6 is an outlet for the coated granules, 7 is a discharge pipe for air used for jetting and drying, 8 is an air heater, 9 is a flow meter, 10 is a blower, 11 is a coating liquid adjusting tank, 12 is a steam heating jacket, 13 is a coating liquid supply pump, 14 Is a guide tube. The tower diameter is 450 mm and the guide tube diameter is 120 mm.
The coating apparatus used in the present invention is illustrated in FIGS. In these figures, 15 is an inert gas inlet pipe for drying, and 16 is an inert gas outlet. 2, 3 and 4A, 5A describe only the periphery of the restrictor and guide tube of the coating apparatus. Its peripheral part is the same as in FIG. 4B is a horizontal cross-sectional view of FIG. 4A, FIG. 5B is a horizontal cross-sectional view of FIG. 5A, and FIGS. 6 and 7 are particles of a jet tower separate from FIGS. 2, 3, 4A, 4B, 5A, and 5B. It is a horizontal sectional view of the lower portion of the inlet.
FIG. 2 is a view in which a spout is provided on the inner wall of the tank, and FIG. 3 is a view in which a spout is provided in the inverted conical portion at the bottom of the tank. 4A and 4B show a guide tube having a hollow structure and a jet port provided on the outer wall thereof. 5A and 5B show an annular vent pipe provided between the inner wall of the tank and the outer wall of the guide pipe. In the figure, there are two in the vertical direction and one in the horizontal direction, but the number and positional relationship can be selected as appropriate in relation to the ejection amount and the capacity. However, the presence of the vent tube should not hinder the movement of the stationary phase granules .
In FIG. 6, the guide tube has a hollow structure, and the ejection tube is radially extended outward from the guide tube. The coating apparatus used in the present invention may have such a structure. Further, in the present invention, the apparatus shown in FIG. 5B may be combined with the apparatus shown in FIG. 6 to have an ejection pipe having a structure as shown in FIG.
In the embodiment of the present invention, the coating apparatus shown in FIGS. 5A and 5B was used.
[0023]
2. In the trial coating operation of the examples of the present invention and the comparative example samples, a predetermined amount of granules are introduced while air maintained at a predetermined air volume and temperature is sent from the blower 10 to the jet tower. Next, when the granules in the tower reach a predetermined temperature, the resin solution (coating liquid) is sent from the coating liquid supply pump at a predetermined speed for a predetermined time, and after the predetermined coverage is reached, the blower 10 is stopped and the coated granules are extracted. The coated granules are extracted from the mouth 6.
However, in the embodiment, the air heated to 75 ± 2 ° C. is maintained at the flow rate shown in Table 1, and the inert gas outlet 16 is passed through the drying inert gas inlet pipe 15 from the start to the end of the operation. Continued to erupt more.
The coating composition is as follows. The concentration of the solution was adjusted using a B-type viscometer so that the viscosity shown in Table 1 was obtained. However, the viscosity was measured by dissolving the following film composition in the following test solvent at 100 ± 2 ° C.
Figure 0003633148
[0024]
In this production example, coating was performed until the predetermined coverage reached 10 wt% while maintaining the following basic conditions. The coating operation was repeated 20 times to confirm the variation in elution.
One fluid nozzle: Opening 0.8mm full-con type hot air flow: 450Nm 3 / h
Hot air temperature: 100 ± 2 ° C
Resin solution temperature: 100 ± 2 ° C
Fertilizer: Urea (granular)
Particle size and specific gravity: 2.7 mm, 1.3 g / cc
Fertilizer input: 40kg
Test solvent: Toluene jet particle temperature: 70 ± 3 ° C
* The coating liquid is sent from the pump 5 to the nozzle, but the pipe is made to flow in a double pipe so that the temperature does not drop below 80 ° C.
[0025]
3. Elution test of prototype coated fertilizer sample 10 g of each of the coated fertilizer samples of the present invention which were prototyped are immersed in 200 ml water and left at 25 ° C. After a predetermined period, it is divided into fertilizer and water, and urea eluted in water is obtained by quantitative analysis. The fertilizer is filled with 200 ml of fresh water and allowed to stand again at 25 ° C. The same analysis is performed after a predetermined period. It is possible to know the number of days to reach an 80% elution rate by creating a dissolution rate curve by graphing the relationship between the total amount of urea eluted in water and the number of days by repeating such operations. Table 1 shows the results of the dissolution test. The number of days from the start of soaking to 10% elution was defined as the initial elution suppression period, and is represented as “D1” in Table 1. Thereafter, the number of days until elution was 80% was designated as “D2” as the elution period. Further, for comparison of elution suppression ability during the initial elution period, the elution rate at the middle of the initial elution suppression period was expressed as “1/2 · D1”. For “D1”, “D2” and “1/2 · D1”, dissolution tests were performed on samples prepared 20 times, and the average value (χ) and coefficient of variation (σ / χ) were described.
[0026]
In the test section of the comparative example, as the viscosity of the resin solution increases, the elution period (D1, D2) becomes shorter, and ½ · D1 that is an index of the elution suppression ability during the initial elution suppression period tends to increase. there were. This is thought to be due to the fact that the denseness of the coating is reduced as the viscosity of the resin solution increases. On the other hand, in the example section of the present invention, the elution period (D1, D2) tends to be longer than that in the comparative example section, and in particular, 1/2 · D1 is smaller. Therefore, it is apparent that a coating having a high initial dissolution inhibiting function can be applied.
However, in the test section of Example 1, the wind speed of the inert gas was almost the same as the minimum fluidization speed (1.06 m / s in the case of the urea particles used in this example), so the dissolution results The variation was large. From the viewpoint of reducing the variation in the wind speed of the inert gas, it is desirable that it is 70% or less of the minimum fluidization speed as is apparent from the results of the test section of Example 2. Moreover, even if the wind speed of the inert gas is too small, the elution suppression effect during the initial elution suppression period and the tendency of the dispersion of elution to be worsened are observed, so the wind speed of the inert gas is 1% or more of the minimum fluidization speed. Further, it is preferably 5% or more.
Resin solution viscosity is 40 c. p. In Example 10, although the elution periods (D1, D2) tend to be shorter, the elution suppression ability (1/2 · D1) during the initial elution suppression period is improved as compared with the comparative example. However, since the elution function of Example 10 is particularly inferior to that of the other Examples, the viscosity of the resin solution used in the granule coating method of the present invention is 40 c. p. The following is desirable.
From the results of the dissolution test, it was revealed that the initial dissolution can be strictly controlled by coating the granules using the coating method of the present invention.
In the time-dissolved coated granular fertilizer produced by the coating method of the present invention, a very good suppression level is achieved even during the initial dissolution suppression period, and the total amount by the seedling box disclosed in JP-A-7-147819 When the fertilizer was used for the basic fertilization method, the possibility of concentration disturbance due to the fertilizer during the initial growth period was greatly reduced.
[0027]
[Table 1]
Figure 0003633148

[Brief description of the drawings]
FIG. 1 is a process explanatory diagram of a coating apparatus used in the method of the present invention.
FIG. 2 is an explanatory view of a throttle part of a coating apparatus used in the method of the present invention.
FIG. 3 is an explanatory view of a throttle part of a coating apparatus used in the method of the present invention.
FIG. 4A is an explanatory diagram of a throttle part of a coating apparatus used in the method of the present invention.
4B is a horizontal sectional view of FIG. 4A.
FIG. 5A is an explanatory diagram of a throttle part of a coating apparatus used in the method of the present invention.
5B is a horizontal sectional view of FIG. 5A.
FIG. 6 is an explanatory view of a throttle part of a coating apparatus used in the method of the present invention. (Guide tube hollow structure)
FIG. 7 is an explanatory view of a throttle part of a coating apparatus used in the method of the present invention. (Specific jet pipe structure)
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Jet tower 2 Granule inlet 3 Granule inlet valve 4 Air ejection orifice 5 Spray nozzle 6 Coated granule outlet 7 Air discharge pipe 8 Air heater 9 Flow meter 10 Blower 11 Coating liquid adjustment tank 12 For steam heating Jacket 13 Coating liquid supply pump 14 Guide pipe 15 Inert gas inlet pipe 16 Inert gas outlet

Claims (18)

直立筒状槽の最下部に該槽内に気体を噴出させるための絞りを設け、該絞りの上方に垂直方向にガイド管を設け、該絞りの中心付近に噴霧ノズルを設けた噴流被覆装置を用い、熱可塑性樹脂を溶剤に溶解させた樹脂溶液を該ノズルから噴出させつつ該槽内で噴流状態にある粒体の表面に被膜を形成させる被覆方法において、該槽内であって前記ガイド管の外側である環状部に、槽内側壁から不活性気体を噴出させつつ被覆を行うことを特徴とする粒体の被覆方法。A jet coating apparatus is provided with a throttle for ejecting gas into the tank at the bottom of an upright cylindrical tank, a guide pipe in the vertical direction above the throttle, and a spray nozzle near the center of the throttle. A coating method in which a resin solution in which a thermoplastic resin is dissolved in a solvent is ejected from the nozzle while a coating is formed on the surface of the particles in a jet state in the tank; A method of coating a granular material, characterized in that coating is carried out while injecting an inert gas from the inner wall of the tank to the annular part which is the outside of the tank . 直立筒状槽の最下部に該槽内に気体を噴出させるための絞りを設け、該絞りの上方に垂直方向にガイド管を設け、該絞りの中心付近に噴霧ノズルを設けた噴流被覆装置を用い、熱可塑性樹脂を溶剤に溶解させた樹脂溶液を該ノズルから噴出させつつ該槽内で噴流状態にある粒体の表面に被膜を形成させる被覆方法において、該槽内であって前記ガイド管の外側である環状部に、ガイド管外壁から不活性気体を噴出させつつ被覆を行うことを特徴とする粒体の被覆方法。A jet coating apparatus is provided with a throttle for ejecting gas into the tank at the bottom of an upright cylindrical tank, a guide pipe in the vertical direction above the throttle, and a spray nozzle near the center of the throttle. A coating method in which a resin solution in which a thermoplastic resin is dissolved in a solvent is ejected from the nozzle while a coating is formed on the surface of the particles in a jet state in the tank; A method for coating a granular material, characterized in that coating is performed while injecting an inert gas from an outer wall of a guide tube to an annular portion that is outside of the guide tube . 直立筒状槽の最下部に該槽内に気体を噴出させるための絞りを設け、該絞りの上方に垂直方向にガイド管を設け、該絞りの中心付近に噴霧ノズルを設けた噴流被覆装置を用い、熱可塑性樹脂を溶剤に溶解させた樹脂溶液を該ノズルから噴出させつつ該槽内で噴流状態にある粒体の表面に被膜を形成させる被覆方法において、該槽内であって前記ガイド管の外側である環状部に、槽内側壁とガイド管外壁の間の空間から不活性気体を噴出させつつ被覆を行うことを特徴とする粒体の被覆方法。A jet coating apparatus is provided with a throttle for ejecting gas into the tank at the bottom of an upright cylindrical tank, a guide pipe in the vertical direction above the throttle, and a spray nozzle near the center of the throttle. A coating method in which a resin solution in which a thermoplastic resin is dissolved in a solvent is ejected from the nozzle while a coating is formed on the surface of the particles in a jet state in the tank; A method for coating a granular material, characterized in that coating is performed while injecting an inert gas from a space between the inner wall of the tank and the outer wall of the guide tube to the annular portion which is the outside of the tank . 直立筒状槽の最下部が逆錘状であることを特徴とする請求項1から3の何れか1項に記載の粒体の被覆方法。The method for coating a granular material according to any one of claims 1 to 3, wherein the lowermost part of the upright cylindrical tank has an inverted spindle shape. 噴流ノズルが該絞りの中心軸となる位置にあることを特徴とする請求項1から3の何れか1項に記載の粒体の被覆方法。The method for coating a granular material according to any one of claims 1 to 3, wherein the jet nozzle is located at a position that becomes a central axis of the throttle. ガイド管の口径が絞り口径の1.2〜4.0倍であることを特徴とする請求項1から3の何れか1項に記載の粒体の被覆方法。The diameter of the guide tube is 1.2 to 4.0 times the diameter of the aperture, 4. The method for coating granules according to any one of claims 1 to 3 . ガイド管の口径が絞り口径の1.5〜3.0倍であることを特徴とする請求項1から3の何れか1項に記載の粒体の被覆方法。The diameter of the guide tube is 1.5 to 3.0 times the diameter of the throttle aperture, The method for coating a granular material according to any one of claims 1 to 3 . 絞り部における気体の流速が20〜70m・secであり、かつガイド管内の流速が20m・sec以下に調節して被覆を行うことを特徴とする請求項1から3の何れか1項に記載の粒体の被覆方法。The flow velocity of the gas in the throttle section is 20~70m · sec, and the guide tube flow rate according to any one of claims 1 to 3, characterized in that an adjustment to coating below 20 m · sec Method for coating granules. 樹脂溶液の粘度が5〜40cpであることを特徴とする請求項1から3の何れか1項に記載の粒体の被覆方法。The method for coating granules according to any one of claims 1 to 3, wherein the resin solution has a viscosity of 5 to 40 cp. 樹脂溶液の粘度が7〜35cpであることを特徴とする請求項1から3の何れか1項に記載の粒体の被覆方法。The method for coating granules according to any one of claims 1 to 3, wherein the viscosity of the resin solution is 7 to 35 cp. 粒体が肥料および農薬から選ばれた1種以上を含有する粒体であることを特徴とする請求項1から3の何れか1項に記載の粒体の被覆方法。The method for coating granules according to any one of claims 1 to 3, wherein the granules are granules containing at least one selected from fertilizers and agricultural chemicals. ガイド管の外側である環状部に噴出させる不活性気体の温度が、噴流部の粒体温度の±1℃の範囲であることを特徴とする請求項1から3の何れか1項に記載の粒体の被覆方法。Is outside of the guide tube temperature of the inert gas to be injected into the annulus, as claimed in any one of claims 1, characterized in that in the range of ± 1 ° C. of the granules the temperature of the jet portion 3 Method for coating granules. 直立筒状槽の断面の形状が円形である請求項1から3の何れか1項に記載の粒体の被覆方法。The method of coating a granule according to any one of claims 1 to 3, wherein the cross-sectional shape of the upright cylindrical tank is circular. 絞りが、オリフィス板またはベンチュリが挿入可能な絞りである請求項1から3の何れか1項に記載の粒体の被覆方法。The method for coating a granular material according to any one of claims 1 to 3, wherein the restrictor is an restrictor into which an orifice plate or a venturi can be inserted. ガイド管が、孔や突起のない平滑なパイプである請求項1から3の何れか1項に記載の粒体の被覆方法。The method for coating a granular material according to any one of claims 1 to 3 , wherein the guide tube is a smooth pipe having no holes or protrusions. 不活性気体の噴出速度が用いた粒体の粒径、比重における最小流動速度の1から70%の範囲であることを特徴とする請求項1から15のいずれかに記載の粒体の被覆方法。The method for coating a granular material according to any one of claims 1 to 15 , wherein the inert gas ejection speed is in the range of 1 to 70% of the minimum flow velocity in the particle diameter and specific gravity of the granular material used. . 不活性気体の噴出速度が用いた粒体の粒径、比重における最小流動速度の5から50%の範囲であることを特徴とする請求項1から15のいずれかに記載の粒体の被覆方法。The method for coating a granular material according to any one of claims 1 to 15 , wherein the ejection speed of the inert gas is in the range of 5 to 50% of the minimum flow velocity in the particle diameter and specific gravity of the granular material used. . 熱可塑性樹脂が溶剤に対し熱時には溶解し冷時には析出してゼリー状となる性質を有するものである請求項1から17のいずれかに記載の粒体の被覆方法。The method for coating granules according to any one of claims 1 to 17 , wherein the thermoplastic resin has a property of dissolving in a solvent when heated and precipitating when cooled to form a jelly.
JP29449496A 1996-10-16 1996-10-16 Granule coating method Expired - Lifetime JP3633148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29449496A JP3633148B2 (en) 1996-10-16 1996-10-16 Granule coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29449496A JP3633148B2 (en) 1996-10-16 1996-10-16 Granule coating method

Publications (2)

Publication Number Publication Date
JPH10118557A JPH10118557A (en) 1998-05-12
JP3633148B2 true JP3633148B2 (en) 2005-03-30

Family

ID=17808497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29449496A Expired - Lifetime JP3633148B2 (en) 1996-10-16 1996-10-16 Granule coating method

Country Status (1)

Country Link
JP (1) JP3633148B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000036045A1 (en) * 1998-12-14 2000-06-22 Chisso Corporation Coated biologically active grains
WO2001036107A1 (en) * 1999-11-16 2001-05-25 Chisso Corporation Particle coating device, throttle plate for jet tower and particle coating method
JP2002068880A (en) * 2000-06-14 2002-03-08 Chisso Corp Coated bioactive granular material and method of manufacturing for the same
JP5014554B2 (en) * 2000-06-14 2012-08-29 ジェイカムアグリ株式会社 Method for producing coated bioactive granules
JP2003137682A (en) * 2001-11-02 2003-05-14 Chisso Corp Method of manufacturing coated bioactive granular material
EP4169889A1 (en) * 2021-10-22 2023-04-26 SABIC Global Technologies, B.V. Continuous methods for forming methylene urea-isobutylene diurea granules

Also Published As

Publication number Publication date
JPH10118557A (en) 1998-05-12

Similar Documents

Publication Publication Date Title
US6287359B1 (en) Granule mixtures composed of coated and non-coated fertilizer granules
JPS6387905A (en) Method for coating seed material
JP3633148B2 (en) Granule coating method
CN105723869A (en) Pelletization processing technology for seeds
CN205473459U (en) A equipment for producing slow -release nitrogen fertilizer
JP3609222B2 (en) Time-eluting coated granular fertilizer, blended fertilizer containing this as an active ingredient, and cultivation method using the blended fertilizer
JP3661317B2 (en) Granule coating apparatus and granule coating method
JPH07206564A (en) Agrochemical-coated granular fertilizer and its production
JP3921813B2 (en) Squeezing disk for granule coating apparatus, granule coating apparatus having the disc, and granule coating method
JPH11319693A (en) Coating method for core material particle
JP3826457B2 (en) Coated granular material with improved hydrophilicity and method for producing the same
JP3653988B2 (en) Squeezing disk for granule coating apparatus, granule coating apparatus equipped with the disc, and granule coating method
JPH07206565A (en) Coated granular fertilizer containing minor element
JP3456355B2 (en) Granule coating apparatus and granule coating method
JP2004292319A (en) Coated granular material
JP3458630B2 (en) Granule coating apparatus and granule coating method
JPH11343190A (en) Elution time adjusting type coated granular fertilizer, its production, control of eluting suppressing period and cultivation using the fertilizer
JPH10113550A (en) Granule coating apparatus and granule coating method
KR790000898B1 (en) Method for manufacture of coated granular fertizer
JP2004345872A (en) Coated granular fertilizer containing nitrification retarder and its production method
JPH0230690A (en) Coated granular fertilizer and production thereof
JPH11319654A (en) Drawing disk for apparatus for coating grain, apparatus for coating grain having the disk and method for coating grain
JPH0228559B2 (en)
JPH0231039B2 (en)
JPH0139996B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term